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Abstract

We analyze the weighted height of random tries built from independent strings
of i.i.d. symbols on the finite alphabet {1, . . . , d}. The edges receive random weights
whose distribution depends upon the number of strings that visit that edge. Such a
model covers the hybrid tries of de la Briandais (1959) and the TST of Bentley and
Sedgewick (1997), where the search time for a string can be decomposed as a sum of
processing times for each symbol in the string. Our weighted trie model also permits
one to study maximal path imbalance. In all cases, the weighted height is shown be
asymptotic to c logn in probability, where c is determined by the behavior of the core
of the trie (the part where all nodes have a full set of children) and the fringe of the
trie (the part of the trie where nodes have only one child and form spaghetti-like trees).
It can be found by maximizing a function that is related to the Cramér exponent of
the distribution of the edge weights.

Keywords: data structure, trie, TST, random tree, height, branching random walk.

1 Introduction

Tries are tree-like data structures that have been introduced by de la Briandais (1959) and
Fredkin (1960) in order to efficiently store and manipulate strings. They find a multitude
of applications in computer science and telecommunications (see, e.g., Szpankowski, 2001;
Flajolet, 2006). Consider n strings, each consisting of an infinite sequence of symbols taken
from a finite alphabet A. We assume without loss of generality that A = {1, 2, . . . , d}. Each
sequence defines an infinite path in an infinite d-ary position tree T∞. If the sequences are
distinct, then the paths are distinct as well. We trim T∞ by cutting every branch below
the shallowest node that belongs to a single path. The trie is the resulting finite tree, and
the strings are stored in the leaves. In the usual array-based implementation of the data
structure, the worst-case time to answer a search query corresponds to the height of the trie,
i.e., the maximum number of edges on a path from the root. The heights of tries have been
studied by many authors under various model of randomness for the sequences. For more
information about general models, see Szpankowski (2001), Clément, Flajolet, and Vallée
(2001), Flajolet (2006) and the references found there.

Here, we assume that the sequences are built using a memoryless source: each string is
an infinite sequence of independent and identically distributed (i.i.d.) symbols distributed
like X, where P {X = i} = pi, 1 ≤ i ≤ d. In addition, we assume that the strings are
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independent. It is well-known that the height Hn of a trie built from n such sequences
satisfies (Régnier, 1981; Devroye, 1984; Pittel, 1985; Szpankowski, 1991, 2001)

Hn

log n
−−−−→
n→∞ − 2

logQ(2)
in probability, (1)

where

Q(b) =
d∑
i=1

pbi (2)

is the probability that b ≥ 1 independent characters are identical. This result holds when
every leaf contains only one string. If the leaves can store up to b strings, the tree is called
a b-trie (see, e.g., Szpankowski, 2001) and its height Hn,b is such that

Hn,b

log n
−−−−→
n→∞ − b+ 1

logQ(b+ 1)
in probability.

The usual implementation of a trie uses an array for the branching structure of a node
(Fredkin, 1960). Although this always ensures constant-time shunting of the words in the
subtrees, the space required may become an issue for large alphabets: many pointers would
be left unused. To avoid this, one can replace the array by variable size structures. There
are essentially two solutions which have been considered. De la Briandais (1959) proposed to
use linked-lists, and we shall call the implementation a list-trie. More recently, building on
early ideas of Clampett (1964), Bentley and Sedgewick (1997) developed an elegant structure
based on binary search trees going by the name of bst-trie, ternary search trie or TST for
short.

These alternative implementations aim at a trade-off between storage space and speed,
and the access time to children of a node is no longer constant. In particular, the height of
the tree and the worst-case search time are different in general. List-tries and TST may be
seen as high-level tries whose edges are weighted to reflect the internal low-level structure
used to organize the children of a node. This point of view has been taken by Clément,
Flajolet, and Vallée (1998, 2001) who thoroughly analyzed these hybrid implementations of
tries. In particular, they analyzed the average size and average depth. The question of the
worst-case search time in hybrid-tries was left open. This paper addresses the latter question
by studying the weighted height of a general model of weighted tries that encompass hybrid
tries.

The analysis requires the new ideas of Broutin and Devroye (2007a) who distinguish two
different regions in the trie. We shall motivate the need for such a distinction and give more
insight about the model using an example.

Example: randomized list-tries. Assume that the low level structure used to implement
the set of subtrees at a node is a list. Assume for simplicity that the alphabet is {1, 2} and
that, for each node, an independent coin is flipped to decide which subtree will be first in the
list. Then, one can easily see that the nodes do not all behave in the same way with respect
to the costs: Towards the top of the tree, the nodes tend to have two children, and the cost
of going to any of them is 1 or 2, each case occurring with probability 1/2. Towards the
bottom of the tree, however, many nodes only have one child and the cost is then always 1.

Even this simple example shows that one should distinguish a region that is close to
the root —the core— from the fringe of the tree —the spaghettis— (precise definitions will
follow). We will see in the following (Lemma 1) that this simple binary distinction suffices to
explain properties of tries such as the height and the profile. The distinction is not necessary
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to obtain parameters like the average cost of looking up a sequence because the number of
nodes in the spaghettis is negligible compared to that in the core. This partly explains why
the average weighted depth was know already (Clément et al., 1998, 2001). The situation
is of course radically different if one is interested in the height for which every single node
is relevant.

Figure 1. The structure of a trie: the bulk is the
core, then some spaghetti-like trees hang down the
core. Both the core and the spaghettis contribute
significantly to the height of the trie. Observe
also that the height may not be explained by a
spaghetti born at one of the deepest nodes of the
core. This latter fact will become clear later.

Our main result (Theorem 1) is a law of large numbers for the (weighted) height of a
general model of random tries. Roughly speaking, we prove that the height of such tries
on n sequences is asymptotic to c log n in probability, where c is characterized using large
deviation techniques. The constant c is the sum of the contributions of the core and the
spaghettis.

Our method has several advantages. First, it yields the first order asymptotics of the
height of hybrid-tries (see Clément et al., 1998, 2001, for more on this). But it also permits
to shed new light on the family of digital trees. The profile of the core also happens to be
the profile of digital search trees, a related model discussed more precisely later. In this
sense, our methods unify the treatment of tries and digital search trees. This similarity goes
further than the mere case of digital trees, and our methods rely on the branching processes
treatment of trees of Broutin et al. (2007).

A detailed plan of the paper can be found at the end of Section 2, where we introduce the
model more precisely and we sketch the key steps explaining our results. An early version
of the results and the case of hybrid tries in particular in an extended abstract (see Broutin
and Devroye, 2007b).

2 Random weighted tries

2.1 Constructing tries via an embedding

In this section, we propose an embedding to construct weighted tries. We will see in Section 7
that hybrid-tries, like list-tries and TST, can be seen as weighted tries built using this
process.

Consider the distribution {p1, . . . , pd} over the alphabet A = {1, 2, . . . , d}. We assume
without loss of generality that 1 > p1 ≥ p2 ≥ · · · ≥ pd > 0. We are given n independent
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strings, each consisting of an infinite sequence of i.i.d. characters of A distributed as X,
where P {X = i} = pi, 1 ≤ i ≤ d. A weighted b-trie is built in two steps as follows: first
it is given a shape (unweighted tree), the weights are then assigned to the edges using the
shape.

The shape of the trie. Each string defines an infinite path in T∞. For a node u ∈ T∞,
let N?

u be the number of strings whose paths in T∞ intersect u. Then, for a natural number
b ≥ 1, the b-trie Tn,b consists of the root together with the nodes whose parent v has N?

v > b:

Tn,b = {all nodes u whose parent v has N?
v > b} ∪ {root}.

We can then define the cardinality Nu of a node u ∈ T∞ as the number of strings intersecting
u within Tn,b. Observe that we have Nu = 0 if u 6∈ Tn,b. The sequences are distinct with
probability one, and the strings define distinct paths in T∞. Therefore, the trie Tn,b is
almost surely finite. The tree Tn,b constitutes the shape of the weighted trie, and may be
represented by the sequence {Nu : u ∈ T∞}. For the edge e between u and its i-th child we
let pe = pi and Ee = − log pe.

Remark. For a specified edge e, Ee is deterministic. The values will later become random
after some symmetrization process among the child edges of a node.
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Figure 2. The way cardinalities are defined for a 2-trie. On the left we have represented the
sequences and the values of N?

u , u ∈ T∞. On the right, the white nodes are those not in the 2-trie,
and the labels are the values of the cardinalities Nu, u ∈ T∞.

As a position tree, Tn,b potentially contains 2d types of nodes, each type being char-
acteristic of the subset of children that are present. The type of every node u ∈ Tn,b is
represented by a d-vector τu: if u1, . . . , ud are the d children of u in T∞, then we define

τu = (1[Nui ≥ 1],1[Nu2 ≥ 1], . . . ,1[Nud ≥ 1]) ,

where 1[A] = 1 if and only if the event A holds. The weights of the edges to u1, . . . , ud are
assigned depending on the type τu.

The weights. Consider a collection Z of random vectors {Zτ , τ ∈ {0, 1}d}, where Zτ =
(Zτ1 , . . . , Z

τ
d ). For a fixed type τ ∈ {0, 1}d, the components of Zτ may be dependent. Also,

the members of the collection may be dependent. Each node of T∞ is given an independent
copy of Z. We always assume that there is a constant a such that |Zτi | ≤ a for all τ ∈ {0, 1}d
and i ∈ {1, . . . , d}. Consider a node u ∈ T∞, and its sequence {Zτ}. The weights of the
child edges of u are assigned using the vector Zτu only. In particular, the edge ei between
u and its i-th child in T∞ is given the weight

Zei = Zτui =
∑

τ∈{0,1}d
Zτi · 1[τu = τ ].
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We use the notations Zτi and Ze interchangeably. It should always be clear whether a
subscript refers to an index or an edge. The weighted tree obtained in this way is called a
random trie with weight sequence distribution {Zτ , τ ∈ {0, 1}d} and source {p1, . . . , pd}.

Example. Let d = 2. The collection of weights Z such that Z(0,0) = (0, 0), Z(1,0) =
(X, 0), Z(0,1) = (0, X) and Z(1,1) = (X,X) where X is a [0, 1]-uniform random variable is
acceptable.

Example: Randomized list-tries. Consider the example of binary list-tries of Section 1.
The shape is the regular (unweighted) trie. The weight accounts for the costs to branch to
subtrees. When the subtrees are ordered randomly in the list, we have

Z(1,1) =

{
(1, 2) w.p. 1/2
(2, 1) w.p. 1/2,

and Z(0,1) = Z(1,0) = Z(0,0) = (1, 1). Observe that the weights associated to edges going to
empty subtrees are irrelevant.

Remark. Our construction emphasizes an underlying structure consisting of independent
random vectors associated with the nodes of T∞. However, in the coupled trie built from
the embedding, the random variables {Nu : u ∈ T∞} and {Ze} associated respectively with
the nodes and the edges of T∞ are dependent: the values of {Nu : u ∈ T∞} influence the
types {τu : u ∈ T∞} which in turn influence the weights {Ze}.

Let π(u) be the set of edges on the path from u to the root of T∞. The weighted depth
of a node u ∈ T∞ is defined by Du =

∑
e∈π(u) Ze. We are interested in the weighted height

of Tn,b defined by
Hn,b = max{Du : u ∈ Tn,b}.

Surprisingly, if the weights are non-negative and bounded, Hn,b ∼ cb log n in probability,
and cb depends only on

• the distribution {p1, . . . , pd},

• the capacity b of the leaves,

• the distribution of Z(1,...,1), and

• the distributions of Zτ , for all a permutations τ of (1, 0, . . . , 0).

In particular, the first order asymptotics of Hn,b stay the same if we modify the distribution
of Z in such a way that the above parameters remain unchanged. In other words, the only
nodes whose weights affect the first order term of the height are the ones having either d
children or a single child in Tn,b. This is easily understood by thinking of the structure of
the shape of a trie.

2.2 Understanding the height using the structure of a trie

The reason why only the nodes with either one single child or d children affect the first order
asymptotics of the height is simply that the other types are negligible when looking at any
path.

Lemma 1. Let Tn,b be a random trie. Let m = m(n)→∞ such that m = o(log n). There
exists ω = ω(n)→∞, as n→∞ such that:
(a) with probability at least 1− n−ω, all the nodes u with Nu ≥ log2 n have τu = (1, . . . , 1),
(b) the maximum number of nodes with Nu ≥ m(n) and τu 6= (1, . . . , 1) on a path from the

root is o(log n) with probability at least 1− n−ω, and

5



(c) the maximum number of nodes with Nu ≤ m(n) and degree at least two on a path from
the root is at most m(n) = o(log n).

Proof. Each time the degree is at least two, at least one string is put aside from the longest
path. This can happen at most m = o(log n) times, and (c) follows. Therefore, we need
only consider the portion of the paths visited by at least m strings. The top of these paths,
consisting of nodes u with Nu ≥ log2 n, is very likely to be free of any node with less than
d children: in this region, with probability 1− o(1), all the nodes have d children. For any
node u, we have

P
{
τu 6= (1, . . . , 1) | Nu ≥ log2 n

}
≤ d(1− pd)log2 n.

Moreover, the number of such nodes is polynomial in n. Indeed, writing Lk for the set of
nodes at level k in T∞, and setting for k = dlog1/p1 ne,

P
{
∃u ∈ Lk : Nu ≥ log2 n

}
≤ dlog1/p1

n+1 ·P
{

Bin(n, pk1) ≥ log2 n
}

≤ dnlog1/p1
d · e− 1

2 log2 n,

by the Chernoff bound (Chernoff, 1952). Therefore, by the union bound,

P
{
∃u : Nu ≥ log2 n, τu 6= (1, . . . , 1)

}
≤ P

{
∃u ∈ Lj , j ≤ k : Nu ≥ log2 n, τu 6= (1, . . . , 1)

}
+P

{
∃u ∈ Lk : Nu ≥ log2 n

}
≤ 2dnlog1/p1

d · (1− pd)log2 n + dnlog1/p1
d · e− 1

2 log2 n

≤ n−ω1 , (3)

for some ω1 →∞ as n→∞. This proves (a).
There is also a number of layers of nodes u with m(n) ≤ Nu < log2 n. There are only

o(log n) such layers in probability. To see this, let ν = ν(n) → ∞ to be chosen later, and
look at a node v, d 1

ν log ne levels below u with Nu ≤ log2 n. Then,

P {Nv ≥ m} ≤ P
{

Bin(log2 n, p
1
ν logn
1 ) ≥ m

}
. (4)

The expected value of the binomial random variable above is

` = log2 n · p
1
ν logn
1 = log2 n · n 1

ν log p1 −−−−→
n→∞ 0, (5)

for ν = o(log n/ log log n). In particular, for n large enough, ` ≤ m/2. By the Chernoff
bound for binomial random variables (see, e.g., Janson et al., 2000),

P
{

Bin(log2 n, p
a
m logn
1 ) ≥ m

}
≤ exp

(
−`ϕ

(m
2`

))
, (6)

where ϕ(x) = (1 + x) log(1 + x)− x. Using (5), we see that, as n→∞,

`ϕ
(m

2`

)
=

(
`+

m

2

)
log
(

1 +
m

2`

)
− m

2

∼ m

2
· log

(m
2`

)
∼ m

2
log
(m

2

)
−m log log n− m

2ν
log p1 log n

∼ m

2ν
log
(

1
p1

)
log n,

for ν = o(log n/ log log n). We now choose ν such that, in addition, ν = o(m) so that, by (4)
and (6), P {Nv ≥ m} decreases faster than any polynomial in n. The number of potential
nodes v is polynomial in n since they lie O(log n) away from the root. It follows that the
maximum number of levels between a node u with Nu ≤ log2 n and v such that Nv ≤ m is
O( logn

ν ) = o(log n) with probability at least 1 − n−ω2 , for some ω2 → ∞ as n → ∞. With
(3), this proves (b) with ω = min{ω1, ω2}/2.
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Lemma 1 justifies the distinction of two regions in a trie: a so-called core, that essentially
consists of the nodes of out degree d, and spaghetti -like trees hanging from the core (see
Broutin and Devroye, 2007a).

The core of a trie. What we call the core here should not be confused with the graph-
theoretic core, which happens to be empty for trees (see, e.g., Janson et al., 2000). The
core of the trie is defined to be the set of nodes u ∈ T∞ for which Nu ≥ m = m(n), for
m(n)→∞ and m(n) = o(log n). The core is denoted by C. By Lemma 1, on any path from
the root, the number of nodes in the core which are not of type τ = (1, . . . , 1) is o(log n) in
probability. As a consequence, when looking at a path of length Θ(log n) in a weighted trie,
the distribution of weights in the core should be closely approximated by Zc = Z(1,...,1).
The core can be described by its logarithmic profile

φ(α, t) = lim
n→∞

log EPm(t log n, α log n)
log n

∀t, α > 0, (7)

where Pm(k, h) denotes the number of nodes u ∈ T∞, k levels away from the root with
Nu ≥ m and Du ≥ h. In other words, assuming for now that the limit in (7) exists, we have
EPm(t log n, α log n) = nφ(α,t)+o(1), as n→∞. This will be proved, and the function φ(·, ·)
will be characterized in Section 4 (Theorem 3).

Hanging spaghettis. The spaghettis are the trees remaining when pulling out the core
from the trie. They lie in the part of the trie where the nodes do not have d children
with high probability anymore: the types of the nodes may take all the values in {0, 1}d.
However, by Lemma 1, in any spaghetti, the number of nodes with at least two children is
o(log n). Since the weights are bounded, these o(log n) terms contribute at most o(log n) to
the height. Therefore, to first order, only the nodes of degree one affect the height. This
explains why only Zτ for τ a permutation of (1, 0, . . . , 0) matter in the weighted heights of
spaghettis.

Understanding the height. Both the core and the spaghettis contribute significantly
to the height of a weighted trie. By figuring out what the core looks like, we can determine
when the spaghettis take over. Roughly speaking, we then know if an edge’s weight can be
approximated by a component of Z(1,...,1), characteristic of the core, or rather Zτ , for τ a
permutation of (1, 0, . . . , 0), characteristic of the spaghettis. Each spaghetti is rooted at a
node u ∈ ∂C, the external node-boundary of the core C in Tn,b (the nodes u ∈ ∂C are the
children of some node v in the core, but are not themselves in the core). Recall that Lk

denotes the set of nodes at level k in T∞. Then, if we write Wu for the (weighted) height of
the subtree rooted at u, we have

Hn,b = max{Du +Wu : u ∈ ∂C} = sup
h,k
{h+Wu : u ∈ ∂C ∩Lk, Du ≥ h},

where the nodes in ∂C have been split into groups depending on their level k and weighted
depth h. Thus, we can rewrite

Hn,b = sup
h,k
{h+ max{Wu : u ∈ ∂C, Du ≥ h, u ∈ Lk}}.

We have separated the contributions of the core and the spaghettis,

h and max{Wu : u ∈ ∂C, Du ≥ h, u ∈ Lk},

respectively. The height is simply the maximum value of the sum of these two terms, and we
need to characterize them in order to pin down the asymptotic value of the height. The first
term is just h ∼ α log n, a parameter. The second one amounts to studying the weighted
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height of the forest of conditionally independent random tries rooted at the nodes u ∈ Lk

with Du ≥ h. When k ∼ t log n and h ∼ α log n, we have

lim
n→∞

max{Wu : u ∈ ∂C, Du ≥ h, u ∈ Lk}
log n

= φ(α, t) · γb in probability, (8)

for some constant γb characterizing the depths in spaghettis. This will be proved, and
γb will be characterized in Section 5 (Theorem 6) where we study forests of independent
random tries. The two parameters φ(·, ·) and γb suffice to obtain the first order term of the
asymptotic expansion of the height. Our main result is the following theorem.

Theorem 1. Consider Tn,b, a weighted b-trie with non-negative weight sequence {Zτ , τ ∈
{0, 1}d} built from n independent sequences with distribution {p1, . . . , pd}. Let Hn,b be its
weighted height. Assume that the weights Zτ are bounded. Let φ(α, t) be the logarithmic
weighted profile of the core of Tn,b defined in (7), and γb the constant defined in (8). Let

cb = sup {α+ γb · φ(α, t) : α, t > 0} .

Then Hn,b = cb log n+ o(log n) in probability, as n→∞.

Remarks. (a) For Theorem 1 to be useful in applications, we show that φ(·, ·) and γb are
computable in Theorems 3 and 6, respectively.
(b) The definition of cb given makes it clear that, as long as the weights take positive values
with positive probability, cb > 0 is well and uniquely defined. We will see later that cb <∞.

The rest of the paper is organized as follows. The core and spaghettis are analyzed in
detail in Sections 4 and 5, respectively. In Section 6, we prove Theorem 1. Finally, we
present some applications in Section 7, with in particular, the heights of the trees of de la
Briandais (1959) and of the TST of Bentley and Sedgewick (1997). The proofs are based
on large deviations, in particular φ(·, ·) and γb are characterized in terms of large deviation
rate functions.

3 Review of large deviations

In this section, we review large deviation theory. For a more complete treatment, see the
textbooks of Deuschel and Stroock (1989), Dembo and Zeitouni (1998), or den Hollander
(2000). We are interested in the case of extended random vectors (Z,E), that is, for which
Z = −∞ may happen with positive probability. The reason will become clear when we
analyze the behavior of spaghettis in Section 5. In the following, for a function f taking
values in (−∞,∞], we define its domain Df = {x : f(x) <∞}, with interior Dof .

Let {Xi, 1 ≤ i ≤ n} be a family of i.i.d. extended random vectors distributed like (Z,E).
Assume Z ∈ [−∞,∞) and E ∈ [0,∞). Set κ = P {Z > −∞}. For α and ρ real numbers,
we are interested in the tail probability

P

{
n∑
i=1

Zi > αn,

n∑
i=1

Ei < ρn

}
, (9)

whose magnitude is dealt with by Cramér’s theorem (Cramér, 1938). Define the cumulant
generating function Λ of the (extended) random vector (Z,E) by

Λ(λ, µ) = log E
[
eλZ+µE

∣∣ Z > −∞
]

+ log κ ∀λ, µ ∈ R.

The tail probability in (9) is characterized using Λ?(·, ·), the Fenchel–Legendre or convex
dual of Λ (see Rockafellar, 1970): we define

Λ?(α, ρ) = sup
λ,µ
{λα+ µρ− Λ(λ, µ)} ∀α, ρ ∈ R.
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Theorem 2 (Cramér, see Dembo and Zeitouni 1998). Assume that {Xi, i ≥ 1} are i.i.d.
random vectors, and that (0, 0) ∈ DoΛ. For α, ρ ∈ R, let I(α, ρ) def= − inf{Λ?(x, y) : x >
α, y < ρ}. Then for any α, ρ ∈ R,

lim
n→∞

1
n

log P

{
n∑
i=1

Zi > αn,

n∑
i=1

Ei < ρn

}
= −I(α, ρ).

Moreover, the following explicit upper bound holds for all n ≥ 1, and α, ρ ∈ R:

P

{
n∑
i=1

Zi > αn,

n∑
i=1

Ei < ρn

}
≤ e−nI(α,ρ).

Remark. The explicit upper bound is analogous to the Chernoff bound (Chernoff, 1952)
and holds because the quadrant (α,∞) × (0, ρ) is a convex set (see Exercise 2.2.38, p. 42,
Dembo and Zeitouni, 1998).

Let a ∧ b denote the minimum of two numbers a and b taking values in R ∩ {−∞,∞}.
The rate function I(·, ·) has the following properties. For a proof, see Dembo and Zeitouni
(1998).

Lemma 2. (a) The function I is convex,
(b) I is lower-semicontinous: the level sets {(α, ρ) : I(α, ρ) ≤ `} are closed for all ` ∈ R,
(c) for any x ∈ R, the function x ∧ I(·, ·) is continuous on R2.

4 The core of a weighted trie

4.1 Asymptotic Behavior

Consider a weighted b-trie with weight distribution sequence {Zτ : τ ∈ {0, 1}d} as defined
as in Section 2. We consider m = m(n) → ∞ with m(n) = o(log n). Let Lk be the set of
nodes k levels away from the root in T∞. Let Pm(k, h) be the profile, i.e., the number of
nodes u ∈ Lk with Du ≥ h and Nu ≥ m. Since m→∞, for n large enough, we have m ≥ b
and

Pm(k, h) =
∑
u∈Lk

1[Nu ≥ m,Du ≥ h].

The first step in characterizing the profile is to study its expected value. We then use some
concentration arguments. The asymptotic properties of the expected profile are directly
tied to large deviation theory (Dembo and Zeitouni, 1998). We have seen that the weights
in the core should be closely approximated by Zc = Z(1,...,1) = (Zc1, . . . , Z

c
d) by Lemma 1.

Then, the random vector of interest here is (Z,E) = (ZcK ,− log pK), where K is uniform
in {1, . . . , d} and Zc = (Zc1, . . . , Z

c
d). Let I(·, ·) be the rate function associated with (Z,E)

appearing in Cramér’s theorem (Theorem 2). For a, b ∈ R ∪ {−∞,∞}, let a ∨ b denote the
maximum of a and b.

Theorem 3. Let m = m(n)→∞ with m = o(log n). For α ≥ 0, let φ(α, 0) = 0 and

∀t > 0 φ(α, t) = t log d− t · I
(
α

t
,

1
t

)
. (10)

If α, t ≥ 0 and φ(α, t) > −∞, then EPm(bt log nc , α log n) = nφ(α,t)+o(1), as n → ∞.
Moreover, for any ε > 0, and any a ∈ R,

∃no : ∀n ≥ no,∀α, t > 0 EPm(bt log nc , α log n) ≤ na∨φ(α,t)+ε.

9



Remarks. (a) Observe that Theorem 3 justifies the definition of φ(·, ·) in (7).
(b) The constraint that m(n) is o(log n) is only used in the lower bound. However, the main
reason why we choose m = o(log n) is for the spaghettis to contain each only o(log n) nodes
of degree at least two.
(c) If k ∼ t log n and h ∼ α log n, we also have EPm(k, h) = nφ(α,t)+o(1). The proof is
slightly more technical but does not shed any new light.

Unlike the profile of unweighted tries (Devroye, 2002, 2005; Park et al., 2006), that of
weighted tries does not seem concentrated. In regular (unweighted) tries, the modification
of one single sequence may affect Pm(k, 0) by at most one, and contrasts with the case of
weighted tries where Pm(k, h) may potentially change a lot. However, it is log-concentrated
in the sense of the following theorem.

Theorem 4. Let m = m(n) → ∞ as n → ∞ such that m = o(log n). Let k ∼ t log n and
h ∼ α log n for some positive constants t and α. Then, for all ε > 0, as n→∞,

P
{
Pm(k, h) ≤ nφ(α,t)−ε

}
−−−−→
n→∞ 0.

For all a ∈ R, and all ε > 0, there exists no large enough such that

∀n ≥ no sup
α,t≥0

P
{
Pm(bt log nc , α log n) ≥ na∨φ(α,t)+ε

}
≤ n−ε/2.

Remark. In the upper bound, the use of a∨ φ(α, t), a ∈ R, is necessary since it is possible
that φ(α, t) = −∞. In such a case nφ(α,t)+ε = 0 for all n ≥ 2, and of course,

P
{
Pm(bt log nc , α log n) ≥ nφ(α,t)+ε

}
= 1.

Lemma 3. Let φ(·, ·) be the logarithmic profile as defined in (10). Then,
(a) the domain Dφ

def= {(α, t) : α, t > 0, φ(α, t) > −∞} of φ is bounded,
(b) φ(·, ·) is concave, and
(c) φ(·, ·) is continuous on Dφ, and for all a ∈ R, a ∨ φ(·, ·) is continuous on [0,∞)2.

Proof. We prove (a), the rest follows from Lemma 2. For all x and ρ, we have

Λ?(x, ρ) = sup
λ,µ
{λx+ µρ− Λ(λ, µ)} ≥ sup

λ
{µρ− Λ(0, µ)}.

We find a lower bound on the cumulant generating function. For all µ < 0,

Λ(0, µ) = log E
[
eµE

]
≥ −µ log p1.

As a consequence, we see that for ρ < − log p1, and all x, taking µ → −∞, Λ?(x, ρ) = ∞.
Since φ(α, t) = t log d− Λ?(α/t, 1/t), the result follows.

Example: asymmetric randomized list-tries. Consider asymmetric tries on {1, 2} with
p1 = p > 1/2 and p2 = q = 1−p. A fair coin is flipped independently at each node to decide
whether the character 1 or 2 would be first in the list. Therefore, the vector Zc = (Z1, Z2)
of search costs is such that Z1 and Z2 take values 1 or 2 with equal probability. In this
example, the variables E and Z are independent and they are both linear functions of
Bernoulli random variables (see Dembo and Zeitouni, 1998, Section 4.2 on transformations
of large deviation functions). If we write f(y) = y log y + (1 − y) log(1 − y) + log 2, then
Λ?(x, ρ) = Λ?Z(x) + Λ?E(ρ), where

Λ?Z(α) = f (α− 1) and Λ?E(ρ) = f

(
ρ+ log p

log p− log q

)
.

The corresponding logarithmic profile φ(·, ·) shown in Figure 3 is taken from this example.

10



α

t

φ(α, t)

−EZ
log p1

−1
log p1

b

b

Figure 3. A typical logarithmic profile 0 ∨ φ(α, t). The thick black lines represent φ(0, t) and
φ(tEZ, t). For to constant, φ(α, to) is constant for α ∈ [0, toEZ].

4.2 The expected profile: Proof of Theorem 3

4.2.1 The upper bound

Lemma 4. Let m = m(n)→∞. Let φ(α, t) be given by (10). Then, for any ε > 0 and any
a ∈ R, there exists no large enough such that for all n ≥ no,

∀α, t > 0 EPm(bt log nc , α log n) ≤ na∨φ(α,t)+ε.

Proof. Let ε > 0. When t is small, there are not enough nodes in the k-th level Lk of T∞.
For all t < ε/ log d and all α ≥ 0,

EPm(bt log nc , α log n) ≤ dt logn < dε logd n = nε.

Furthermore, if φ(α, t) ≥ 0, ε ≤ φ(α, t) + ε ≤ a ∨ φ(α, t) + ε, and

∀(α, t) ∈ B EPm(bt log nc , α log n) ≤ na∨φ(α,t)+ε, (11)

where B is a small enough ball around the origin. It suffices now to consider the range
(α, t) 6∈ B. In particular, in the rest of the proof, t is bounded away from 0. Consider a
uniformly random path {u0, u1, . . . , uk, . . . } in T∞: u0 is the root, and for any integer i ≥ 0,
ui+1 is a child of ui picked uniformly at random. Note that for k ≥ 0, uk is a uniform node
in Lk, the set of nodes k levels away from the root in T∞. Let

Luk =
∏

e∈π(uk)

pe =
∏

e∈π(uk)

e−Ee . (12)

By definition of Pm(k, h), we have

EPm(k, h) = dk ·P {Bin(n,Luk) ≥ m,Duk ≥ h} .

The randomness coming from the binomial random variables is irrelevant for the order of
precision we are after. Indeed, for any ξ1 ∈ [0, 1], we have

EPm(k, h) ≤ dk ·P {Luk ≥ ξ1, Duk ≥ h}+ dk · sup
ξ≤ξ1

P {Bin(n, ξ) ≥ m} . (13)

In particular, if we set

ξ1 =
md−k/m

en1+1/
√
m
, (14)

11



the second term of (13) is easily bounded as follows

sup
ξ≤ξ1

P {Bin(n, ξ) ≥ m} ≤ P {Bin(n, ξ1) ≥ m} ≤
(
n

m

)
ξ1
m ≤

(
enξ1
m

)m
=

d−k

n
√
m
.

As a consequence, by definition of Duk and (12),

EPm(k, h) ≤ dk ·P

 ∑
e∈π(uk)

Ze ≥ h,
∑

e∈π(uk)

Ee ≤ − log ξ1

+
1

n
√
m
. (15)

There exists a constant A > 0 such that, for all t ≤ to and α ≤ αo, we have, by (14),

− log ξ1 =
(

1 +
1√
m

)
log n+ 1− logm+

bt log nc
m

log d ≤
(

1 +
A√
m

)
log n,

for n large enough. Hence, rewriting (15), we have

EPm(k, h) ≤ dk ·P

 ∑
e∈π(uk)

Ze ≥ h,
∑

e∈π(uk)

Ee ≤
(

1 +
A

m

)
log n

+
1

n
√
m
, (16)

since m = m(n)→∞. By assumption, {Ee, e ∈ π(uk)} is a family of i.i.d. random variables.
It is not the case for {Ze, e ∈ π(uk)}, and hence, not for {(Ze, Ee), e ∈ π(uk)} either.
However, by Lemma 1, the maximum number of nodes with less than d children lying on a
path down the root with N ≥ m(n) is o(log n) with probability 1 − n−ω, for some ω → ∞
as n → ∞. Let (Zci , Ei), i ≥ 1, be i.i.d. random vectors distributed like (Zc, E). Then, for
any δ > 0, and all n large enough,

EPm(k, h) ≤ dk ·P

{
k∑
i=1

Zci ≥
α

t
· k,

k∑
i=1

Ei ≤
(

1
t

+ δ

)
k

}
+

1
n
√
m

+
dk

nω
, (17)

for n large enough. Therefore, by Cramér’s theorem (Theorem 2), we have, for any δ > 0,
and n large enough,

EPm(k, h) ≤ exp
(
k log d− kI

(
α

t
,

1
t

+ δ

))
+

1
n
√
m

+
dk

nω
. (18)

Recall that, by Lemma 3, Dφ = {(α, t) : φ(α, t) > −∞} is bounded. It follows that for (α, t)
outside a slight compact blow-up S of Dφ, I(α/t, 1/t + δ) = ∞. Then, a ∨ φ(α, t) = a, for
any a ∈ R, and

∀(α, t) 6∈ S EPm(bt log nc , α log n) ≤ na∨φ(α,t) +
1

n
√
m

+
dk

nω
= na∨φ(α,t)+ε, (19)

for n large enough. It only remains to deal with the range (α, t) ∈ S \ B. By (18), for any
x ∈ R,

EPm(k, h) ≤ exp
(
k log d− k

[
x ∧ I

(
α

t
,

1
t

+ δ

)])
+

1
n
√
m

+
dk

nω
.

By Lemma 2, the function x∧I(·, ·) is continuous on R2, and uniformly continuous on S \B.
Thus, for any η > 0, there exists n large enough such that for all (α, t) ∈ S \ B,

EPm(bt log nc , α log n) ≤ exp
(
k log d− k

[
x ∧ I

(
α

t
,

1
t

)
+ η

])
+

1
n
√
m

+
dk

nω

≤ exp
(
k log d− k

[
x ∧ I

(
α

t
,

1
t

)]
+
ε

2
log n

)
+

1
n
√
m

+
dk

nω
,

12



for η small enough. Then,

EPm(bt log nc , α log n) ≤ ntx log d∨φ(α,t)+ε/2 +
1

n
√
m

+
dk

nω
.

Choosing x such that tx log d < a if (α, t) ∈ S \ B, we obtain that, for n large enough
(independent of α and t),

∀(α, t) ∈ S \B EPm(bt log nc , α log n) ≤ na∨φ(α,t)+ε. (20)

Putting (11), (19) and (20) together proves the claim. This finishes the proof the lemma
and the upper bound of Theorem 3.

4.2.2 The lower bound

Lemma 5. Let m = m(n) → ∞ with m = o(log n). Let α, t ≥ 0 such that φ(α, t) > −∞,
then EPm(bt log nc , α log n) ≥ nφ(α,t)+o(1), as n→∞.

Proof. If t = 0, Pm(bt log nc , α log n) = 1 = no(1) = nφ(α,t)+o(1), by definition of φ. We now
assume that t > 0. We write k = bt log nc and h = α log n. As in the proof of the upper
bound, let uk be a random node in Lk, the set of nodes k levels away from the root in T∞.
We have

EPm(k, h) = dk ·P {Nuk ≥ m,Duk ≥ h} .

By definition Nuk is distributed as Bin(n,Luk), where Luk is defined in (12). As a conse-
quence, for any ξ2,

EPm(k, h) ≥ dk ·P {Luk ≥ ξ2, Duk ≥ h} · inf
ξ≥ξ2

P {Bin(n, ξ) ≥ n} ,

Choosing ξ2 = m/n, we see that

inf
ξ≥ξ2

P {Bin(n, ξ) ≥ m} = P {Bin(n, ξ2) ≥ m}

≥ P {Bin(n, ξ2) ≥ EBin(n, ξ2)} = no(1),

and it follows that

EPm(k, h) ≥ dk ·P {Luk ≥ ξ2, Duk ≥ h} · no(1)

≥ dk ·P

 ∑
e∈π(uk)

Ee ≤ − log ξ2,
∑

e∈π(uk)

Ze ≥ h

 · no(1). (21)

The random vectors (Ze, Ee), e ∈ π(uk) are not i.i.d., since the path is likely to contain
nodes of various types. We write:

EPm(k, h) ≥ dk ·P

 ∑
e∈π(uk)

Ee ≤ − log ξ2,
∑

e∈π(uk)

Ze1[Ze = Z(1,...,1)
e ] ≥ h

 · no(1).

Let (Zci , Ei), i ≥ 1, be i.i.d. vectors distributed like (Z(1,...,1), E). By Lemma 1, there exists
` = o(log n) such that the number of nodes along π(uk) with a type different from (1, . . . , 1)
is at most ` with probability 1− o(1). Recall that Zc ≥ −a for some a ≥ 0. Thus,

EPm(k, h) ≥ dk · no(1) ·P

{
k−∑̀
i=1

Zci ≥ h+ a`,

k∑
i=1

Ei ≤ − log ξ2

}
· (1− o(1))

≥ dk · no(1) ·P

{
k−∑̀
i=1

Zci ≥ h+ a`,

k−∑̀
i=1

Ei ≤ − log ξ2 + ` log pd

}
,
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since E ≤ − log pd. Recall that − log ξ2 = (1 + o(1)) log n, k = bt log nc, h = α log n, and
` = o(log n). Thus, for any δ > 0, there exists n large enough such that

EPm(k, h) ≥ dk · no(1) ·P

{
k−∑̀
i=1

Zci ≥
(α
t

+ δ
)

(k − `),
k−∑̀
i=1

Ei ≤
(

1
t
− δ
)

(k − `)

}
.

By Cramér’s theorem (Theorem 2) and (21), this yields,

EPm(k, h) ≥ dk · exp
(
−kI

(
α

t
+ δ,

1
t
− δ
)

+ o(k)
)
· no(1),

for any δ > 0 and n large enough. Now by assumption, φ(α, t) > −∞ and hence I(α/t, 1/t) <
∞. Since δ is arbitrary and I(·, ·) is continuous where it is finite, the claim is proven:

EPm(bt log nc , α log n) ≥ nφ(α,t)+o(1),

where φ(α, t) is given by (10).

4.3 Log-concentration of the profile: Proof of Theorem 4

The upper bound is straightforward if we combine Markov’s inequality and the statement
of Theorem 3. Let a ∈ R. By Markov’s inequality, for all α, t > 0,

P
{
Pm(bt log nc , α log n) ≥ na∨φ(t,α)+ε

}
≤ EPm(bt log nc , α log n)

na∨φ(α,t)+ε
.

By the uniform upper bound of Theorem 3, there exists no large enough such that for all
n ≥ no and for all α, t ≥ 0, we have EPm(bt log nc , α log n) ≤ na∨φ(α,t)+ε/2. It follows that

sup
α,t≥0

P
{
Pm(bt log nc , α log n) ≥ na∨φ(t,α)+ε

}
≤ n−ε/2,

for such n, independently of t or α. We now focus on the lower bound. We first prove a
weaker version that we will boost using standard techniques.

Lemma 6. Let α, t > 0 such that φ(α, t) > 0. Let k ∼ t log n and h ∼ t log n. For any
ε > 0,

lim sup
n→∞

P
{
Pm(k, h) ≤ nφ(α,t)−ε

}
< 1.

Proof. From the previous section, we recall that all but o(log n) nodes have d children on
any path down the root in Tn,b. Then, all but the corresponding o(log n) random vectors
are i.i.d.. We use a similar argument to relate the profile Pm(k, h) to a Galton–Watson
process. We construct our Galton–Watson tree using the variables (Zc, E) = (Z(1,...,1), E)
of the embedding.

Let ε > 0. By assumption, φ(α, t) > 0 and I(α/t, 1/t) < log d. Since the level sets
of I(·, ·) are closed (Lemma 2), there exists an open ball B with center (α, t) such that
I(α′/t′, 1/t′) < log d, for all (α′, t′) ∈ B. We enforce further the constraints: α′ > α, t′ > t
and α′/t′ > α/t. For a node u ∈ T∞, let Lu =

∏
e∈π(u) pe. Let ` be a natural number to be

chosen later. The individuals of our process are some of the nodes of Ls`, s ≥ 0. A node u
is called good if either it is the root, or it lies ` levels below a good node v and we have

Dc
u > Dc

v +
α′`
t′

and Lu > Lv · e−`/t
′
,

where Dc
u =

∑
e∈π(u) Z

c
e . The set of good nodes is a Galton–Watson process. For an integer

s ≥ 0, let Gs be the number of good nodes in the s-th generation (at level s` in T∞). Let
Y denote the progeny of an individual of the process. Then, the expected progeny is

EY = d`P

 ∑
e∈π(u`)

Zce >
α′`
t′
,
∑

e∈π(u`)

Ee <
`

t′

 .
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Hence, by Cramér’s theorem (Theorem 2),

EY ≥ d` · exp
(
−`I

(
α′

t′
,

1
t′

)
+ o(`)

)
= exp

(
` log d− `I

(
α′

t′
,

1
t′

)
+ o(`)

)
.

By our choice of α′ and t′, I(α′/t′, 1/t′) < log d. Then, for β > 0 small enough, there is `
large enough such that we have

EY ≥ exp
(
` log d− `I

(
α′

t′
,

1
t′

)
− β`

)
> 1. (22)

Thus, the process {Gs, s ≥ 0} of good nodes is supercritical.

Let A be the event that all the nodes with Nu ≥ log2 n are of type (1, . . . , 1). Let B be
the event that all the nodes with nLu ≥ 2 log2 n have Nu ≥ log2 n. We have

P
{
Pm(k, h) ≤ nφ(α,t)−ε

}
≤ P

{
Pm(k, h) ≤ nφ(α,t)−ε, A,B

}
+ P

{
Ā
}

+ P
{
B̄
}
,

where Ā and B̄ are the complements of A and B, respectively. If both A and B occur, then,
the nodes with nLu ≥ 2 log2 n all have d children. Writing r = r(n) = log2 n, for n large
enough, we have m(n) ≤ r(n), and

P
{
Pm(k, h) ≤ nφ(α,t)−ε, A,B

}
≤ P

{
Pr(k, h) ≤ nφ(α,t)−ε, A,B

}
.

By definition, on the event A, all the variables influencing Pr(k, h) are distributed as (Zc, E).
Also, for k = bt log nc, for any good node u at level `bk/`c (in the bk/`c-th generation of
the process), we have

nLu ≥ n ·
(
e−`/t

′
)bk/`c

≥ n · e−t logn/t′ = n1−t/t′ ≥ 2 log2 n,

for n large enough since t < t′. Hence, if k = 0 mod `, and A ∩ B occurs, Gbk/`c is a lower
bound on Pr(k, `). If k 6= 0 mod `, the subtree of every good node lying at level bk/`c
contains at level k a node with Nu ≥ d−` · n1−t/t′ ≥ r, for n large enough. Moreover, the
weights are nonnegative and all the nodes at level k lying in the subtree of a good node at
level ` bk/`c are such that

Du ≥ bk`c ·
α′

t′
≥ (t log n− 1) · α

′

t′
≥ α log n,

for n large enough, by our choice of α′ and t′. Thus, if A ∩B occurs, for any k ≥ 0, Gbk/`c
is a lower bound for Pr(k, h). As a consequence,

P
{
Pm(k, h) ≤ nφ(α,t)−ε, A,B

}
≤ P

{
Pr(k, h) ≤ nφ(α,t)−ε, A,B

}
≤ P

{
Gbk/`c ≤ nφ(α,t)−ε, A,B

}
≤ P

{
Gbk/`c ≤ nφ(α,t)−ε

}
.

Now, by Lemma 1, for n large enough, P
{
Ā
}
≤ n−ω, for some ω → ∞, as n → ∞. Also,

by the union bound and Chernoff’s bound,

P
{
B̄
}
≤ dk ·P

{
Bin

(
n,

2
n

log2 n

)
≤ log2 n

}
≤ dke− 1

8 log2 n ≤ e− 1
10 log2 n,

for n large enough. It follows that

P
{
Pm(k, h) ≤ nφ(α,t)−ε

}
≤ P

{
Gbk/`c ≤ nφ(α,t)−ε

}
+ o(1), (23)
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as n→∞. Proving the claim reduces to showing that the first term in the right-hand side
above is strictly less than one. For this purpose, we take advantage of asymptotic properties
of supercritical Galton–Watson process.

By Doob’s limit law (see, e.g., Athreya and Ney, 1972), there exists a random variable
W such that

Gs
EGs

−−−→
s→∞ W in distribution.

The equation above gives us a handle on Gbk/`c via the limit distribution W . Recall that

EGbk/`c ≥ exp
(
k log d− kI

(
α′

t′
,

1
t′

+ o(k)
))

.

Hence, by continuity of I(·, ·) at (α/t, 1/t), we can choose α′ and t′ satisfying the previous
constraints and close enough to α and t, respectively, that

EGbk/`c ≥ nφ(α,t)−ε/2+o(1),

for n large enough. It follows that

P
{
Gbk/`c ≤ nφ(α,t)−ε

}
= P

{
Gbk/`c ≤ EGbk/`c · no(1)−ε/2

}
,

As a consequence, by (23),

P
{
Pm(k, h) ≤ nφ(α,t)−ε

}
≤ P

{
Gbk/`c

EGbk/`c
= o(1)

}
+ o(1) −−−−→

k→∞
P {W = 0} .

The random variable W is characterized by the Kesten–Stigum theorem (see, e.g., Athreya
and Ney, 1972). Since the progeny Y is bounded by d`, we have E [Y log(1 + Y )] <∞, and
hence, P {W = 0} = q, the extinction probability of the Galton–Watson process. Recalling
that the process is supercritical by (22), we have

P
{
Pm(k, h) ≤ nφ(α,t)−ε

}
≤ q + o(1) < 1,

for n large enough. This completes the proof.

We now proceed with the boosting argument. Let ε > 0 be arbitrary. Observe first that,
by Lemma 6, for some q < 1, and no large enough,

sup
n≥no

P
{
Pm(k, h) ≤ nφ(t,α)−ε/2

}
≤ q, (24)

where Pm(k, h) denotes the profile in a trie on n sequences. Consider Ls, the set of nodes s
levels away from the root, for s = s(n) = blog log nc. Each one of Nu, u ∈ Ls is distributed
as a binomial Bin(n, ξu) with ξu ≥ psd. Let Js be the good event that for each u ∈ Ls,
Nu ≥ ns with ns = dnpsd/2e. Using the union bound, and then Chernoff’s bound for
binomial random variables (Chernoff, 1952; Janson et al., 2000), we see that Js happens
with high probability:

P
{
J̄s
}

= P
{

min
u∈Ls

Nu < ns

}
≤ ds ·P {Bin(n, psd) < ns} ≤ ds · e−ns/8. (25)

Let T∞(u) denote the subtree of T∞ rooted at a node u. Given the values of the first s
symbols of each string, the subtrees T∞(u), u ∈ Ls are independent. Moreover, conditioning
on Js, each one of these trees behaves as a weighted trie with at least ns sequences. Let
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Pun,m(k, h) be the number of nodes v ∈ Lk ∩ T∞(u) such that Nv ≥ m and Dv ≥ h. Since
the weights are bounded below by −a, say, we have

P
{
Pun,m(k, h) ≤ nφ(t,α)−ε

∣∣∣ Js} ≤ sup
u∈Ls

P
{
PNu,m(k − s, h−Du) ≤ nφ(α,t)−ε

}
≤ sup

N≥ns
P
{
PN,m(k − s, h+ as) ≤ nφ(α,t)−ε/2

s

}
,

for n large enough. Hence, for n large enough, since k − s ∼ t log n and h+ as ∼ α log n,

P
{
Pun,m(k, h) ≤ nφ(α,t)−ε

∣∣∣ Js} ≤ sup
N≥ns

P
{
PN,m(k − s, h+ as) ≤ nφ(t,α)−ε/2

s

}
≤ q,

by (24). However, if Pun,m(k, h) is large for any of the nodes u ∈ Ls, then Pm(k, h) is large
as well:

P
{
Pn,m(k, h) ≤ nφ(t,α)−ε

∣∣∣ Js} ≤ P
{
∀u ∈ Ls, P

u
n,m(k, h) ≤ nφ(t,α)−ε

∣∣∣ Js} ≤ qd
s

,

by independence. This finishes the proof of Theorem 4 since,

P
{
Pn,m(k, h) ≤ nφ(α,t)−ε

}
≤ P

{
Pn,m(k, h) ≤ nφ(α,t)−ε

∣∣∣ Js}+ P
{
J̄s
}

= o(1),

by (25) and our choice for s.

5 How long is a spaghetti?

5.1 Behavior and geometry

As we have seen in Section 2.2, the behavior of the spaghettis is captured by that of forests
of independent tries. In preparation for the proof of Theorem 1, we aim at characterizing
the maximum weighted height of a trie in such a forest.

Let T 1, T 2, . . . , Tn be n independent b-tries. We assume that T i is a weighted b-trie on
mi = mi(n) sequences generated by the memoryless source with distribution {p1, . . . , pd}.
We also assume that for all i, m/d ≤ mi ≤ m. The roots of T i, 1 ≤ i ≤ n, all lie at level
zero. Then, we let P s(k, h) count the number of nodes u at level k with Du ≥ h lying in
any component T i of the forest. Since T i is a b-trie, we only count the nodes for which
Nu ≥ b+ 1. For now, we are only interested in EP s(k, h), when k ∼ ρ log n and h ∼ γ log n.

The point of view we adopt here is radically different from the one we used for the core:
instead of counting the nodes using a uniformly random node among the dk ones in the k-th
level, we consider here a uniformly random sequence and the corresponding node vk at level
k. In other words, we write:

EP s(k, h) = nP {Dvk ≥ h, vk ∈ Tn,b} ,

whereas the core was studied using the formula EP (k, h) = dk · P {Duk ≥ h, uk ∈ Tn,b} ,
where uk is uniformly random among the dk nodes in the k-th level of T∞. This approach
is very similar to the classical one and relies on the analysis of (b+ 1)-tuples of strings (see,
e.g., Szpankowski, 2001).

Let us focus on one single (b+ 1)-tuple. Recall that

Q(b+ 1) =
d∑
i=1

pb+1
i
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is the probability that (b+ 1) characters generated independently by the source {p1, . . . , pd}
are identical. Assume that the b+ 1 sequences are identical up to the k-th position. So the
paths corresponding to the b+ 1 strings agree at least until the k-th level in T∞. The values
of the (k + 1)-st characters influence the next step in the paths, and the weights on the
corresponding edges. There are two possible situations: if the b + 1 characters in position
k+ 1 are not identical, the paths split and the (b+ 1)-tuple cannot influence the profile past
level k. Otherwise, they are identical and the b+ 1 sequences have followed the same edge.
We account for the tuple being split using a weight of −∞, hence the need for extended
random variables in Section 3. This case happens with probability 1 − Q(b + 1). On the
other hand if the paths did not split, they have followed the same edge i with probability
pi, the weight is then that of the i-th edge. More precisely, let σ(i) be the permutation of
(1, 0, . . . , 0) with the 1 in the i-th position. Then, we define

Zs =
{
−∞ w.p. 1−Q(b+ 1)
Z
σ(i)
i w.p. pi ·Q(b+ 1) ∀i ∈ {1, . . . , d}.

(26)

Let Λ?s denote the Fenchel-Legendre transform of the cumulant generating function Λs as-
sociated with Zs (see definitions in Section 3). Let Is(·) be the (one-dimensional) rate
function associated with the variable Zs appearing in Cramér’s theorem (Theorem 2), that
is, Is(γ) = inf{Λ?s(γ′) : γ′ > γ} and

P

{
k∑
i=1

Zsi ≥ γk

}
= e−kIs(γ)+o(k),

as k →∞, where Zsi , i ≥ 1, are i.i.d. copies of Zs. For γ ≥ 0, define ψ(γ, 0) = 1 and

∀ρ > 0 ψ(γ, ρ) = 1− ρIs
(
γ

ρ

)
. (27)

Theorem 5. Let T i, 1 ≤ i ≤ n, be a forest of n independent tries. Let T i store mi = mi(n)
sequences. Assume that m/d ≤ mi ≤ m for all 1 ≤ i ≤ n, with m = m(n) → ∞ and
m = o(log n). Let ρ, γ ≥ 0 such that ψ(γ, ρ) > −∞, then,

EP s(bρ log nc , γ log n) = nψ(γ,ρ)+o(1).

Moreover, for any natural number k, any δ > 0, and n large enough, we have the explicit
upper bound

EP s(k, γ log n) ≤ mb+1 · n · exp
(
−kIs

(
(γ − δ) log n

k

))
. (28)

A typical logarithmic profile of a forest of tries is shown in Figure 4. Observe in particular
that the logarithmic profile decreases linearly along any fixed direction γ/ρ. In other words,
the point (0, 0, 1) casts a cone of projections on the horizontal plane. There is a preferred
direction, corresponding to (γb, ρb, 0), such that

γb = sup
γ,ρ>0

{γ : ψ(γ, ρ) ≥ 0}.

This point is especially important since it characterizes the maximum weighted height of
T 1, . . . , Tn. Let H1, . . . ,Hn be the weighted heights of T 1, . . . , Tn, respectively, and define

Sn,b = max
1≤i≤n

Hi. (29)
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γ ρ

ψ(γ, ρ)

1 b

b

γb

ρb

Figure 4. The profile generated by n independent tries on roughly m(n) = o(logn) sequences
each. The constant γb characterizing the highest component (trie) of the forest is also shown.

Theorem 6. Assume that p1 < 1. Assume that m(n)→∞ and m(n) = o(log n). Let

γb
def= sup

γ,ρ>0
{γ : ψ(γ, ρ) ≥ 0}. (30)

Then, Sn,b ∼ γb log n in probability, as n → ∞. Furthermore, for every ε > 0, there exists
δ > 0 such that, for n large enough,

P {Sn,b ≥ (γb + ε) log n} ≤ n−δ. (31)

Lemma 7. Let Zs be defined by (26). Let Λ?s and Is be the Fenchel-Legendre transform of
the cumulant generating function Λs and the rate function associated with Zs, respectively.
Let γb = supγ,ρ{γ : ψ(γ, ρ) ≥ 0}. We have

γb = sup
{
γ : ∃ρ Λ?s(ρ) ≤ ρ

γ

}
= sup

γ,ρ>0
{γ : ρΛ?s (γ/ρ) ≤ 1}

= inf
{
γ : ∀ρ Λ?s(ρ) >

ρ

γ

}
.

Proof. We prove the first equality. Recall that ψ(γ, ρ) = 1− ρIs(γ/ρ). Assume that

sup
γ,ρ>0

{γ : ψ(γ, ρ) ≥ 0} = sup
γ,ρ>0

{γ : Is(ρ) ≤ ρ/γ} = γo.

Let ε > 0. Then, there exists γ1 > γo − ε and ρ1 such that Is(ρ1) ≤ ρ1/γ1. By definition of
Is(·), there exists ρ′1 > ρ1 > 0 such that Λ?s(ρ

′
1) ≤ I(ρ1) + ε. Therefore,

Λ?s(ρ
′
1) ≤ ρ′1

γ
+ ε ≤ ρ′1

γ − γ1ε/ρ′1
,

since ρ′1 > 0. It follows that

sup
γ,ρ>0

{
γ : Λ?s(ρ) ≤ ρ

γ

}
≥ γ1 −

γ1ε

ρ′1
≥ γo − ε−

γ1ε

ρ′1
−−→
ε↓0

γo = sup
γ,ρ

{
γ : Is(ρ) ≤ ρ

γ

}
.
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Similar arguments prove the second inequality: assume that supγ,ρ{γ : Λ?s(ρ) ≤ ρ/γ} = γ2.
Then, there exist γ3 > γ2 − ε and ρ3 such that Is(ρ3) ≤ ρ3/γ3. Moreover,

Is(ρ3 − ε) ≤ Λ?s(ρ3 − ε) ≤
ρ3 − ε
γ3

· 1
1− ε/ρ3

.

Therefore,

sup
γ,ρ

{
γ : Is(ρ) ≤ ρ

γ

}
≥ γ3 −

γ3ε

ρ3
−−→
ε↓0

γ2 = sup
γ,ρ

{
γ : Λ?s(ρ) ≤ ρ

γ

}
.

The condition on the right-hand side of (30) implies that γb is the largest γ such that
there exists ρ satisfying Λ?s(ρ) ≤ ρ/γ. In other words, if we plot ρ 7→ Λ?s(ρ), then 1/γb is
the slope of the most gentle line going through the origin and hitting the graph of Λ?s(·),
as shown in Figure 5. We have just proved the second equality. The third follows from the
minimax principle.

ρ

Λ⋆
s(ρ)

0

1

0 1

b

b

Figure 5. The constant 1/γb is the slope of the
line going through the origin that is tangent to
the curve {(ρ,Λ?

s(ρ))}.

Using this alternate definition of γb, we can characterize the value of γb.

Lemma 8. Let Zs and ψ(·, ·) be defined by (26) and (27), respectively. Let γb = supγ,ρ{γ :
ψ(γ, ρ) ≥ 0}. Assume that Zs is not almost surely null. If Q(b) < 1, then γb ∈ (0,∞).
Otherwise, γb =∞.

Proof. We have infρ Λ?s(ρ) = − log P {Zs > −∞} (Dembo and Zeitouni, 1998; Broutin,
2007). Recall Lemma 7. If Q(b) < 1, then infρ Λ?s(ρ) = − logQ(b) > 0. Moreover the
infimum is reached at ρ = E [ Zs | Zs > −∞ ] > 0. The result follows (see Figure 5). On
the other hand, if Q(b) = 1, then infρ Λ?s(ρ) = 0 and 1/γb = 0.

5.2 The profile of a forest of tries: Proof of Theorem 5

As we have sketched before, the proof of Theorem 5 relies on the analysis of (b+ 1)-tuples
of sequences. Let γ, ρ > 0 such that ψ(γ, ρ) > −∞. Let k and h be such that h ∼ γ log n,
k ∼ ρ log n, as n→∞.

Consider a single sequence X1X2 . . . . Let vk be the node of its associated path in T∞
lying at level k. Since the number of sequences lies between nm/d and n/m, we have

nm

d
·P

Dvk ≥ h, vk ∈
n⋃
j=1

T i

 ≤ EP s(k, h) ≤ nmP

Dvk ≥ h, vk ∈
n⋃
j=1

T i

 . (32)
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Assume that X1X2 . . . is stored in T i. Then, vk is a node of the forest if there are at least b
other sequences also stored in T i whose path intersect vk. For a given set of b extra sequences
stored in T i, let Fj be the event that all the characters in j-th position are identical to Xj .
There are mb

i choices for these b sequences, and m/d ≤ mi ≤ m. Therefore,

P

Dvk ≥ h,
k⋂
j=1

Fj

 ≤ P

{
Dvk ≥ h, vk ∈

n⋃
i=1

T i

}
≤ mbP

Dvk ≥ h,
k⋂
j=1

Fj

 , (33)

where the lower bound is obtained by considering a single set of b sequences, and the upper
bound follows by the union bound. Putting (32) and (33) together, we obtain, for n large
enough,

n ·P

Dvk ≥ h,
k⋂
j=1

Fj

 ≤ EP s(k, h) ≤ nmb+1 ·P

Dvk ≥ h,
k⋂
j=1

Fj

 . (34)

However, Dvk =
∑
e∈π(vi)

Ze, and at most m = o(log n) nodes of any downward path in
the forest have at least two children (in the forest). So for all but o(log n) levels, the node
vj has type σ(Xj), and the edge between vj and vj+1 has weight

Z
σ(Xj)
Xj

.

Since the weights are bounded, and for h ∼ γ log n, it follows that

P

Dvk ≥ h,
⋂

1≤j≤k
Fj

 = P


k∑
j=1

Z
σ(Xj)
Xj

+ o(log n) ≥ γ log n,
⋂

1≤j≤k
Fj


= P


k∑
j=1

(
Z
σ(Xj)
Xj

−∞1[F̄j ]
)

+ o(log n) ≥ γ log n

 .

The summands in the probability above are precisely distributed as

Zs =
{
−∞ w.p. 1−Q(b+ 1)
Z
σ(i)
i w.p. pi ·Q(b+ 1) ∀i ∈ {1, . . . , d}.

defined in (26). It follows that

P

Dvk ≥ h,
⋂

1≤j≤k
Fj

 = P


k∑
j=1

Zsj + o(log n) ≥ γ log n

 , (35)

where Zsj , 1 ≤ j ≤ k, are i.i.d. copies of Zs. Let δ > 0 be arbitrary. There is n large enough
such that γ log n+ o(log n) ≥ (γ − δ) log n. By Chernoff’s bound,

EP s(k, γ log n) ≤ nmb+1 · exp
(
−kIs

(
(γ − δ) log n

k

))
,

which proves the explicit upper bound (28). Now, if k ∼ ρ log n and h ∼ γ log n, there exists
n large enough that,

γ

ρ
− δ ≤ γ log n+ o(log n)

k
≤ γ

ρ
+ δ.
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Using Cramér’s Theorem in (35), and (34), we obtain

n · e−kIs(γ/ρ+δ)+o(k) ≤ EP s(k, h) ≤ nmb+1 · e−kIs(γ/ρ−δ),

as n → ∞, where Is(x) = inf{Λ?s(x′) : x′ > x}, and Λ?s is the rate function of Zs. By
definition of ψ in (27), by continuity of Λ?s and Is at γ/ρ ∈ DoΛ?s (see, e.g., Dembo and
Zeitouni, 1998), and since k ∼ ρ log n, we have

EP s(k, h) = n1−ρIs(γ/ρ)+o(1) = nψ(γ,ρ)+o(1),

as n→∞, since mb+1 = no(1). This completes the proof of Theorem 5.

5.3 The longest spaghetti: Proof of Theorem 6

The upper bound. We use the first moment method (see, e.g., Alon et al., 2000). Let
ε > 0 be arbitrary. By the definition of Sn,b in (29) and the union bound,

P {Sn,b ≥ (γb + ε) log n} ≤
∑
k≥0

EP s(k, γ′ log n)

≤ nmb
∑
k≥0

exp
(
−kIs

(
(γb + ε/2)

log n

))
, (36)

for n large enough, by the explicit upper bound (28) of Theorem 5. We now split the sum
in the right-hand side of (36) into two pieces, and then bound each one of them separately.

When k is large, it is unlikely that we find a set of b + 1 sequences in the same trie
that all agree on the first k characters. Recall that P {Zs > −∞} = Q(b + 1), and hence
infρ Is(ρ) = infρ Λ?s(ρ) = − logQ(b+ 1). Let δ > 0 and define

K = K(n) =
1 + δ

− logQ(b+ 1)
· log n.

Then, for n large enough, we have

nmb
∑
k≥K

exp
(
−kIs

(
(γb + ε/2) log n

k

))
= O

(
nmbeK logQ(b+1)

)
= O

(
n−δ/2

)
. (37)

For the low values of k, we have to consider the weights. Observe first that, by definition
of γb, there exists β > 0 such that

inf
k≥K,n≥2

{
k

log n
· Is
(
γ + ε/2
k/ log n

)}
≥ inf

ρ>0

{
ρ · Is

(
γ + ε/2

ρ

)}
= 1 + β.

Then, since K = O(log n),

nmb
∑
k≤K

exp
(
−kIs

(
(γ + ε/2) log n

k

))
≤ Kmbn−β = O

(
n−β/2

)
, (38)

for n large enough. Plugging both (37) and (38) in (36) proves that

P {Sn,b > (γb + ε) log n} = O
(
n−δ/2

)
+O

(
n−β/2

)
,

which completes the proof of the upper bound (31).
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The lower bound. Let ε > 0. By assumption, m(n)→∞, and hence, there exists n large
enough that m(n)/d ≥ b+ 1. We only consider one single tuple from the each of the n tries
T i, 1 ≤ i ≤ n. We then have n independent realizations each one being at least

max


k∑
j=1

Zsj : k ≥ 0

− o(log n), (39)

where Zsj , j ≤ 1 are i.i.d. copies of Zs defined in (26). The largest of n independent copies
of (39) is a lower bound on Sn,b. Let ξi, 1 ≤ i ≤ n denote the sequence of indicators that the
i-th realization is at least (γb − ε) log n. Let M =

∑n
i=1 ξi. We intend to prove that M ≥ 1

with probability tending to one as n → ∞. For this purpose, we use the second moment
method. Since {ξi, 1 ≤ i ≤ n} are independent, it suffices to prove that EM →∞ (see, e.g.,
Alon et al., 2000, Corollary 4.3.4, p. 46). However, we have,

EM = n ·P

∃k :
k∑
j=1

Zsj − o(log n) ≥ (γb − ε) log n


≥ n ·P


ko∑
j=1

Zsj ≥ (γb − ε/2) log n

 ,

for any ko ≥ 1, and n large enough. By the alternate definition of γb provided by Lemma 7,
there exists ρ such that

ρ · Is
(
γb − ε/2

ρ

)
< 1.

In particular, if we set ko = dρ log ne, by Cramér’s theorem,

EM ≥ n ·P


ko∑
j=1

Zjs ≥ (γb − ε/2) log n

 = n · exp
(
−koIs

(
γb − ε/2

ρ

)
+ o(ko)

)
−−−−→
n→∞ ∞.

This completes the proof of Theorem 6.

6 The height of weighted tries

6.1 Projecting the profile

Recall the definitions of the core and spaghettis. Let m = m(n) → ∞ with m = o(log n).
The core C of a b-trie Tn,b is the set of nodes u ∈ Tn,b such that Nu ≥ m. When removing
the core C from Tn,b, we obtain a forest of trees, the spaghettis (see Figure 1). Each one of
these trees is rooted at a node u ∈ ∂C, the external node-boundary of C in Tn,b. In other
words, the nodes u ∈ ∂C are the children of some node v in the core, but are not themselves
in the core. Recall that

γb = sup
γ,ρ>0

{γ : ψ(γ, ρ) ≥ 0} and cb = sup
α,t>0

{α+ γbφ(α, t)} ,

where ψ(·, ·) and φ(·, ·) denote the logarithmic profiles of a forest of tries and a single trie,
respectively (see Sections 4 and 5).

The definition of cb can be interpreted as follows. Consider a point (α, t, φ(α, t)). This
point is mapped on the horizontal plane going through the origin via a projection. The
direction of the projection is given by the vector (1, 0,−1/γb). The direction along the t-
axis is actually irrelevant, and any direction (1, x,−1/γb) gives the same α-coordinate for
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the image of the point (α, t, φ(α, t)). The constant cb is the largest α-coordinate of these
projections.

The projection is not a mere interpretation of the formula for cb. Indeed, Theorem 5
shows that a set of Pm(k, h) tries on about m(n) sequences each has a logarithmic profile that
decays linearly in every direction. Observe also that the actual profile induces a preferred
direction of projection (1,−1/ρb,−1/γb), as shown in Figure 4. The projection of points
(α, t, φ(α, t)) using this preferred direction is depicted in Figure 6.
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αo

αo + γbφ(αo, to)

to + γbφ(αo, to)

Figure 6. A geometric interpretation for the height: each point (α, t, φ(α, t)) of the logarithmic
profile of the core throws a line whose direction is given by (1,−1/ρb,−1/γb). The line intersects
the plane {φ = 0} at (α + γbφ(α, t)), t + ρbφ(α, t), 0). The constant cb is the largest coordinate of
one of these point along the α-axis.

6.2 Proof of Theorem 1

Put together, Lemmas 10 and 9 prove Theorem 1. We start with the lower bound which is
easier.

Lemma 9. Let Tn,b be a b-trie as defined in Section 2. Let Hn,b be its weighted height.
Then, for any ε > 0, P {Hn,b ≤ (cb − ε) log n} → 0, as n→∞.

Proof. Let ε > 0. Recall that, by definition, cb = sup {α+ γb · φ(α, t) : t, α > 0} . Therefore,
there exists (αo, to) such that

αo + γb · φ(αo, to) ≥ cb − ε/2. (40)

Let αo and to now be fixed. Let k = dto log ne and h = αo log n. Let Fk be the σ-algebra
generated by the first k characters of the n strings. Consider the N ′ = Pm(k, h) nodes u
at level k for which Nu ≥ m, Du ≥ h. Conditioning on Fk, the Pm(k, h) trees rooted at
these nodes are independent. Following the setting of Section 5, SN ′,b denotes the weighted
height of the tallest of these trees. We want to show that h+ SN ′,b is a good enough lower
bound on Hn,b. For this purpose, it suffices to lower bound SN ′,b.

As we have sketched before, we are in the situation of a forest of independent random
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tries, and we intend to apply Theorem 6. Let δ > 0 and n′ = nφ(αo,to)−δ. We have

P
{
SN ′,b
log n′

≤ γb − δ
∣∣∣∣ Fk} ≤ P

{
SN ′,b
log n′

≤ γb − δ
∣∣∣∣ Fk, Pm(k, h) ≥ nφ(αo,to)−δ

}
+1[Pm(k, h) ≤ nφ(αo,to)−δ].

Taking expected values, we obtain

P
{
SN ′,b
log n′

≤ γb − δ
}
≤ P

{
Sn′,b
log n′

≤ γb − δ
}

+ P
{
Pm(k, h) ≤ nφ(αo,to)−δ

}
. (41)

It only remains to bound both terms appearing in the right-hand side of (41). By Theorems 4
and 6, respectively, we have, for any δ > 0,

P
{
Pm(k, h) ≤ nφ(to,αo)−δ

}
−−−−→
n→∞ 0 and P

{
Sn′,b
log n′

≤ γb − δ
}
−−−−→
n→∞ 0.

Therefore, with probability 1− o(1),

Sn′,b ≥ (γb − δ) · log n′

= (γb − δ) · (φ(αo, to)− δ) · log n
> (γbφ(αo, to)− ε/2) · log n,

for δ small enough. The weighted height Hn,b of Tn,b is at least h + SN ′,b. It follows that,
with probability 1− o(1),

Hn,b

log n
≥ αo + γbφ(αo, to)− ε/2 ≥ cb − ε,

by our choice of δ and (40). This completes the proof of the lower bound.

Lemma 10. Let Tn,b be a b-trie as defined in Section 2. Let Hn,b be its weighted height.
Then, for any ε > 0, P {Hn,b ≥ (cb + ε) log n} → 0, as n→∞.

Proof. Let ε > 0. Let Wu denote the weighted height of the subtree of Tn,b rooted at u.
Recall that C denotes the set of nodes in the core. We have

P {Hn,b ≥ (cb + ε) log n} ≤ P {∃u ∈ C : Du +Wu ≥ (cb + ε) log n} .

Let Ck = C ∩Lk, where Lk is the set of nodes k levels away from the root in T∞. Then,

P {Hn,b ≥ (cb + ε) log n} ≤ P {∃k, u ∈ Ck : Du +Wu ≥ (cb + ε) log n} .

We can immediately restrict the range of k. Indeed, when k is too large, it is unlikely that
there is even one node u in Ck. By Lemma 3, {(α, t) : φ(α, t) ≥ 0} is contained in a bounded
set. Pick t large enough that φ(0, t) ≤ −ε < 0. Let K = K(n) = dt log ne. Then,

P {∃k ≥ K,u ∈ Ck : Du +Wu ≥ (cb + ε) log n} ≤ P {∃u ∈ CK}
≤ EPm(0,K)
= n−ε+o(1),

by Theorem 3. Let Ck(h) = {u ∈ Ck : Du ≥ h}. By the union bound,

P {Hn,b ≥ (cb + ε) log n} ≤
∑
k≤K

P {∃u ∈ Ck : Du +Wu ≥ (cb + ε) log n}+ o(1) (42)

=
∑
k≤K

P
{
∃h : Ck(h) 6= ∅, h+ max

u∈Ck(h)
Wu ≥ (cb + ε) log n

}
︸ ︷︷ ︸

R(k)

+o(1).
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The terms R(k), 0 ≤ k ≤ K, are influenced by two parameters: the number of trees in the
forest, and the rate at which their weighted depths grow when their number is fixed. These
parameters depend on the core and the spaghettis, respectively, as studied in Sections 4
and 5.
Bounding the growth of spaghettis. Let k ≤ K, and consider the corresponding term
R(k) in the sum above. Let Fk be the σ-algebra generated by the first k symbols of the n
strings. Then,

R(k) = E
[
P
{
∃h : Ck(h) 6= ∅, h+ max

u∈Ck(h)
Wu ≥ (cb + ε) log n

∣∣∣∣ Fk}] .
However, given Fk, the number of trees in the forest is fixed, and only the rate of growth of
the spaghettis matters. More precisely, given Fk, max{Wu : u ∈ Ck(h)} is distributed like
the longest of Pm(k, h) independent weighted tries, each on at most m(n) sequences. We
bound the rate of growth of the spaghettis: by Theorem 6, for any β > 0 there exists δ > 0
such that

P
{

max
u∈Ck(h)

Wu ≥ (γb + β) logPm(k, h)
∣∣∣∣ Fk} ≤ e−δ logPm(k,h), (43)

where γb defined by (30). This bound is weak when Pm(k, h) is small. In such a case, we
shall rather use

P
{

max
u∈Ck(h)

Wu ≥
ε

2
log n

∣∣∣∣ Fk} ≤ n−δε/(2γb+2β). (44)

Define the following good event:

A
def=
{
∀h : max

u∈Ck(h)
Wu < max

{
(γb + β) logPm(k, h),

ε

2
log n

}}
.

Then, by (44) and (44), since the weights are bounded, we have, and for β ≤ γb, and all
k ≤ K,

P
{
Ā
}
≤ K‖Z‖∞ · n−δε/(4γb) ≤ n−δε/(5γb),

for n large enough. Therefore, by definition of R(k),

R(k) ≤ P
{
∃h : Ck(h) 6= ∅, h+ max

u∈Ck(h)
Wu ≥ (cb + ε) log n

∣∣∣∣ A}+ P
{
Ā
}

≤ P
{
∃h : h+ (γb + β) logPm(k, h) ≥

(
cb +

ε

2

)
log n

}
+ n−δε/(5γb). (45)

Bounding the number of spaghettis. We now bound the first term of (45), for which
only the core matters. Let η > 0. The full range for k and h is obtained by setting

bt log nc ≤ k ≤ b(t+ η/‖Z‖∞) log nc
α log n ≤ h ≤ (α+ η) log n,

and letting t and α vary. For such k and h,

P (k, h) ≤ P (bt log n, (α− η) log nc) · dη logn/‖Z‖∞ . (46)

Recall the definition of cb = sup{α + γbφ(α, t)} = sup{α + γb [a ∨ φ(α, t)]}, if a < 0. If
φ(α− η, t) > −∞, we write

P

{
logPm(k, h)

log n
≥
cb − h

logn + ε/2

γb + β

}

≤ P
{

logPm(k, h)
log n

≥ cb − (α− η) + ε/2− 2η
γb + β

}
≤ P

{
logPm(k, h)

log n
≥ γb [a ∨ φ(α− η, t)] + ε/2− 2η

γb + β

}
.
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Using (46), we can choose η and β small enough that the probability above is bounded by

P
{
Pm(bt log nc , (α− η) log n) ≥ na∨φ(α−η,t)+ε/(4γb)

}
≤ n−ε/(8γb),

for n large enough, by Theorem 4. This implies that

sup
h≤K,h

P

{
logPm(k, h)

log n
≥
cb − h

logn + ε/2

γb + β

}
≤ n−ε/(8γb).

As a consequence, recalling (42) and (45),

P {Hn,b ≥ (cb + ε) log n} ≤
∑
k≤K,h

n−ε/(8γb) +
∑
k≤K

n−δε/(5γb) + o(1)

≤ O
(
n−ε/(8γb) log2 n

)
+O

(
n−δε/(4γb) log n

)
+ o(1),

since P (k, h) = 0 for all k ≤ K unless h ≤ K‖Z‖∞. It follows that

P {Hn,b ≥ (cb + ε) log n} −−−−→
n→∞ 0,

which completes the proof of the upper bound.

7 Applications

7.1 Standard b-tries

We shall first consider simple well-known examples. We start with the case of standard
unweighted trie. We show that the following theorem follows from Theorem 1.

Theorem 7. Consider an unweighted b-trie Tn,b on n independent sequences of characters
of {1, . . . , d} generated by a memoryless source with distribution p1 ≥ · · · ≥ pd > 0. Let
Hn,b denote the height of Tn,b. Then,

Hn,b

log n
−−−−→
n→∞

b+ 1
− logQ(b+ 1)

in probability, as n→∞.

Theorem 7 is due to Szpankowski (1991). The case b = 1 was proved by Pittel (1985).
See also Devroye et al. (1992). It has first been proved by considering the longest prefix of
(b+1)-tuples of sequences, which is exactly what we do for the analysis of the spaghettis. It
is interesting to note that for this case, one can obtain tight bounds on the height without
distinguishing the core from the spaghettis. One of the reasons is that the weights are
deterministic and identical for all the edges.

Proof. Here, we assume that Z = 1 almost surely. Then, φ(α, t) is just the logarithmic
profile studied by Park et al. (2006) in the binary case, or Broutin and Devroye (2007a). In
this case, we have functions of one variable.

The core of the trie. For 1 ≤ i ≤ d, we have E = − log pi with probability 1/d. We
can compute the generating function of the cumulants: for any λ, µ ∈ R,

Λ(λ, µ) = log E
[
eλZ+µE

]
= λ+ log

d∑
i=1

p−µi − log d.
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Then, the associated convex dual Λ? is given by

Λ?(x, y) = sup
λ,µ

{
λ(x− 1) + µy − log

d∑
i=1

p−µi

}
+ log d.

It follows that Λ?(x, y) is infinite unless x = 1. Writing µ = µ(y) for the unique solution of

y =
∂Λ(λ, µ)
∂µ

=
∑d
i=1 log pi · p−µi∑d

i=1 p
−µ
i

, (47)

we have

Λ?(1, y) = µy − log
d∑
i=1

p−µi + log d.

For the height, the only relevant points of the profile are α ≥ 1/E , where

E = −
d∑
i=1

pi log pi

is the entropy of the distribution {pi, 1 ≤ i ≤ d}. In the range of interest, α ≥ 1/EE,
I(1, 1/α) = Λ?(1, 1/α), and therefore

φ(α, α) = α log d− αΛ?
(

1,
1
α

)
= µ(1/α) + α log

d∑
i=1

p
−µ(1/α)
i . (48)

For details see Broutin (2007) or Broutin and Devroye (2007a).

The behavior of spaghettis. In an unweighted trie, we have

Zs =
{

1 w.p. Q(b+ 1)
−∞ w.p. 1−Q(b+ 1).

Therefore, for all λ,
Λs(λ) = log E

[
eλ
]

+ logQ(b+ 1),

and hence Λ?s(x) is infinite unless x = 1, in which case, we have Λ?s(1) = − logQ(b + 1).
Then, by Lemma 7, we have

γb = sup
{
γ : ∃ρ Λ?b(ρ) ≤ ρ

γ

}
=

1
− logQ(b+ 1)

.

The overall contribution. Now, by Theorem 1, the height Hn,b of a random b-trie is
asymptotic to cb log n in probability, where

cb = sup
α>0

{
α+

φ(α, α)
− logQ(b+ 1)

}
.

This reduces to finding αo such that

∂φ(αo, αo)
∂α

∣∣∣∣
α=αo

= logQ(b+ 1).

This occurs for αo = Q(b+ 1)/E(b+ 1), where

E(b+ 1) = −
d∑
i=1

pb+1
i log pi.
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Indeed,
∂φ(α, α)
∂α

= log d− Λ?
(

1,
1
α

)
+

1
α
· ∂Λ?(1, y)

∂y

∣∣∣∣
y=1/α

.

Also, Λ?(1, y) = µy − Λ(0, µ), where µ = µ(y) is defined in (47). For α = αo, we have
µ = µ(1/αo) = −b− 1 and

∂φ(α, α)
∂α

∣∣∣∣
αo

= log d− Λ? (1, 1/α) +
1
α
· ∂Λ?(1, y)

∂y

∣∣∣∣
y=1/αo

= log d−
(
−(b+ 1)

E(b+ 1)
Q(b+ 1)

− logdQ(b+ 1)
)

+
E(b+ 1)
Q(b+ 1)

(
−(b+ 1) +

E(b+ 1)
Q(b+ 1)

∂µ(y)
∂y

∣∣∣∣
y=1/αo

− E(b+ 1)
Q(b+ 1)

∂µ(y)
∂y

∣∣∣∣
y=1/αo

)
= logQ(b+ 1).

Now, observe that the line of support of φ(α, α) at αo hits the vertical axis at

φ(αo, αo)− αo
∂φ(α, α)
∂α

∣∣∣∣
α=αo

= − ∂Λ?(1, y)
∂y

∣∣∣∣
y=1/αo

= b+ 1.

This implies that

cb =
b+ 1

− logQ(b+ 1)
.

This completes the proof of Theorem 7. For an illustration of this case, see Figure 7.

t

φ(t)

1
E

1
EE

b

Q(b)
E(b)

−b
log Q(b)

−1
log p1

b

b

b

b

b

b

b

Figure 7. The diagram explaining the profile of the core (concave curve) and the behavior of the
spaghettis (straight line) for the case of ordinary tries.

Example: symmetric b-tries. When p1 = p2 = · · · = pd = 1/d, the function Λ? is
degenerate in the sense that Λ? is null at one point and infinite otherwise. Then, φ(α, t) is
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triangular: φ(α, α) = α log d, for α ≤ 1/ log d and −∞ otherwise. In this case, logQ(b+1) =
−b log d. It follows that

Hn,b ∼
(

1
log d

+
1

− logQ(b+ 1)

)
log n =

(
1 +

1
b

)
logd n

in probability, as n → ∞. In such a case, the contribution of the spaghettis is 1/b times
that of the core. For instance, with ordinary tries, b = 1 and the contribution of spaghettis
is comparable to that of the core. Observe that this example is very special since all the
spaghettis are born at the same level, which happens every time p1 = · · · = pd = 1/d. This
result was first obtained by Régnier (1981) in the case of a Poisson number of sequences.
Flajolet and Steyaert (1982) and Flajolet (1983) obtained the limit distribution. See also
Devroye (1984) and Pittel (1985).

b 1 2 3 10 50 100

cb(2) 2.88539. . . 2.16404. . . 1.92359. . . 1.58696. . . 1.47154. . . 1.45712. . .
cb(3) 1.82047. . . 1.36535. . . 1.21365. . . 1.00126. . . 0.92844. . . 0.91934. . .
cb(10) 0.86858. . . 0.65144. . . 0.57905. . . 0.47772. . . 0.44298. . . 0.43863. . .

Table 1. Some numerical values for cb = cb(d) the height of symmetric ordinary tries, as b varies
and d ∈ {2, 3, 10}.

7.2 Hybrid tries

Let A = {1, . . . , d} be the alphabet. Let {Xi, 1 ≤ i ≤ n} be the n strings. In ordinary
tries that use the array implementation, the order of the sequences is irrelevant. This is
not the case any more in either the list-trie or the TST. In the following, we distinguish the
nodes that constitute the high-level trie structure from the slots which make the low-level
structure of a node, whether this latter is a linked-list or a binary search tree.

We now describe the way the internal structure of a node is constructed, in both list-tries
and TSTs. Consider a node u. The subtree rooted at u stores a subset of the sequences Xi,
1 ≤ i ≤ n. Let Nu ⊂ {1, . . . , n} be the set of their indices. So, in particular, the cardinality
of u is Nu = |Nu|. The internal structure of the node is built using the sequences in
increasing order of their index (see Figure 8). For a node u at level k in T∞, only the k-th
characters of each sequence are used. Only the distinct characters matter. Let Au ⊂ A be
the set of distinct characters appearing at the k-th position in the sequences Xi, i ∈ Nu.
The characters in Au are ordered by first appearance. This induces a permutation σu of Au.
The internal structure of the node u is built by successive insertions of the elements of σu
into an originally empty linked list, or binary search tree.

Both the list-tries and ternary search trees are built using the process we have just
described. We shall now study each one of them more precisely.

7.3 List-tries

In the list-trie of de la Briandais (1959), the cost of branching to a character a is just the
index of a in the permutation σu. For every node u, for which Au = A, σu is distributed as
the sequence (in order) of first appearance of characters in an infinite string generated by
the source. This fully describes the distribution of Z. That is, we have Zi is the index of i
in σ, and Z = ZK , where K is uniform in {1, . . . , d}. Observe that when |Au| = 1, we have
Z = 1.
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1 23 45 6
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Figure 8. The different node structures used for the standard (top-left), list (bottom-left) and
bst-trie (right) when the order of appearance of the characters is 3, 5, 4, 1, 2 and 6. The dashed
arrows represent the pointers to further levels of the trie.

Theorem 8. Let Hn,b be the weighted height of a list-trie on n sequences. Let Z be as
described above. Then, Hn,b ∼ cb log n in probability, as n→∞, where

cb = sup
α,t>0

{
α+

φ(α, t)
− logQ(b+ 1)

}
,

and φ(·, ·) is the logarithmic profile of the trie weighted with Z.

The theorem explains and characterizes the first term of the asymptotic expansion of
the height for all distributions {p1, . . . , pd} for d < ∞. For general distributions, it seems
difficult to obtain a closed form for the height. We shall obtain more concrete values for a
specific example.

Example: symmetric list-tries. In this case, for all i, we have pi = 1/d and Zi is uniform
in {1, . . . , d}. Equivalently, Z(1,...,1) = (1, 2, . . . , d). Therefore, for any λ, µ ∈ R,

Λ(λ, µ) = log E
[
eλZ · dµ

]
+ µ log d = log

(
d∑
i=1

eiλ

)
+ (µ− 1) log d.

For x ∈ [1, d], there exists λ = λ(x) such that

x =
∂Λ(λ, µ)
∂λ

∣∣∣∣
(λ(x),1)

=
∑d
i=1 ie

iλ∑d
i=1 e

iλ
. (49)

Then, we have

Λ?(x, y) =

{
λx− log

(∑d
i=1 e

iλ
)

+ log d if x ∈ [1, d], y = log d
∞ otherwise.

As for ordinary tries, in the range of interest,

φ

(
α,

1
log d

)
= 1− αλ(α log d) +

Λ(λ(α log d), 1)
log d

, (50)

where λ(·) is defined in (49). In essence, φ(α, t) is a function of α only. And we now write
φ(α) = φ(α, t) and Λ(λ) = Λ(λ, 1). By Theorem 8, looking for the constant cb boils down
to finding αo such that

dφ(α)
dα

∣∣∣∣
α=αo

=
1

− logQ(b+ 1)
=

1
b log d

,
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and for this αo, we have

cb = αo +
φ(αo)
log d

. (51)

In other words, we have

dφ(α)
dα

∣∣∣∣
αo

= −λ(αo log d)− α dλ(α log d)
dα

∣∣∣∣
αo

+
1

log d
· dΛ(λ(α log d))

dα

∣∣∣∣
αo

= −λ(αo log d)− α dλ(α log d)
dα

∣∣∣∣
αo

+
1

log d
· dΛ(λ)

dλ

∣∣∣∣
λ(αo log d)

· dλ(α log d)
dα

∣∣∣∣
αo

= −λ(αo log d),

by (49), and hence λ(αo log d) = b log d. Hence, by (50) and (51),

cb =
1

b log d
+

Λ(b log d)
b log2 d

.

Observe that this fully characterizes cb and holds for any symmetric weighted trie. For our
case of symmetric list-tries, we obtain

cb = cb(d) =
log
(∑d

i=1 d
bi
)

b log2 d
∼ d

log d
,

for large d. Some numerical values can be found in Table 2.

b 1 2 3 10 50 100

cb(2) 3.28661. . . 2.67491. . . 2.52441. . . 2.44289. . . 2.44215. . . 2.44206. . .
cb(3) 3.12515. . . 2.86870. . . 2.83088. . . 2.82022. . . 2.81969. . . 2.81963. . .
cb(10) 4.92852. . . 4.90959. . . 4.90850. . . 4.90723. . . 4.90680. . . 4.90675. . .

Table 2. Some numerical values of cb = cb(d) characterizing the height of symmetric list-tries.

Remark. Another equivalent description of the trees of de la Briandais is the following. We
can consider list-tries in which children are added by a first-come-first-serve rule. Then, writ-
ing (σ1, . . . , σd) for a uniformly random permutation of {1, . . . , d}, we have Zτ = (1, . . . , 1)
a.s. for every permutation τ of (1, 0, . . . , 0), and Z(1,...,1) = (σ1, . . . , σd) with probability

pξ1 ·
pξ2

1− pξ1
· pξ3

1− pξ1 − pξ2
· · ·

pξd−1

1− pξ1 − · · · − pξd−2

,

where (ξ1, . . . , ξd) is the inverse permutation of (σ1, . . . , σd), i.e., ξi = j if σj = i.

7.4 Ternary search trees

In the ternary search trees introduced by Bentley and Sedgewick (1997), the implementation
of a node uses a binary search tree. Hence, the cost of branching to a character i ∈ A at a
node u is the depth of i in the binary search built from the (non-uniform) random permu-
tation σu. When the node u is of type τu = (1, . . . , 1), the permutation σu is distributed
as the ordered list of first appearances of characters in an infinite string generated by the
memoryless source with distribution {p1, . . . , pd}.

Let Zi be distributed as the depth of i in the binary search tree built from σ. Then, Z
is distributed as (Z1, . . . , Zd) and Z = ZK , where K is uniform in {1, . . . , d}. When u is a
non-branching node, i.e., τu is a permutation of (1, 0, . . . , 0), then the depth of the unique
child is always one: Zs = 1 almost surely. By Theorem 1, we obtain:
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Theorem 9. Let Hn,b be the weighted height of a b-TST on n sequences. Let σ be a
permutation of {1, . . . , d} built by sampling from {1, . . . , d} according to p1, . . . , pd. Let Z
be the depth of a random node in a binary search tree built from σ. Let

cb = sup
α,t>0

{
α+

φ(α, t)
− logQ(b+ 1)

}
,

where φ(α, t) is the logarithmic profile defined in (10). Then, Hn,b ∼ cb log n in probability,
as n→∞.

The random variable Z is complicated to describe in other terms for general distributions
{p1, . . . , pd}. Some parameters like the average value and the variance of Zi, 1 ≤ i ≤ d,
have been studied by Clément et al. (1998, 2001) and Archibald and Clément (2006). For
this case, describing Z and φ(α, t) in a way that would lead to cb seems more difficult than
for list-tries.

Example: Symmetric TST. We assume here that p1 = p2 = · · · = pd = 1/d. In this
case, the permutation σ is just a uniform random permutation. Hence, Zi is the depth of
the key i in a random binary search tree. Observe that unlike in the case of list-tries, Zi,
1 ≤ i ≤ d, do not have the same distribution. This is easily seen, since, for instance as
d → ∞, EZ1 ∼ log d whereas EZbd/2c ∼ 2 log d. However, we are only interested in the
distribution of Z, that is, the depth of a uniform random node. This distribution is known
exactly for random binary search trees, and is due to Lynch (1965) and Brown and Shubert
(1984):

P {Z = k} =
2k−1

d · d!

d∑
j=k

[
d
j

]
, (52)

where
[
n
k

]
denotes the Stirling number of the first kind with parameter n and k, that is the

number of ways to divide n objects into k nonempty cycles (see Sedgewick and Flajolet, 1996;
Mahmoud, 1992). Using (52), it is possible to compute the cumulant generating function
Λ, and φ(α, t). Numerical values for the constant cb = cb(d) such that Hn ∼ cb log n in
probability as n → ∞ are given in Table 3. Observe that when d = 2, TST are equivalent
to list-tries. In general, using the computations we did in the case of symmetric list-tries,

c = c(d) =
1

log d
+

1
log2 d

log

 d∑
i=1

d∑
j=i

2i−1

d · d!

[
d
j

]
di


=

1
log d

+
1

log2 d
log
(

(2d) · (2d+ 1) · · · (3d− 1)− d!
d!(2d− 1)

)
∼ d log(27/4)

log2 d

(see, e.g., Mahmoud, 1992, p. 79). Numerical values for the constant c = c(d) are given in
Table 3.

b 1 2 3 10 50 100

cb(2) 3.28661. . . 2.67491. . . 2.52441. . . 2.44289. . . 2.44215. . . 2.44206. . .
cb(3) 2.90777. . . 2.66010. . . 2.65121. . . 2.65118. . . 2.65117. . . 2.65116. . .

Table 3. Some numerical values of cb = cb(d) characterizing the height of symmetric ternary
search trees.
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7.5 Path imbalance

The question of path imbalance for random trees has been raised by Knuth in his keynote
talk at the Conference on Analysis of Algorithms in 2004. The imbalance of a node in a
binary tree is the difference between the number of left and right edges on its path from the
root. Kuba and Panholzer (2007) have addressed this question and determined the limit
distribution for the imbalance of a specified or randomly chosen node. Mahmoud (2007) and
Christophi and Mahmoud (2007) have dealt with similar questions in tries. See also Janson
(2006) who treated the related issue of left and right path lengths of random binary trees.
We are interested in the maximum path imbalance in trees. The first order asymptotics
have been described by Broutin and Devroye (2006) for binary search trees. Here, we use
Theorem 1 to answer the question of the maximum path imbalance in tries. We assume that
the tries are binary with symbol probabilities p and q = 1 − p. In this case, the average
imbalance is

E∆n = (p− q)
(

log n
E

+O(1)
)
,

and the rescaled imbalance of a random node has a Gaussian limit law :

∆n − p−q
E log n

√
log n

d−−−−→
n→∞ N

(
0,

log2(pq)
E3

)
(see Christophi and Mahmoud, 2007; Mahmoud, 2007). Observe in particular that when
p = q, the typical range of ∆n is O(

√
log n). As we will see in the following, this contrasts

with the behavior of the maximum imbalance in the trie which is Ω(log n) as soon as p > 0.
We let Bn be the maximal path imbalance in a random b-trie. Then, as we will outline
below, there is a constant cb depending upon b and p only such that

Bn
log n

→ cb in probability

as n→∞.

Remark. A related model involves tries whose edges are weighted with +1 or −1, indepen-
dently for each edge using a fair coin flip. The values of the weights are then independent
of the direction of the edges and we have

(Z,E) =


(+1,− log p) w.p. 1/4
(−1,− log p) w.p. 1/4
(+1,− log q) w.p. 1/4
(−1,− log q) w.p. 1/4.

For this model, the average weight on the path to a random node has a centered Gaussian
limit law, and the typical range is O(

√
log n) for every p ∈ (0, 1).

The core of the trie. In the case of imbalance, the vector of interest in the core is(
(+1,− log p), (−1,− log q)

)
and hence a typical component (after symmetrization) is

(Z,E) =
{

(+1,− log p) w.p. 1/2
(−1,− log q) w.p. 1/2.

Therefore,
Λ(λ, µ) = log

(
eλ−µ log p + e−λ−µ log q

)
− log 2. (53)

By definition, Λ?(x, y) = sup{λx+ µy − Λ(λ, µ)} and Λ(x, y) =∞ unless
x =

∂Λ(λ, µ)
∂λ

=
e−λ−µ log p − e−λ−µ log q

e−λ−µ log p + e−λ−µ log q

y =
∂Λ(λ, µ)
∂µ

=
−e−λ−µ log p log p− e−λ−µ log q log q

e−λ−µ log p + e−λ−µ log q
.
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Then we have{
(1− x)eλ−µ log p + (−1− α)e−λ−µ log q = 0

(− log q − y)eλ−µ log p + (− log q − y)e−λ−µ log q = 0.

This leads to the equivalent system
2λ+ µ log(q/p) = log

(
1 + x

1− x

)
x+ 1
x− 1

=
log q + y

log p+ y
.

(54)

For x and y satisfying (54),

Λ?(x, y) = λx+ µy − Λ(λ, µ)
= λx+ µy + log 2− log

(
eλ−µ log p + e−λ−µ log q

)
= λx+ µy + log 2− log

(
e2λ+µ log(q/p) + 1

)
+ λ+ µ log q

= λ(x+ 1) + µ(y + log q) + log(1− x).

Using the expression for λ in terms of µ, we can express Λ?(x, y) independently of λ or µ.
Finally, we obtain

Λ?(x, y) =


x+ 1

2
log
(
x+ 1
1− x

)
+ log(1− x) if

1 + x

x− 1
=

log q + y

log p+ y
∞ otherwise.

The entire profile φ(α, t) can be obtained from the values on the line where Λ? takes finite
values.

φ(α, t) = t log 2− α− t
2

log
(
α+ t

t− α

)
− t log

(
1− α

t

)
when

α+ t

α− t
=
t log q + 1
t log p+ 1

or for such α and t = t(α) we have, in terms of α only,

φ(α, t) =
α log p+ 1

log pq
· log

(
1− α log q
1 + α log p

)
+

2− α log(q/p)
log(pq)

· log
(

α log p+ 1
α log(q/p)− 2

)
. (55)

The spaghettis. The spaghettis are characterized by the random variable Zs such that

Zs =

 −∞ w.p. 1−Q(b+ 1)
+1 w.p. pQ(b+ 1)
−1 w.p. qQ(b+ 1).

To compute the constant γb, we find the expressions for Λs(·) and Λ?s(·). We have

∀β ∈ R Λs(β) = logQ(b+ 1) + log
(
peβ + qe−β

)
.

For every ρ ∈ R, Λ?s(γ) <∞ if and only if there exists β such that

dΛ(β)
dβ

=
peβ − qe−β

peβ + qe−β
= ρ,

and then Λ?s(ρ) = ρβ − Λs(β). This yields

Λ?s(ρ) =

{
ρ
2 log

(
q
p ·

1+ρ
1−ρ
)
− logQ(b+ 1)− log

(√
1+ρ
1−ρ +

√
1−ρ
1+ρ

)
− log(pq)

2 if ρ ∈ [−1, 1]
+∞ otherwise.
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α

t

φ(α, t)

Figure 9. The weighted profile of the core for the question of path imbalance for p = .3. When
looking at levels deep in the core, the nodes have mostly negative imbalance due to the fact that
p < 1/2.

By Lemma 7 and the remark there, γb is the given by the slope of a line with an end at the
origin and which is tangent to the the curve {Λ?s(ρ) : ρ ∈ [−1, 1]}. In other words, γ is given
by

dΛ?s(ρ)
dρ

=
1
γ

and Λ?s(ρ) =
ρ

γ
,

for some ρ ∈ [−1, 1]. This leads to an explicit formula for γb. Indeed,

dΛ?s(ρ)
dρ

=
ρ

2
· log

(
q

p
· 1 + ρ

1− ρ

)
,

and hence

1
γ b

=
Λ?s(ρo)
ρo

=
dΛ?(ρ)

dρ

∣∣∣∣
ρ=ρo

where
√

1 + ρo
1− ρo

+
√

1− ρo
1 + ρo

=
1

pqQ(b+ 1)
.

It follows that

ρo =
√

1− 4p2q2Q2(b+ 1) and γb = 2
/
ρo · log

(
q

p
· 1 + ρo

1− ρo

)
. (56)

Numerical values are given in Table 4.

Overal contribution. We are in a case where Λ?(·, ·) is degenerate and takes finite
values on a line only. So we have

cb = sup
α,t
{α+ γbφ(α, t)} = sup

{
α+ γbφ(α, t) :

α+ t

α− t
=
t log q + 1
t log p+ 1

}
.

Therefore, we have

cb = αo + γbαo where
dφ(α, t(α))

dα

∣∣∣∣
α=αo

= − 1
γb
,

where φ(α, t(α)) and γb are given by (55) and (56), respectively. It is this constant cb that
is the weak limit of Bn/ log n. Numerical values can be found in Table 4 below.
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b 1 2 3 4 5 10

γb 0.66760. . . 0.46085. . . 0.36055. . . 0.29896. . . 0.25664. . . 0.15328. . .
cb 1.16161. . . 1.10845. . . 1.09658. . . 1.09313. . . 1.09200. . . 1.09136. . .

Table 4. Numerical values for the constants γb and cb in the example of the path imbalance when
p = 0.4.

8 Concluding remarks

In addition to yielding the asymptotic properties of the height of hybrid tries, our method
sheds some new light on the family of digital trees in general. In particular, the decomposi-
tion of the tree into a core and hanging spaghettis yields new connections between tries and
the digital search tree. Coffman and Eve (1970) proposed digital search trees to improve
the search costs in tries that are far from optimal. The main idea is to move the data from
the external nodes to the internal nodes, which reduces the depth of the data, and hence
the costs. This roughly speaking shaves off the spaghettis, as the weighted profile of digital
search trees is identical to that of the core. Observe that the constant that would charac-
terize the height of spaghettis in digital search trees would be γb = 0, since the height of a
digital search tree on m sequences is bounded by m and digital search tree fits into the model
of trees with bounded height of Broutin, Devroye, and McLeish (2007). So in our formalism,
the height Hn,b is asymptotic to cb log n in probability with cb = sup{α : φ(α, t) ≥ 0}.
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N. Alon, J. Spencer, and P. Erdős. The Probabilitic Method. Wiley, New York, NY, second
edition, 2000.

M. Archibald and J. Clément. Average depth in binary search tree with repeated keys. In
Fourth Colloquium on Mathematics and Computer Science, pages 309–320, 2006.

K. B. Athreya and P. E. Ney. Branching Processes. Springer, Berlin, 1972.

J. L. Bentley and R. Sedgewick. Fast algorithm for sorting and searching strings. In Eighth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 360–369, 1997.

N. Broutin. Shedding New Light on Random Trees. Phd thesis, McGill University, Montreal,
2007.

N. Broutin and L. Devroye. Large deviations for the weighted height of an extended class
of trees. Algorithmica, 46:271–297, 2006.

N. Broutin and L. Devroye. The core of a trie. In International Conference on Analysis of
Algorithms, 2007a. To appear.

N. Broutin and L. Devroye. The height of list tries and TST. In International Conference
on Analysis of Algorithms, 2007b. (13 pages). To appear.

37



N. Broutin, L. Devroye, and E. McLeish. Weighted height of random trees. Manuscript (46
pages), 2007.

G.G. Brown and B.O. Shubert. On random binary trees. Mathematics of Operations Re-
search, 9:43–65, 1984.

H. Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on the sum
of observations. Annals of Mathematical Statistics, 23:493–507, 1952.

C.A. Christophi and H. M. Mahmoud. One-sided variations on tries: path imbalance,
climbing, and key sampling. In Proceedings of the International Conference on Analysis
of Algorithms (AofA), pages 301–310, 2007.

H. A. Clampett. Randomized binary searching with tree structures. Communications of the
ACM, 7(3):163–165, 1964.

J. Clément, P. Flajolet, and B. Vallée. The analysis of hybrid trie structures. In 9th annual
ACM-SIAM Symposium on Discrete Algorithms, pages 531–539, Philadelphia, PA, 1998.
SIAM Press.

J. Clément, P. Flajolet, and B. Vallée. Dynamical source in information theory: a general
analysis of trie structures. Algorithmica, 29:307–369, 2001.

E. G. Coffman and J. Eve. File structures using hashing functions. Communications of the
ACM, 13:427–436, 1970.
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Consacré à la Théorie des Probabilités, volume 736, pages 5–23. Hermann, Paris, 1938.

R. de la Briandais. File searching using variable length keys. In Proceedings of the Western
Joint Computer Conference, Montvale, NJ, USA. AFIPS Press, 1959.

A. Dembo and O. Zeitouni. Large Deviation Techniques and Applications. Springer Verlag,
second edition, 1998.

F. den Hollander. Large Deviations. American Mathematical Society, Providence, RI, 2000.

J.-D. Deuschel and D.W. Stroock. Large Deviations. American Mathematical Society,
Providence, RI, 1989.

L. Devroye. Laws of large numbers and tail inequalities for random tries and patricia trees.
Journal of Computational and Applied Mathematics, 142:27–37, 2002.

L. Devroye. Universal asymptotics for random tries and patricia trees. Algorithmica, 42:
11–29, 2005.

L. Devroye. A probabilistic analysis of the height of tries and of the complexity of triesort.
Acta Informatica, 21:229–237, 1984.

L. Devroye. A note on the height of binary search trees. Journal of the ACM, 33:489–498,
1986.

L. Devroye. Branching processes and their application in the analysis of tree structures and
tree algorithms. In M. Habib, C. McDiarmid, J. Ramirez-Alfonsin, and B. Reed, editors,
Probabilistic Methods for Algorithmic Discrete Mathematics, volume 16 of Springer Series
on Algorithms and Combinatorics, pages 249–314, Berlin, 1998. Springer.

L. Devroye, W. Szpankowski, and B. Rais. A note on the height of suffix trees. SIAM
Journal on Computing, 21:48–53, 1992.

38



P. Flajolet. The ubiquitous digital tree. In B. Durand and W. Thomas, editors, STACS
2006, Annual Symposium on Theoretical Aspects of Computer Science, volume 3884 of
Lecture Notes in Computer Science, pages 1–22, Marseille, February 2006.

P. Flajolet. On the performance evaluation of extendible hashing and trie searching. Acta
Informatica, 20:345–369, 1983.

P. Flajolet and J.M. Steyaert. A branching process arising in dynamic hashing, trie search-
ing and polynomial factorization. In M. Nielsen and E.M. Schmidt, editors, Automata,
Languages and Programming: Proceedings of the 9th ICALP Conference, volume 140 of
Lecture Notes in Computer Science, pages 239–251. Springer, 1982.

E. Fredkin. Trie memory. Communications of the ACM, 3(9):490–499, 1960.

S. Janson. Left and right pathlengths in random binary trees. Algorithmica, 46:419–429,
2006.
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