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Introduction.

In this note, we consider a random binary search tree with n nodes obtained by inserting,

in the standard manner, the values σ1, . . . , σn of a random permutation of {1, . . . , n} into an

initially empty tree. Equivalently, the search tree is obtained by inserting n i.i.d. uniform [0, 1]

random variables X1, . . . ,Xn. Most shape-related quantities of the tree have been well–studied,

including the expected depth and the exact distribution of the depth of Xn (Knuth, 1973; Lynch,

1965), the limit theory for the depth (Mahmoud and Pittel, 1984, Devroye, 1988), the first two

moments of the internal path length (Sedgewick, 1983), the limit theory for the height of the

tree (Pittel, 1984; Devroye, 1986, 1987), and various connections with the theory of random

permutations (Sedgewick, 1983) and the theory of records (Devroye, 1988). Surveys of known

results can be found in Vitter and Flajolet (1990), Mahmoud (1992) and Gonnet (1984). Search

trees are also useful in the analysis of quicksort. For recurrences of the quicksort type, we have

Xn
L
= XIn +X ′n−1−In + f(n), n ≥ 1, f(n) > 0 for some n > 0, f(0) = 0, where In is uniformly

distributed on {0, 1, . . . , n − 1}. Xn represents the number of comparisons in quicksort, and

f(n) = n− 1. Other choices for f(.) are of importance elsewhere. It is not hard to see that Xn

is identical to the sum over all nodes u in a random binary search tree of f(N(u)) where N(u)

is the size of the subtree at u. The purpose of this note is to obtain central limit theorems for

this class of random variables, regardless of the choice of f within a large class of functions.

In general, one might study the following class of tree parameters for random binary

search trees: Let f be a mapping from the space of all permutations to the real line, and set

Xn =
∑

u

f(S(u))

where S(u) is the random permutation associated with the subtree rooted at node u in the

random binary search tree. More precisely, model a random binary search tree as follows. We

let U1, . . . , Un be i.i.d. uniform [0, 1]-valued random variables, and construct the unique binary

search tree for (1, U1), . . . , (n,Un) with the property that

(i) It is a random binary search tree with respect to the first coordinates in the pairs.

(ii) It is a heap with respect to the second coordinates, which can be regarded as time

stamps, with increasing values as one travels from the root down any path.

A permutation is clearly described by any subset of (1, U1), . . . , (n,Un). It is this unique de-

scription we follow. For example, the root of the binary search tree contains that pair (i, Ui)

with smallest Ui value, the left subtree contains all pairs (j, Uj) with j < i, and the right sub-

tree contains those pairs with j > i. Each node u can thus (recursively) be associated with a

subset S(u) of (1, U1), . . . , (n,Un). The pair that sticks with u is that with the smallest second

component in S(u).
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With this embedding and representation, Xn is a sum over all nodes of a certain func-

tion of the permutation associated with each node. This definition is very broad. As each

permutation uniquely determines subtree shape, a special case includes the functions of subtree

shapes.

Example 1: The toll functions. In the first class of applications, we let N(u) be the size

of the subtree rooted at u (thus, if u is the overall root, N(u) = n), and set f(S(u)) = g(|S(u)|).
Define

Xn =
∑

u

g(N(u)) .

Examples of such tree parameters abound:

A. If g(n) ≡ 1 for n > 0, then Xn = n.

B. If g(n) =
�

[n=k] for fixed k > 0, then Xn counts the number of subtrees of size k.

C. If g(n) =
�

[n=1], then Xn counts the number of leaves.

D. If g(n) = n − 1 for n > 1, then Xn counts the number of comparisons in classical

quicksort. Note however that g(n) grows too rapidly for us to be able to apply the

theorem below.

E. If g(n) = log2 n for n > 0, then Xn is the logarithm base two of the product of all subtree

sizes.

F. If g(n) =
�

[n=1] −
�

[n=2] for n > 0, then Xn counts the number of nodes in the tree that

have two children, one of which is a leaf.

Example 2: Tree patterns. Fix a tree T . We write S(u) ≈ T if the subtree at u defined

by the permutation S(u) is equal to T , where equality of trees refers to shape only, not node

labeling. Note that at least one, and possibly many permutations with |S(u)| = |T |, may give

rise to T . If we set

Xn =
∑

u

�
[S(u)≈T ]

then Xn counts the number of subtrees precisely equal to T . Note that these subtrees are

necessarily disjoint. We are tempted to call them suffix tree patterns, as they hug the bottom

of the binary search tree.
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Example 3: Prefix tree patterns. Fix a tree T . We write S(u) ⊃ T if the subtree at

u defined by the permutation S(u) consists of T (rooted now at u) and possibly other nodes

obtained by replacing all external nodes of T by new subtrees. Define

Xn =
∑

u

�
[S(u)⊃T ]

For example, if T is a single node, then Xn counts the number of nodes, n. If T is a complete

subtree of size 2k+1−1 and height k, then Xn counts the number of occurrences of this complete

subtree pattern (as if we try and count by sliding the complete tree to all nodes in turn to find

a match). Matching complete subtrees can possibly overlap. If T consists of a single node and

a right child, then Xn counts the number of nodes in the tree with just one right child.

Example 4: Imabalance parameters. If we set f(S(u)) equal to 1 if and only if the sizes

of the left and right subtrees of u are equal, then Xn counts the number of nodes at which we

achieve a complete balance.

Example 5: Local counters. Following notation introduced by Devroye (1991), we may

just elect to study indicator functions f with f(S(u)) = 0 if |S(u))| > k for a fixed given k. In

fact, the setting in Devroye (1991) is more general, as permutations are not necessarily restricted

to those that correspond to nodes in the binary search tree.

In this paper, we study Xn. First we derive its mean and variance. This is followed

by a weak law of large numbers for Xn/n. Several interesting examples illustrate this universal

law. A general central limit theorem with normal limit is obtained for Xn using Stein’s method.

Several specific laws are obtained for particular choices of f . For example, for toll functions g

as in Example 1, with g(n) growing at a rate inferior to n1/3, a universal central limit theorem

is established in Theorem 6.

Another representation of binary search trees

We replace the sum over all nodes u in a random tree in the definition of Xn by a

sum over a deterministic set of index pairs, thereby greatly facilitating systematic analysis.

We denote by σ(i, k) to subset (i, Ui), . . . , (i + k − 1, Ui+k−1), so that |σ(i, k)| = k. We define

σ∗(i, k) = σ(i−1, k+ 1), with the convention that (0, U0) = (0, 0) and (n+ 1, Un+1) = (n+ 1, 0).

Define the event

Ai,k = [σ(i, k) defines a subtree] .
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This event depends only on σ∗(i, k), as Ai,k happens if and only if among Ui−1, . . . , Ui+k, Ui−1

and Ui+k are the two smallest values. We set Yi,k =
�

[Ai,k ] and note that it is a function of

Ui−1, . . . , Ui+k . Rewrite our tree parameter as follows:

Xn =
∑

u

f(S(u)) =
n∑

i=1

n−i+1∑

k=1

Yi,kf(σ(i, k)) .

For example, in the toll function example with toll function g, this yields

Xn =
∑

u

g(|S(u)|) =
n∑

i=1

n−i+1∑

k=1

Yi,kg(k) .

Mean and variance for toll functions

Let σ be a uniform random permutation of size k. Then define

µk =
� {f(σ)} ,

τ 2
k =

� {f 2(σ)} ,
and

Mk = sup
σ:|σ|=k

|f(σ)| .

Note that |µk| ≤ τk ≤Mk. In the toll function example, we have µk = g(k) and τk = Mk = |g(k)|.
We opt to develop the theory below in terms of these parameters. For some parts, such as the

law of large numbers, the second moment approach may be avoided, but this comes at the

expense of considerably more intricate computations and proofs.

Lemma 0. Assume |µk| <∞ for all k, µk = o(k), and

∞∑

k=1

|µk|
k2

<∞ .

Define

µ =

∞∑

k=1

2µk
(k + 2)(k+ 1)

.

Then

lim
n→∞

� {Xn}
n

= µ .

If also |µk| = O(
√
k/ log k), then

� {Xn} − µn = o(
√
n).
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Proof. We have

� {Xn} =
n∑

i=1

n−i+1∑

k=1

� {Yi,k}µk

=
n∑

i=2

n−i∑

k=1

2

(k + 2)(k + 1)
µk +

n−1∑

k=1

1

k + 1
µk +

n∑

i=1

1

n− i+ 2
µn−i+1 + µn

since

� {Yi,k} =





1 if i = 1 and i+ k = n+ 1;

1/(k + 1) if i = 1 or i+ k = n+ 1 but not both;

2/(k + 2)(k + 1) otherwise.

It is trivial to conclude the first part of Lemma 0. For the last part, we have:

| � {Xn − µn}|

≤
∞∑

k=1

2

(k + 2)(k+ 1)
|µk|+

n∑

i=2

∞∑

k=n−i+1

2

(k + 2)(k+ 1)
|µk|+ 2

n∑

k=1

|µk|
k + 1

+ |µn|

≤ O(1) +
∞∑

k=1

2 min(k, n)|µk|
(k + 2)(k+ 1)

+ 2
n∑

k=1

|µk|
k + 1

+ |µn|

≤ O(1) + 4
n∑

k=1

|µk|
k + 1

+ n
∞∑

k=n+1

|µk|
(k + 2)(k+ 1)

+ |µn| .

Lemma 1. Assume that Mn <∞ for all n and that f ≥ 0. Assume that for some b ≥ c ≥ a > 0,

we have µn = O(na), τn = O(nc), and Mn = O(nb). If a + b < 2, c < 1, then
� {Xn} = o(n2).

If a + b < 1, c < 1/2, then
� {Xn} = O(n). If f is a toll function and Mn = O(nb), then

� {Xn} = o(n2) if b < 1 and
� {Xn} = O(n) if b < 1/2.

Proof. Let Zα, α ∈ A, be a finite collection of random variables with finite second moments.

Let E denote the collection of all pairs (α, β) from A2 with α 6= β and Zα not independent of

Zβ. If S =
∑

α∈A Zα, then

� {S} =
∑

α∈A

� {Zα}+
∑

(α,β)∈E
(

� {ZαZβ} −
� {Zα}

� {Zβ}) .

We apply this fact with A being the collection of all pairs (i, k), with 1 ≤ i ≤ n and 1 ≤ k ≤
n− i+ 1. Let our collection of random variables be the products Yi,kf(σ(i, k)), (i, k) ∈ V . Note

that E consists only of pairs ((i, k), (j, `)) from A2 with i+ k ≥ j− 1 and j+ ` ≥ i. This means

that the intervals [i, i+k− 1] and [j, j+ `− 1] correspond to an element of E if and only if they
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overlap or are disjoint and separated by exactly zero or one integer m. But to bound
� {Xn}

from above, since f ≥ 0, we have

� {Xn} ≤
∑

(i,k)∈A

� {Yi,kf(σ(i, k))}+
∑

((i,k),(j,`))∈E

� {Yi,kf(σ(i, k))Yj,`f(σ(j, `))} = I + II .

By the independence of Yi,k and f(σ(i, k)), we have

� {Yi,kf(σ(i, k))} =
� {Yi,k}

� {f 2(σ(i, k))}+ (
� {Yi,k})2 � {f(σ(i, k))}

=
� {Yi,k}τ 2

k + (
� {Yi,k})2(τ 2

k − µ2
k)

≤ � {Yi,k}τ 2
k

and thus I = O(n) if τ 2
n = O(n),

∑n

k=1 τ
2
k/k = O(n) and

∑
k τ

2
k/k

2 <∞. These conditions hold

if c < 1/2. We have I = o(n2) if c < 1.

In II, we have Yi,kYj,` = 0 unless the intervals [i, i+ k− 1] and [j, j + `− 1] are disjoint

and precisely one integer apart, or nested. For disjoint intervals, we note the independence of

Yi,kYj,`, f(σ(i, k)) and f(σ(j, `)), so that

� {Yi,kf(σ(i, k))Yj,`f(σ(j, `))} =
� {Yi,kYj,`}µkµ` .

If none of the intervals contains 1 or n, then a brief argument shows that

� {Yi,kYj,`} ≤
4

(k + `+ 3)(k+ 1)(`+ 1)
.

If one interval covers 1 and the other n, then k+ ` = n− 1, and
� {Yi,kYj,`} = 1/n. In the other

cases, the expected value is bounded by 2/(k+ `+ 2)(k+ 1) or 2/(k+ `+ 2)(`+ 1), depending

upon which interval covers 1 or n. Thus, the sum in II limited to disjoint intervals is bounded

by

n
n∑

k=1

n∑

`=1

4µkµ`
(k + `+ 3)(k+ 1)(`+ 1)

+ 1 +
n∑

k=1

n∑

`=1

4µkµ`
(k + `+ 2)(k + 1)

≤ 2n
n∑

k=1

k∑

`=1

4µkµ`
(k + 3)(k + 1)(`+ 1)

+ 1 + 2
n∑

k=1

k∑

`=1

4µkµ`
(k + 2)(k+ 1)

.

If µn = O(na) for a > 0, then it is easy to see that the three sums taken together are O(n2a).

We next consider nested intervals. For properly nested intervals, with [i, i+ k− 1] being

the bigger one, we have

� {Yi,kf(σ(i, k))Yj,`f(σ(j, `))} =
� {Yi,k}

� {f(σ(i, k))Yj,`f(σ(j, `))}

≤ 2Mk

� {Yi,k}µ`
(`+ 2)(`+ 1)

.
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Summed over all allowable pairs (i, k), (j, `) with the outer interval not covering 1 or n, and

noting that in all cases considered, a < 1,this yields a quantity not exceeding

n
n∑

k=1

k
k∑

`=1

4Mkµ`
(`+ 2)(`+ 1)(k + 2)(k + 1)

≤ n
n∑

k=1

MkO(ka−2) =

{
O(nb+a) if b+ a 6= 1 ,

O(n logn) if b+ a = 1.

The contribution of the border effect is of the same order. This is o(n2) if a+ b < 2. It is O(n)

if a+ b ≤ 1.

Finally, we consider nested intervals with i = j and ` < k. Then

� {Yi,kf(σ(i, k))Yj,`f(σ(j, `))} ≤ � {Yi,k}Mk

µ`
`+ 1

.

Summed over all appropriate (i, k, `) such that the outer interval does not cover 1 or n, we

obtain a bound of

n
n∑

k=1

k∑

`=1

2Mkµ`
(k + 2)(k+ 1)(`+ 1)

= O(na+b +
�

[a+b=1]n logn) .

The border cases do not alter this bound. Thus, the contribution to II for these nested intervals

is o(n2) if a+ b < 2 and is O(n) if a+ b < 1.

A law of large numbers

The estimates of the previous section permit us to obtain a law of large numbers.

Theorem 1. Assume that Mn < ∞ for all n and that f ≥ 0. Assume that for some b ≥ c ≥
a > 0, we have µn = O(na), τn = O(nc), and Mn = O(nb). If a+ b < 2, c < 1, then

Xn

n
→ µ

in probability. If f is a toll function and Mn = O(nb), then Xn/n → µ in probability when

b < 1.
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Proof. Note that a < 1. By Lemma 0, we have
� {Xn}/n→ µ. Choose ε > 0. By Chebyshev’s

inequality and Lemma 1,

� {|Xn −
� {Xn}| > εn} ≤

� {Xn}
ε2n2

= o(1) .

Thus, Xn/n−
� {Xn}/n→ 0 in probability.

Four examples will illustrate this result.

Example 1. We let f be the indicator function of anything, and note that the law of large

numbers holds. For example, let T be a possibly infinite collection of possible tree patterns, and

let Xn count the number of subtrees in a random binary search tree that match a tree from T .

Then, as shown below, the law of large numbers holds. There is inherent limitation to T , which,

in fact, might be the collection of all trees whose size is a perfect square and whose height is a

prime number at the same time. Let Xn be the number of subtrees in a random binary search

tree that match a given prefix tree pattern T , with |T | = k fixed.

Theorem 2. For any non-empty tree pattern collection T , we have

Xn

n
→ µ

in probability, and
� {Xn}/n→ µ, where

µ =
∞∑

n=1

2µn
(n+ 2)(n+ 1)

and µn is the probability that a random binary search tree of size n matches an element of T .

Proof. Theorem 1 applies since f is an indicator function. By Lemma 0, we obtain the limit

µ for
� {Xn}/n.

Note that Theorem 2 remains valid if we replace the phrase “matches an element of T ”

by the phrase “matches an element of T at its root”, so that T is a collection of what we called

earlier prefix tree patterns.

Example 2. Perhaps more instructive is the example of the sumheight Sn, the sum of the

heights of all subtrees in a random binary search tree on n nodes.
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Theorem 3. For a random binary search tree, the sumheight satisfies

Sn
� {Sn}

→ 1

in probability. Here
� {Sn} ∼ n

∞∑

k=1

2hk
(k + 2)(k + 1)

,

where hk is the expected height of a random binary search tree on k nodes.

Proof. The statement about the expected height follows from Lemma 0 without work. As

the height of a subtree of size k is at most k − 1, we see that we may apply Theorem 1 with

Mk = k − 1. By well-known results (Robson, 1977; Pittel, 1984; Devroye, 1986, 1987), we have
� {H2

n} = O(log2 n) where Hn is the height of a random binary search tree. Thus, we may

formally take a and c arbitrarily small but positive, and b = 1.

Example 3. Define L(u) to be the largest number of full levels below u, and let C(u) =

2L(u)+1 − 1 be the size of that largest full subtree rooted at u. Define

Xn =
∑

u

C(u) .

This parameter measures to some extent the amount of balance in the tree.

Theorem 4. For a random binary search tree,

Xn

n
→ µ

in probability, and
� {Xn}/n→ µ, where

µ =
∞∑

n=1

2µn
(n+ 2)(n+ 1)

and µn is the expected size of the largest complete subtree rooted at the root of a random binary

search tree of size n.
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Proof. We verify that Theorem 1 and Lemma 0 may be applied with a = 0.35, b = 1 and

c = 0.35. Indeed, if Hn is the number of full levels starting at a level below the root in a

random binary search tree on n nodes, we know from Devroye (1986) that Ln/ log n → γ =

0.3711 · · · in probability and in the mean. This result does not suffice, as we need to show that
� {2Ln} = O(na) with a = 0.35. But using a representation for tree sizes in terms of products

of independent uniform [0, 1] random variables U1, . . . , Un (Devroye, 1986) (the tree size for any

node at distance k from the root is distributed as b· · · bbnU1cU2c · · ·Ukc), we see that

� {Ln ≥ k} ≤ (
� {nU1 · · ·Uk ≥ 1})2k

≤ exp
(
−2k

� {ne−Gk < 1}
)

≤ exp
(
−2k

� {Gk > logn}
)

≤ exp

(
−2k

∫ ∞

logn

yk−1/(k − 1)!e−ydy

)

≤ exp
(
−2k(logn)k−1/(k − 1)!n

)

≤ exp
(
−2k(logn)k−1

√
k/(k/e)ke

√
2πn

)

(by Stirling’s approximation)

≤ exp
(
−(2e logn/k)k

√
k/e
√

2πn logn
)

= exp
(
−(2e1−1/c/c)c logn

√
c/e
√

2π logn
)

(after setting k = c logn)

≤ exp
(
−nlog

√
4/e/e

√
4π logn

)

(by the choice c = 1/2)

Clearly, then,

� {2Ln} ≤ n � {Ln ≥ (1/2) logn}+ 2(1/2) logn = o(1) + nlog
√

2 = o(n0.35) .

We also have
� {22Ln} = o(n0.7) by the same argument. Thus, both the conditions of Lemma 0

and Theorem 1 are satisfied and the law of large numbers follows.

Example 4. Consider Xn =
∑

u(N(u))0.999. Recall that
∑

uN(u) is the number of comparisons

in quicksort, plus n. Thus, Xn is a discounted parameter with respect to the number of quicksort

comparisons. Clearly, Theorem 1 applies with a = b = c = 0.999, and thus, Xn/n → µ in

probability, and
� {Xn}/n tends to the same constant µ. In a sense, this application is near

the limit of the range for Theorem 1. For example, it is known that with Xn =
∑

u(N(u))1+ε,

there is no asymptotic concentration, and thus, Xn/g(n) does not converge to a constant for any

choice of g(n). Also, for Xn =
∑

u(N(u))1, the quicksort example, we have Xn/2n logn → 1

in probability (Sedgewick, 1983), so that once again Theorem 1 is not applicable. Therefore, in

a vague sense, the conditions of Theorem 1 are nearly best possible, as the theorem applies to

Xn =
∑

u(N(u))1−ε. with ε ∈ (0, 1].
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Dependency graph

We will require the notion of a dependency graph for a collection of random variables

(Zα)α∈V , where V is a set of vertices. Let the edge set E be such that for all disjoint subsets

A and B of V , either there is an edge of E between A and B, or there is no edge, and in the

latter case, (Zα)α∈A and (Zα)α∈B are mutually independent. Clearly, the complete graph is a

dependency graph for any set of random variables, but this is useless. One usually takes the

minimal graph (V,E) that has the above property, or one tries to keep |E| as small as possible.

Note that necessarily, Zα and Zβ are independent if (α, β) 6∈ E, but to have a dependency graph

requires much more than just checking pairwise independence. We call the neighborhood of

N(α) of vertex α ∈ V the collection of vertices β such that (α, β) ∈ E or α = β. We define the

neighborhood N(α1, . . . , αr) as ∪rj=1N(αj).

A. Consider now for V the pairs (i, k) with 1 ≤ i ≤ n and 1 ≤ k ≤ n − i + 1. Let our

collection of random variables be the permutations σ(i, k), (i, k) ∈ V . Let us connect

(i, k) to (j, `) when i+k ≥ j−1 and j+` ≥ i. This means that the intervals (i, i+k−1)

and (j, j + `− 1) correspond to an edge in E if and only if they overlap or are disjoint

and separated by exactly zero or one integer m. We claim that (V,E) is a dependency

graph. Indeed, if we consider disjoint subsets A and B of vertices with no edges between

them, then these vertices correspond to intervals that are pairwise separated by at least

two integers, and thus, (σ(i, k))(i,k)∈A and (σ(j, `))(j,`)∈B are mutually independent.

B. Consider next the collection of random variables Yi,kg(k). For this collection, we can

make a smaller dependency graph. Eliminate all edges from the graph of the previous

paragraph if the intervals defined by the endpoints of the edges are properly nested. For

example, if i < j < j+`−1 < i+k, then the edge between (i, k) and (j, `) is removed. The

graph thus obtained is still a dependency graph. This observation repeatedly uses the

fact that if one considers a sequence Z1, . . . , Zn of i.i.d. random variables with a uniform

[0, 1] distribution, then Z1, Zn and the permutation of Z2, . . . , Zn−1 are all independent.

Thus, for properly nested intervals as above, Yi,kg(k) is independent of Yj,`g(`).

C. A third dependency graph that will be useful is constructed as above when V is restricted

to those pairs (i, k) with 1 ≤ i ≤ n and 1 ≤ k ≤ n − i + 1, and, additionally, k ≤ K.

Typically, K = o(n), so this will restrict the degree of each vertex in the dependency

graph. For example, given any vertex (i, k) in this graph, its neighborhood N((i, k)) has

cardinality bounded by (2K + 2)K, because the starting point for a connected interval

has at most 2K + 2 choices, and the length at most K.
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Stein’s method

Stein’s method (Stein, 1972) allows one to deduce a normal limit law for certain sums of

random variables while only computing first and second order moments and verifying a certain

dependence condition. Many variants have seen the light of day in recent years, and we will

simply employ the following version derived in Janson,  Luczak and Ruciński (2000, Theorem

6.33):

Lemma 2. Suppose that (Sn)∞1 is a sequence of random variables such that Sn =
∑

α∈Vn Znα,

where for each n, {Znα}α is a family of random variables with dependency graph (Vn, En). Let

N(.) denote the neighborhood of a vertex or vertices. Suppose further that there exist numbers

Mn and Qn such that ∑

α∈Vn

� {|Znα|} ≤Mn

and for every α, α′ ∈ Vn: ∑

β∈N(α,α′)

� {|Znβ ||Znα, Znα′} ≤ Qn .

Let σ2
n =

� {Sn}. Then
Sn −

� {Sn}√ � {Sn}
L→ N (0, 1)

if

lim
n→∞

MnQ
2
n

σ3
n

= 0 .

Sums of functions of subtrees

In this section, we apply Stein’s method to the random variable

Xn,K =
∑

u:|S(u)|≤K
f(S(u)) ,

where K = K(n) is a sequence of positive numbers. By verifying the conditions of Lemma 1,

we obtain

13



Lemma 3. Let g be a nondecreasing positive function such that |f(σ)| ≤ g(|σ|) for all permu-

tations σ. Assume that
� {Xn,K} = Ω(n), where K = K(n) be a sequence such that K ≥ 1,

yet

K2g(K) = o(n1/4) .

Then
Xn,K −

� {Xn,K}√ � {Xn,K}
L→ N (0, 1) .

Proof. We apply Lemma 2 with basic collection of random variables Yi,kf(σ(i, k)), (i, k) ∈ Vn,

where Vn is the collection {(i, k) : 1 ≤ i ≤ n, 1 ≤ k ≤ min(K,n − i + 1)}. Let En be the edges

in the dependency graph Ln defined by connecting (i, k) to (j, `) if the respective intervals are

overlapping or if the respective intervals are disjoint with zero or one integers separating them.

We note that ∑

(i,k)∈Vn

� {Yi,kg(k)} ≤ (ν + o(1))n

by computations not unlike those for the mean done earlier, where

ν =

∞∑

n=1

2g(n)

(n+ 2)(n+ 1)
.

To apply Lemma 2, we note that we may thus take Mn = O(n). We also note that σ2
n = Ω(n),

by assumption. Define

Qn = sup
(i,k),(j,`)∈Vn

∑

(p,r)∈N((i,k),(j,`))

� {Yp,rg(r)|Yi,kf(σ(i, k)), Yj,`f(σ(j, `))} .

Indeed, as g bounds |f |, this is all we need to bound. The technical condition in Lemma 2 is

satisfied if Qn = o(n1/4). To compute an upper bound for Qn, we bound as follows:

Qn ≤ sup
(i,k),(j,`)∈Vn

|N((i, k), (j, `))|g(K)

Each of the intervals represented by (i, k) and (j, `) has length at most K. Clearly, (p, r) ∈
N((i, k), (j, `)) means that both p and p+ r − 1 must be in these intervals or within the K + 1

neighbors of them. Each of p and r has thus at most 3K + 2 choices, so that |N((i, k), (j, `))| ≤
(3K + 2)2. Thus,

Qn ≤ (3K + 2)2g(K)

from which Lemma 3 follows without further work.

A simple example counts the number of subtrees in a random binary search tree that

match one of a given collection of tree patterns (these are “terminal matches” at the bottom of

the tree), where each pattern is of size ≤ K, where K may depend upon n. As f is an indicator

function, we may take g ≡ 1. Let Xn denote the number of matches.
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Lemma 4. Let Xn be the number of matches of a tree pattern in a collection of tree patterns

depending arbitrarily on n as long as within the collection, the maximal tree size is K = K(n).

If

lim
n→∞

� {Xn}K2

(
� {Xn})3/2

= 0 ,

then
Xn −

� {Xn}√ � {Xn}
L→ N (0, 1) .

Proof. Follow the proof of Lemma 3, but do not use the estimate σ2
n = Ω(n).

Note that the above result remains true even if the collection of patterns itself is a

function of n, changing in cardinality and in membership with n, within the condition imposed

on K. This result extends the central limit laws of Devroye (1991), where K had to remain

fixed. Indeed, the technical condition of Lemma 4 becomes
� {Xn}/

�
2/3{Xn} → ∞. Note in

this respect that for K fixed, and the collection of tree patterns non-empty for all n, we have
� {Xn} = Θ(n), and

� {Xn} = Θ(n), facts that are easy to verify.

Sums of indicator functions

In this section, we take a simple example, in which

Xn =
∑

u

�
[S(u)∈An] ,

where An is a non-empty collection of permutations of length k, with k possibly depending upon

n. We denote pn,k = |An|/k!, the probability that a randomly picked permutation of length k is

in the collection An. Particular examples include sets An that correspond to a particular tree

pattern, in which case Xn counts the number of occurrences of a given tree pattern of size k (a

“terminal pattern”) in a random binary search tree. The interest here is in the case of varying

k. As we will see below, for a central limit law, k has to be severely restricted.

Our main result is this:
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Theorem 5. We have
� {Xn} =

2npn,k
(k + 2)(k+ 1)

+O(1)

regardless of how k varies with n. If k = o(logn/ log logn), then
� {Xn} → ∞, Xn/

� {Xn} → 1

in probability, and
Xn −

� {Xn}√ � {Xn}
L→ N (0, 1) .

Proof. Observe that

Xn =
n−k+1∑

i=1

Yi,kZi .

where Zi =
�

[σ(i,k)∈An], Thus,

� {Xn} =
n−k∑

i=2

2

(k + 2)(k + 1)

� {Z1}+ 2× 1

k + 1

� {Z1} =
2(n− k − 1)pn,k
(k + 2)(k+ 1)

+
2pn,k
k + 1

.

This proves the first part of the Theorem.

The computation of the variance is slightly more involved. However, it is simplified by

considering the variance of

Yn =
n−k∑

i=2

Yi,kZi ,

and noting that |Xn − Yn| ≤ 2. This eliminates the border effect. We note that Yi,kYj,k = 0 if

i < j ≤ i+ k. Thus,

� {Y 2
n } =

n−k∑

i=2

� {Yi,kZi}+ 2
∑

2≤i<j≤n−k

� {Yi,kZiYj,kZj}

=
� {Yn}+ 2

∑

2≤i,i+k+1≤n−k

� {Yi,kZiYi+k+1,kZi+k+1}+ 2
∑

2≤i,i+k+1<j≤n−k

� {Yi,kZi}
� {Yj,kZj}

= (n− k − 1)β + 2(n− 2k − 2)α+ (n− 2k)2β2 + (10k+ 6− 5n)β2

where α =
� {Y2,kZ2Y3+k,kZ3+k}, and β =

� {Y2,kZ2}. Also,

(
� {Yn})2 = ((n− k − 1)β)

2
.

Thus,

� {Yn} = 2(n− 2k − 2)α+ (n− k − 1)β +
(
(n− 2k)2 − (n− k − 1)2 + (10k + 6− 5n)

)
β2

= n
(
2α+ β − (2k + 3)β2

)
+O(kα+ kβ + k2β2) .

We note that β = 2pn,k/(k+ 2)(k+ 1). To compute α, let A,B,C be the minimal values among

U1, . . . , Uk+1; Uk+2, and Uk+3, . . . , U2k+3, respectively. Clearly,

α = p2
n,k

� {Y2,kY3+k,k}.
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Considering all six permutations of A,B,C separately, one may compute the latter expected

value as

2

2k + 3

1

2k + 2

1

k + 1
+

1

2k + 3

1

k + 1

1

k + 1
+

2

2k + 3

1

2k + 2

1

2k + 1
=

5k + 3

(2k + 3)(2k+ 1)(k+ 1)2
.

Thus,

α =
(5k + 3)p2

n,k

(2k + 3)(2k+ 1)(k + 1)2
.

We have

� {Yn} =

= n

(
p2
n,k

10k + 6

(2k + 3)(2k+ 1)(k+ 1)2
− p2

n,k

8k + 12

(k + 2)2(k + 1)2
+ pn,k

2

(k + 2)(k+ 1)

)
+O(pn,k/k) .

Note that regardless of the value of pn,k, the coefficient of n is strictly positive. Indeed, the

coefficient is at least

p2
n,k

(
(10k + 6)(k+ 2)2 − (8k − 8)(2k+ 3)(2k+ 1) + 2(2k+ 3)(2k+ 1)(k+ 2)(k+ 1)

(k + 2)2(k + 1)2(2k + 3)(2k+ 1)

)

= p2
n,k

(
8k4 + 18k3 + 4k2 − 6k

(k + 2)2(k + 1)2(2k + 3)(2k+ 1)

)
.

Thus, there exist universal constants c1, c2, c3 > 0 such that

� {Yn} ≥ c1np
2
n,k/k

2 − c2pn,k/k ,

and
� {Yn} ≤ c3npn,k/k

2 .

We have Yn/
� {Yn} → 1 in probability if

� {Yn} = o(
�

2{Yn}), that is, if k = o(
√
npn,k). Using

pn,k ≥ 1/k!, we note that this condition holds if k = o(logn/ log logn).

Finally, we turn to the normal limit law and note that

Yn −
� {Yn}√ � {Yn}

L→ N (0, 1)

if (see Lemma 4)

lim
n→∞

k2
� {Yn}

(
� {Yn})3/2

= 0 .

This holds if

lim
n→∞

npn,k
n3/2p3

n,k/k
3

= 0

and npn,k/k→∞. Both conditions are satisfied if k = o(logn/ log logn).

The limitation on k in Theorem 5 cannot be lifted without further conditions: indeed,

if we consider as a tree pattern the tree that consists of a right branch of length k only, then
� {Xn} → 0 if k > (1 + ε) logn/ log logn for any given fixed ε > 0. As Xn is integer-valued, no

meaningul limit laws can exist in such cases.
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Notes on the variance

For toll functions, that is, functions f such that f(σ) = g(|σ|) for some function g, we

need the following Lemma.

Lemma 5. Define Xn =
∑

u g(|S(u)|) and Xn,K =
∑

u g(|S(u)|) �
[|S(u)|≤K] for a random binary

search tree. The following statements are equivalent:

A.
� {Xn,K} = Ω(n) for any K with K →∞ as n→∞.

B.
� {Xn} = Ω(n).

C.
� {Xk} > 0 for some k > 0.

D. The function g is not constant on {1, 2, . . .}.

Proof. D implies C. Indeed, let k be the first integer at least equal to 2 such that

g(k) 6= g(k − 1) = · · · = g(1) .

For the integers up to k, we have the representation g(x) = c + d
�

[x=k] with d 6= 0. We have

Xi = ic, i < k, Xk = kc+ d, and Xk+1 = f(k+ 1) + kc+ dNk, where Nk is the number of nodes

for which |S(u)| = k. Note that Nk = 1 with probability 2/(k + 1) and 0 otherwise. Thus,

� {Xk+1} = d2 × 2(k − 1)

(k + 1)2
> 0 .

C implies A. For two random variablesW,Y , we have
� {W} =

� { � {W |Y }}+ � { � {W |Y }}.
Thus,

� {Xn,K} ≥
� { � {Xn,K |Fk}}

where Fk is defined as follows. Identify in the permutation that defines the tree all nodes u for

which |S(u)| = k. By construction, each S(u) corresponds to an interval of the original random

permutation (of length n). Let Fk be all elements of the original random permutation except

those corresponding to the intervals representing S(u) with |S(u)| = k. By the conditional

independence of the various S(u)’s of size k (none can overlap), and defining Nk =
∑

u

�
[|S(u)|=k],

we have for n so large that K ≥ k,

� {Xn,K} ≥
�





∑

u:|S(u)|=k

� {Xk,K |Fk}





=
� {Nk

� {Xk,K}}
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=
� {Nk}

� {Xk,K}
=

� {Nk}
� {Xk}

∼ 2n
� {Xk}

(k + 2)(k+ 1)
.

Thus, the lower bound follows if
� {Xk} > 0 for some k.

A implies B. Just take K = n.

B implies D. If g is constant on the positive integers, then
� {Xk} = 0 for all k.

For general functions f on the set of all permutations, it is always possble to have

Xn = 0 (and thus
� {Xn} = 0) along a subsequence for n. Assume that all values for f(σ)

are given, with |σ| < n. Let σ be of size n. Define f(σ) such that Xn =
∑

u f(S(u)) = 0.

One can even construct examples in which f is integer-valued and f(σ) = |σ| = n while for

smaller permutations σ′, the values f(σ′) are quite arbitrary, as long as they are taken from

{0, 1, 2, . . . , |σ′|}. In the latter case, we have Xn ≡ n for that particular n. So, faced with these

pesky examples, we will develop the sequel with the condition
� {Xn} = Ω(n) thrown in. The

reader should be warned that this condition needs rigorous verification in each application that

does not deal with a toll function.

Sums of functions of sizes of subtrees

In this section, we consider two types of random variables,

Xn =
∑

u

g(|S(u)|)

and

Xn,K =
∑

u:|S(u)|≤K
g(|S(u)|) ,

where K = K(n) ≤ n is a sequence of positive numbers. Define G(n) = max1≤i≤n |g(i)|.

Lemma 6. Assume that g is not constant on {1, 2, . . .}. If K →∞, and G(K) log2K = o(n1/4),

then
Xn,K −

� {Xn,K}√ � {Xn,K}
L→ N (0, 1) .

proof of lemma 6. We apply Lemma 2 with basic collection of random variables Yi,kg(k),

(i, k) ∈ Vn, where Vn is the collection {(i, k) : 1 ≤ i ≤ n, 1 ≤ k ≤ min(K,n − i + 1)}. Let En

be the edges in the dependency graph Ln defined by connecting (i, k) to (j, `) if the respective

intervals are overlapping without being properly nested, or if the respective intervals are disjoint
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with zero or one integers separating them. (Note that the dependency graph is thus considerably

smaller than in the proof of Lemma 3.) We note that
∑

(i,k)∈Vn

� {Yi,k|g(k)|} ≤ (ν + o(1))n

by computations not unlike those for the mean done earlier, where

ν =
∞∑

n=1

2|g(n)|
(n+ 2)(n+ 1)

.

To apply Lemma 2, we note that we may thus take Mn = O(n). We also note that σ2
n = Ω(n),

by Lemma 5, since K → ∞ and g is not constant on {1, 2, . . .}. It suffices thus to show that

Qn = o(n1/4). Note that conditioning on Yi,kg(k) is equivalent to conditioning on Yi,k. Thus,

we may bound Qn by

Qn ≤ G(K) sup
(i,k),(j,`)∈Vn

∑

(p,r)∈N((i,k),(j,`))

� {Yp,r|Yi,k, Yj,`} .

We show that sum above is uniformly bounded over all choices of (i, k), (j, `) by O(log2K).

Consider the set S = {0, 1, . . . , n, n+ 1} and mark 0, n+ 1, i− 1, i+k, j − 1, j+ ` (where

duplications may occur). The last four marked points are neighbors of the intervals represented

by (i, k) and (j, `). Mark also all integers in S that are neighbors of these marked numbers. The

total number of marked places does not exceed 3× 4 + 2× 2 = 16. The set S, when traversed

from small to large, can be described by consecutive intervals of marked and unmarked integers.

The number of unmarked integer intervals is at most five. We call these intervals H1, . . . ,H5,

from left to right, with some of these possibly empty. Set H = ∪iHi. Define Hc = S − H.

Consider Yp,r for r ≤ K fixed. Let s = p+ r − 1 be the endpoint of the interval on which Yp,r

sits. Note that Yp,r depends upon {Ui}p−1≤i≤s+1. We note four situations:

A. If p, s ∈ Hi for a given i, then Yp,r is clearly independent of Yi,k, Yj,`. In fact, then,

(p, r) 6∈ N((i, k), (j, `)).

B. If p, s ∈ Hc, then we bound
� {Yp,r|Yi,k, Yj,`} by one.

C. If p or s is in Hc and the other endpoint is in Hi, then we bound as follows:

� {Yp,r|Yi,k, Yj,`} ≤
1

1 + |Hi ∩ {p, . . . , s}|
because we can only be sure about the i.i.d. nature of the Ui’s in Hi∩{p, . . . , s} together

with the two immediate neighbors of this set.

D. If p ∈ Hi, s ∈ Hj , i < j, then we argue as in case C twice, and obtain the following

bound:
� {Yp,r|Yi,k, Yj,`} ≤

1

1 + |Hi ∩ {p, . . . , s}|
× 1

1 + |Hj ∩ {p, . . . , s}|
.

20



The above considerations permit us to obtain a bound for Qn by summing over all (p, r) ∈
N((i, k), (j, `)). The sum for all cases (A) is zero. The sum for case (B) is at most 162 = 256.

The sum over all (p, r) as in (C) is at most

2× 16× 5×
K∑

r=1

1

r + 1
≤ 160 log(K + 1) .

Finally, the sum over all (p, r) described by (D) is at most

(
5

2

)( K∑

r=1

1

r + 1

)2

≤ 10 log2(K + 1) .

The grand total is O(log2 K), as required. This concludes the proof of Lemma 6.

Corollary 1. As K ≤ n, we deduce that for G(n) = o(n1/4/ log2 n),

Xn −
� {Xn}√ � {Xn}

L→ N (0, 1) .

This result will be slightly improved in Theorem 6 below.

Corollary 2. A sufficient condition for Lemma 6 is K = O(na) for some 0 ≤ a ≤ 1, and

G(n) = o(n1/4a/ log2 n). Other sufficient conditions include either K = O(1), or K = O(logn),

G(n) = O(exp(εn)) for all ε > 0.

Theorem 6. Assume that g is not constant on {1, 2, . . .}. If G(n) = o(n1/3/ log2 n), then

Xn −
� {Xn}√ � {Xn}

L→ N (0, 1) .
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Proof. Theorem 6 follows directly from Lemma 6 if we can prove the following facts: with

K = bn3/4c,

A. For all ε > 0, limn→∞
� {Xn−Xn,K ≥ ε

√
n} = 0. A sufficient condition is

� {Xn−Xn,K} =

o(
√
n).

B. lim infn→∞
� {Xn}/n > 0.

C.
� {Xn,K} ∼

� {Xn}.

For part A, note the following:

| � {Xn −Xn,K}| =

∣∣∣∣∣∣
∑

(i,k):1≤i≤n,K<k≤n−i+1

� {Yi,k}g(k)

∣∣∣∣∣∣

≤ G(n) + 2
∑

K<k≤n−1

� {Y1,k}G(k) +
∑

(i,k):2≤i≤n,K<k≤n−i

� {Yi,k}G(k)

≤ G(n) + 2
∑

K<k≤n−1

G(k)

k + 1
+

∑

(i,k):2≤i≤n,K<k≤n−i

2G(k)

(k + 2)(k + 1)

≤ o(n1/3) +
n∑

k=K+1

n−k∑

i=2

2G(k)

(k + 2)(k+ 1)

≤ o(n1/3) + n

n∑

k=K+1

2G(k)

(k + 2)(k+ 1)

= o(n1/2)

by our choice of K.

Part B is immediate from Lemma 5.

For part C, set

Xn = Xn,K +Wn,K

and note that

� {Xn} =
� {Xn,K}+

� {Wn,K}+ 2
� {(Xn,K −

� {Xn,K})(Wn,K −
� {Wn,K})} .

We have from Lemmas 5 and 1,
� {Xn,K} = Θ(n). We will show that

� {Wn,K} = o(n). By the

Cauchy-Schwarz inequality,

� {(Xn,K −
� {Xn,K})(Wn,K −

� {Wn,K})} = o

(√
n
√

� {Xn,K}
)

so that
� {Xn}

� {Xn,K}
= 1 + o(1) + o

( √
n√ � {Xn,K}

)
= 1 + o(1) .
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We now show
� {Wn,K} = o(n). Let Vn = {(i, k) : 1 ≤ i ≤ n, 1 ≤ k ≤ min(K,n − i + 1)} be

the vertex set and let En be the edge set for the dependency graph for the random variables

Yi,kg(k). That is, two pairs are connected by an edge if their intervals are not properly nested

and are either overlapping or disjoint with at most one integer between them. Then:

� {Wn,K} =
∑

(i,k)∈Vn

� {Yi,kg(k)}+
∑

((i,k),(j,`))∈En

g(k)g(`) (
� {Yi,kYj,`} −

� {Yi,k}
� {Yj,`}) .

The first sum on the right hand side is bounded by

∑

(i,k)∈Vn

g2(k)
� {Yi,k} = o(n2/3) + n

∞∑

k=K

g2(k)/k2 = o(n2/3) + n× o(K−1/3) = o(n3/4) .

Consider a fixed edge ((i, k), (j, `)) ∈ En. Note that if the intervals for (i, k) and (j, `) properly

overlap without being nested, then Yi,kYj,` = 0. The same is true if they are directly adjacent.

So, if ((i, k), (j, `)) ∈ En, the product Yi,kYj,` is nonzero only if they are nested and have one

coinciding endpoint, or if the intervals are separated by precisely one integer. Thus, for the

latter intervals, with, say, 1 < i ≤ i+ k − 1 = j − 2 < j ≤ j + `− 1 < n,

� {Yi,kYj,`} ≤
2

(`+ 2)(`+ 1)
× 1

k + 1
.

For the intervals aligned at i, with, say, 1 < i = j ≤ i+ k − 1 < j + `− 1 < n, we have

� {Yi,kYj,`} ≤
2

(`+ 2)(`+ 1)
× 1

k + 1
.

The last two bounds are also valid with ` and k interchanged. Thus,
∑

((i,k),(j,`))∈En

g(k)g(`)
� {Yi,kYj,`}

≤ 4G(n)
∑

(j,`)∈Vn

G(`)
� {Yj,`}+

∑

((i,k),(j,`))∈En

2G(k)G(`)

`2k

≤ o(n1/3)
∑

(j,`)∈Vn

G(`)
� {Yj,`}+

∑

((i,k),(i,`))∈En

2G(k)G(`)

`2k

+
∑

((i,k),(i+k+1,`))∈En

2G(k)G(`)

`2k
+

∑

((j+`+1,k),(j,`))∈En

2G(k)G(`)

`2k

= I + II + III + IV .

First of all,

I ≤ o(n1/3)n

n∑

`=K

2G(`)

(`+ 2)(`+ 1)
+ o(n1/3)

n∑

`=K

G(`)

`+ 1

≤ o(n4/3G(n))

K + 1
+ o(n2/3)

= o(n11/12).
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Now,
∑

k≤`G(k)/k = o(`1/3). Thus, using a symmetry argument,

II = 2
∑

((i,k),(i,`))∈En,k<`

2G(k)G(`)

`2k
≤ O(n)

n∑

`=K

o(`1/3)G(`)

`2
= O(n)× o(K−1/3) = o(n3/4) .

Also,

III ≤ O(n)
n∑

k=K

G(k)/k×
n∑

`=K

G(`)/`2 = O(n)o(n1/3)o(K−2/3) = o(n5/6) .

Similarly, IV = o(n5/6). We conclude that
� {Wn,K} = o(n11/12), which is more than was

needed. This concludes the proof of Theorem 6.

Remark. Using the contraction method and the method of moments, Hwang and Neininger

(2001) showed that the central limit result of Theorem 6 holds with G(n) = O(na), a ≤ 1/2.

Our result is weaker, but requires fewer analytic computations.

Bibliographic remarks.

Central limit theorems for slightly dependent random variables have been obtained by

Brown (1971), Dvoretzky (1972), McLeish (1974), Ibragimov (1975), Chen (1978), Hall and

Heyde (1980) and Bradley (1981), to name just a few. Stein’s method (our Lemma 2, essentially)

is one of the central limit theorems that is better equipped to deal with cases of considerable

dependence.

Stein’s method offers short and intuitive proofs, but other methods may offer attractive

alternatives. Hwang and Neininger (2001) are tackling the analysis of random variables of our

type by the moment and contraction methods. The ranges of application of the results are

not nested—in some situations, Stein’s method is more useful, while in others the moment and

contraction methods are preferable.

The limit law for Ln, the number of leaves in a random binary search tree, was obtained

by Devroye (1991) (see also Mahmoud, 1986):

Ln −
� {Ln}√ � {Ln}

L→ N (0, 1) .

Equivalently, (Ln − n/3)/
√
n
L→ N (0, 2/45). That paper deals with general sums

∑
i f(σ(i, k))

for k fixed and finite, and without regarding the fact that permutations correspond to subtrees

of the random binary search tree. As Ln corresponds in our setting to the toll function
�

[|σ|=1],

the above limit law follows easily from Lemma 4, Theorem 5, or Theorem 6. If Wn is the number

of nodes with just a right subtree (which occurs at the i-th node if and only if Ui < Ui+1), then
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it is easy to see that f(σ(i, k)) =
�

[Ui<Ui+1] for all values of k, and this is clearly not covered

by Lemma 4. A relatively easy extension would handle it, but we will not be concerned with

that here. The result (Wn − n/2)/
√
n
L→ N (0, 1/12) (Devroye, 1991) is thus not an immediate

corollary of the present results.

Aldous (1991) showed that the number Vk,n of subtrees of size precisely k in a random

binary search tree is in probability asymptotic to 2/(k+ 2)(k+ 1). Devroye showed that (Vk,n−
2n/(k + 2)(k + 1))/

√
n tends in law to a normal (0, ck) random variable where ck is explicitly

defined. The latter result follows also from the present paper if we take as toll function f(σ) =
�

[|σ|=k].

Recently, there has been some interest in the logarithmic toll function f(σ) = log |σ|
(Grabner and Prodinger, 2001) and the harmonic toll function f(σ) =

∑|σ|
i=1 1/i (Panholzer and

Prodinger, 2001). The authors in these papers are mainly concerned with precise first and second

moment asymptotics. Fill (1996) obtained the central limit theorem for the case f(σ) = log |σ|.
Clearly, these examples fall entirely within the conditions of Lemma 4 or Theorem 6, with some

room to spare.

Flajolet, Gourdon and Martinez (1997) obtained a normal limit law for the number of

subtrees in a random binary search tree with fixed finite tree pattern. Clearly, this is a case in

which (the indicator function) f(σ) depends on σ in an intricate way, but f = 0 unless |σ| equals

the size of the tree pattern. The situation is covered by the law of large numbers of Theorem

2 and the central limit result of Theorem 5. Theorem 5 even allows tree patterns that change

with n.
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