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Introduction

The unilateral stable random variable Sα of parameter α ∈ (0, 1) has Laplace transform

E
{
e−λSα

}
= e−λ

α
, λ ≥ 0.

Its properties are well-known, see, e.g., Zolotarev (1986). A simple random variate generator for Sα has

been suggested by Kanter (1975), who used an integral representation of Zolotarev (1966) (see Zolotarev

(1986, p. 74)), which states that the distribution function of S
α/(1−α)
α is given by

1

π

∫ π

0
e−

A(u)
x du, (1)

where A is Zolotarev’s function:

A(u)
def
=

{
(sin(αu))α(sin((1− α)u)1−α

sinu

} 1
1−α

.

By taking limits, we note that S1 = 1, so that the family is properly defined for all α ∈ (0, 1]. Zolotarev’s

integral representation implies that

Sα
L
=

(
A(U)

E

) 1−α
α

, (2)

where U is uniform on [0, π] and E is exponential with mean one. Here
L
= denotes equality in distribution.

This is Kanter’s method.

Since then, a similar generator has been proposed for all stable random variables by Chambers,

Mallows and Stuck (1976), which was again based on Zolotarev’s integral representation of stable distri-

butions. A different method based on the series expansion of the stable density was developed by Devroye

(1986). The purpose of this paper is to discuss random variate generation for tilted versions of Sα. We

write gα for the density of Sα, which, as we know, is concentrated on the positive real axis.

Following Perman, Pitman and Yor (1992) in connection with local times of generalizations of

Bessel processes (see also James, 2006), we define the polynomially tilted random variable Tα,β as the

random variable with density proportional to x−βgα(x), x > 0. Here β ≥ 0 is the tilting parameter.

Due to the rapid inverse exponential decrease of gα near the origin, x−βgα(x) is indeed integrable for all

β ≥ 0. Many properties of this family were derived by James (2006), who also points out its importance.

For instance, if one generates a random partition of the integers according to a two parameter Poisson-

Dirichlet distribution (also known as the Ewens-Pitman Sampling formula) with α positive, then the

limiting distribution of the number of blocks (Kn) is almost surely nα(T−αα,β + o(1)) (Pitman, 2003,

section 6.1). The tilted stable law, the stable law, the gamma distribution, the Linnik distribution, and

Lamperti laws are all related by a distributional algebra, in which simple combinations of some members

of these families yield other ones (see, e.g., James (2007) and some discussion in the next section). For

example, T1/2,β gives us the family of inverse gamma random variables. We will represent Tα,β using

a generalization of (2). However, that generalization involves a new random variable, which for reasons

that will be become apparent further on, will be called a Zolotarev random variable. An efficient random

variate generator for this new distribution then concludes that section.

Exponentially tilted, or Esscher-transformed (Sato, 1999), random variables have densities on

the positive real axis that are multiplied with ce−λx for some λ > 0 and a normalization constant c.
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They play an important role in the importance sampling and in the study and simulation of rare events

(see, e.g., Sadowsky and Bucklew (1989), and Bucklew (1990, 2004)). If X has density f and Y is the

Esscher-transformed variable, then a generic rejection algorithm would keep on generating independent

pairs (X,U) with U uniform [0, 1] independent of X until for the first time U ≤ exp(−λX), and then

return Y ← X . While exact, the expected number of iterations is 1/E{exp(−λX)}, which for any nonzero

random variable X is unbounded in λ. It is of interest to develop methods that are uniformly fast in

λ. This paper solves that exercise for the exponentially tilted stable law. We write Sα,λ for the random

variable with density proportional to e−λxgα(x), x > 0. Note that exponential tilting does not make

sense for stable variables that are supported on the real line. For this family, also called the tempered

stable family by Barndorff-Nielsen and Shepard (2001), a path is followed based upon Zolotarev’s integral

representation. An efficient algorithm that uses the notion of a double rejection is given. The idea of

exponentially tilting stable and other distributions was explored by Hougaard (1986). Many of their

properties are well-known, see, e.g., Aalen (1992), Brix (1996), Barndorff-Nielsen and Shepard (2001)

and Cerquetti (2007). Some additional interesting properties of the family can be found in James (2006)

and James and Yor (2007). The exponentially tilted stable law is the natural exponential family for

the positive stable distribution, and thus plays a key role in mathematical statistics, as a model for

randomness used by Bayesians, and in economic models.

It should be stressed that the methods in this note never require the computation or approxima-

tion of the stable density or distribution function. The onus is plainly on Zolotarev’s function. In fact,

we believe that the Zolotarev distribution on which our methods are based will find many uses in the

study of stable processes.

A final note about our algorithms and distributional identities: when we say “generate a random

variate X”, we mean that an independent experiment is carried out. When a distributional identity has

a function F of several random variables, as in F (X,Y, Z), then, unless it explicitly noted, all random

variables involved are independent.

The polynomially tilted unilateral stable distribution

For a thorough treatment of this distribution, it helps to have a table of the moments of various

random variables nearby. Distributions that satisfy Carleman’s condition (see, e.g., Shohat and Tamarkin

(1943) or Stoyanov (2000)) are uniquely defined by their moments. For most of the algebra or calculus of

the gamma, beta and stable distributions, this is a convenient and underused method of proof. In what

follows, r ≥ 0 is fixed. We recall that

E{S−rα } =
Γ
(
1 + r

α

)

Γ(1 + r)
.

If Gα is a gamma random variable with parameter α > 0, then

E{Grα} =
Γ(r + α)

Γ(α)
.

The density of Tα,β is then given by

Γ(1 + β)

Γ
(

1 + β
α

) x−βgα(x), x > 0.
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Indeed, the constant factor in the last expression is easily seen to be 1/E{S−βα }, so that the integral is

one. Thus, we have

E
{
T−rα,β

}
=

Γ(1 + β)

Γ
(

1 + β
α

) E{S−r−βα } =
Γ(1 + β)Γ

(
1 + r+β

α

)

Γ
(

1 + β
α

)
Γ(1 + r + β)

.

Simple moment comparisons give us a host of well-known results but also some properties first shown by

James (2006): (
G1

Sα

)α L
= G1,

(
Gβ
Tα,β

)α L
= Gβ/α,

and

Tα,β
L
= Tγ,βT

1/γ
α/γ,β/γ

.

Choosing β = 1 above, we have

Tα,1
L
= Tγ,1T

1/γ
α/γ

.

Choosing β = 0 (Tα,0 = Sα), we have

Sα
L
= SγS

1/γ
α/γ

.

To generalize Zolotarev’s integral representation, we define the Zolotarev random variable Zα,b
(α ∈ (0, 1), b ≥ 0) on [0, π] with density given by

f(x) =
Γ(1 + bα)Γ (1 + b(1− α))

πΓ (1 + b) A(x)b(1−α)
.

We will show that f is bounded and non-increasing on its support.

Theorem 1.

Tα,β
L
=

(
A(Zα,β/α)

G
1+β 1−α

α

) 1−α
α

.

Theorem 1 specializes to Kanter’s method for β = 0, as Zα,0
L
= U , the uniform random variable

on [0, π], and G1 is exponentially distributed. Random variate generation simply requires one Zolotarev

random variable and one gamma random variable. For the gamma distribution, there are numerous

methods that have expected time uniformly bounded in the parameters, see, e.g., Devroye (1986), Cheng

(1977), Le Minh (1988), Marsaglia (1977), Ahrens and Dieter (1982), Cheng and Feast (1979, 1980),

Schmeiser and Lal (1980), Ahrens, Kohrt and Dieter (1983), and Best (1983), to name just a few.

In the next section, we study Zolotarev’s distribution and develop a random variate generator

for it.
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Proof. Write the density of Tα,β as Cx−βgα(x). The density of T
α/(1−α)
α,β then is

C
1− α
α

x−β
1−α
α + 1

α−2gα(x
1−α
α ).

Starting from Zolotarev’s integral expression (1), we see that the density of S
α/(1−α)
α is

1

π

∫ π

0

A(u)

x2
e−

A(u)
x du.

By definition of gα, this must be identical to

1− α
α

x
1
α−2gα(x

1−α
α ).

Replace gα in the density of T
α/(1−α)
α,β , which then becomes

Cx−β
1−α
α

1

π

∫ π

0

A(u)

x2
e−

A(u)
x du.

Finally, T
−α/(1−α)
α,β has the following density on [0,∞):

1

π

∫ π

0
Cxβ

1−α
α A(u)e−A(u)x du =

∫ π

0

CΓ
(
1 + β 1−α

α

)

πA(u)β
1−α
α

h(x, u) du

where h(x, u) is the density of G
1+β 1−α

α
/A(u), that is,

h(x, u) =
A(u) (A(u)x)β

1−α
α e−A(u)x

Γ
(
1 + β 1−α

α

) , x > 0.

Note that the density of T
−α/(1−α)
α,β is thus

∫ π

0
`(u)h(x, u)du

where ` is the density of Zα,β/α. This concludes the proof.

Zolotarev’s distribution

Summarizing the computations of the previous section, we write the density of Zα,b explicitly as

f(x) = CA(x)−b(1−α) = CB(x)b
def
= C

(
sin(x)

(sin(αx))α(sin((1− α)x))1−α

)b
, 0 ≤ x < π,

with

C =
Γ(1 + bα)Γ (1 + b(1− α))

πΓ (1 + b)
.

This family contains the uniform density on [0, π] (case b = 0), and is symmetric in α as Zα,b
L
= Z1−α,b.

Furthermore, for fixed α, as b→∞,
√
bα(1− α)Zα,b

L→ |N |,
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where N is standard normal. The basic form for b = 1 has a simple coefficient:

f(x) =
α(1− α)

sin(πα)

sin(x)

(sin(αx))α(sin((1− α)x))1−α , 0 ≤ x < π.

Set L(x) = logB(x). Then

L′(x) = cotx− α2 cot(αx) − (1− α)2 cot((1− α)x).

Recall the series expansion for the cotangent,

cotx =
1

x
− x

3
− x3

45
− 2x5

945
− · · · − (−1)n−122nB2nx

2n−1

(2n)!
− · · · ,

which is convergent for 0 < x < π, and has all its coefficients negative except the first one. Here, B2n

is the 2n-th Bernoulli number. Note in particular that on (0, π), all its derivatives are negative. Since

L′ ≤ 0, the density is nonincreasing on [0, π]. Because L′′ ≤ 0 on the given interval, B, and thus f , are

log-concave on the given interval. Since L′(0) = 0 and L′′′ ≤ 0, we have the obvious inequality

B(x) ≤ B(0)eL
′′(0)x2/2.

In particular, L′′(0) = −(1/3)(1− α3 − (1− α)3) = −α(1− α). Thus,

f(x) ≤ CB(0)be−
bα(1−α)x2

2
def
= CB(0)be

− x2

2σ2 .

Here a simple limit argument yields the value B(0) = α−α(1− α)−(1−α).

Later on in the paper we also need a lower bound on B(x) that is sharp near x = π. Using

x ≥ sinx ≥ x(1− π/x) (see, e.g., Abramowitz and Stegun (1970), p. 75), we have

B(x) ≥ B(0)(π − x)

π
, 0, x < π.

We do not know how to generate a random variate Zα,b by the inversion method. However, in view

of the gaussian upper bound given above, we can generate a Zolotarev random variate by rejection (see,

e.g., Devroye (1986) for material and examples on this method, which is originally due to von Neumann

(1951)). We suggest two cases. If σ ≥
√

2π, rejection from a uniform random variate is convenient.

Otherwise, we use a normal dominating curve as suggested in the bound above. The details are given

below.
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set σ = 1/
√
bα(1− α).

if σ ≥
√

2π:

repeat: Generate U uniformly on [0, π] and V uniformly on [0, 1].

Set X ← U.

until V B(0)b ≤ B(X)b

return X

if σ <
√

2π:

repeat: Generate N standard normal, and V uniformly on [0, 1].

Set X ← σ|N |.
until X ≤ π and V B(0)be−N

2/2 ≤ B(X)b

return X

In the algorithm above, it is not recommended to use the inequalities as stated when b is large.

Taking logarithms, and using the fact that − logV is distributed as an exponential E, it is better to check

that

−E ≤ b log

(
B(X)

B(0)

)

or

−E − N2

2
≤ b log

(
B(X)

B(0)

)
,

depending upon the case. To reduce numeric cancelations for small values of the argument, it is a good

idea to use the sinc function instead of sin. Set S(x) = (sinx)/x, and note that

B(x)

B(0)
=

S(x)

(S(αx))α(S((1− α)x))1−α .

Each test in the algorithm now requires an exponential and a gaussian random variate, as well as three

computations of the sinc function. In the next section, we establish that the algorithm above makes

an expected number of iterations that is uniformly bounded over all values of α and b. Moreover, the

expected number of loops tends to one as b→∞.
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Figure 1. The Zolotarev density is plotted for α = 0.4, with b increasing from bottom
to top, taking the values i2/40, 1 ≤ i ≤ 40. The x-axis shows [0, π] in degrees. As b ↓ 0,
the uniform function is reached. When b→∞, the mass concentrates at the origin, and the
normal density is approached after proper rescaling.
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Figure 2. The Zolotarev density is plotted for b = 3, with α increasing from bottom to
top, taking the values i/80, 1 ≤ i ≤ 40. The x-axis shows [0, π] in degrees. As α ↓ 0, the
uniform function is reached.

Remark 1. Log-concavity. Devroye (1984) proposed a universal and uniformly fast rejection algo-

rithm that works for all univariate log-concave distributions. It was subsequently improved and extended

in a number of papers (Hörmann (1994), Leydold (2000, 2001)) and a book (Hörmann, Leydold and

Derflinger, 2004). We could have employed that method here, but at a tremendous expense, because

the method requires the explicit computation of the normalization constant, which in our case involves

computing the gamma function thrice. In some cases, bounding the normalization constant can be con-

sidered, but that too makes the algorithm less elegant. The simplicity of the code, and the natural choice

of a normal dominating curve have made us decide in favor of the method presented here.
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Expected time analysis

It is well-known that the expected number of iterations in the rejection method is equal to the

integral under the dominating curve. In the uniform case, the integral is CB(0)bπ. In the gaussian case,

it is

CB(0)b
∫ ∞

0
e
− x2

2σ2 dx = CB(0)bσ

√
π

2
.

Unifying both cases (and thus revealing why
√

2π was our threshold), we see that the rejection constant

is

R(α, b)
def
= CB(0)bπmin

(
1,

σ√
2π

)
.

Theorem 2. For fixed α ∈ (0, 1), limb→∞ R(α, b) = 1. Furthermore,

sup
α∈(0,1),b≥0

R(α, b) ≤ e3
√

1 + 2π√
4π

.

Proof. For the first part, we use well-known explicit bounds on Stirling’s approximation, valid for all

x ≥ 0:

1 ≤ Γ(1 + x)

(x/e)x
√

2πx
≤ e 1

12x .

Then

C =
Γ(1 + bα)Γ (1 + b(1− α))

πΓ (1 + b)
≤ e

1
12bα+ 1

12b(1−α) ×
√

2πbα(1− α)

πB(0)b
=

(1 + o(1))
√

2π

σπB(0)b
.

Thus, R(α, b)→ 1 as b→∞.

The second part can proceed in the same manner by using

sup
x≥0

Γ(1 + x)

(x/e)x
√

2π(x+ 1)
≤ e√

2π
.

This follows quite easily from the former bound when x ≥ 1. For x ∈ [0, 1], Γ(x) is bounded from above

by one, and (x/e)x
√
x+ 1 ≥ 1/e. Also, for a lower bound, use

Γ(1 + x) ≥
(
x+ 1

e

)x+1√ 2π

x+ 1
=

1

e

(
x+ 1

e

)x√
2π(x+ 1) ≥ 1

e

(x
e

)x√
2π(x+ 1).

Combining upper and lower bounds, we see that

CB(0)b ≤ e3

2π2 ×
√

2π(1 + bα)(1 + b(1− α))

1 + b

=
e3

π
√

2

√
1 + b+ b2α(1− α))

1 + b

def
= D

√
1 +

b

(1 + b)σ2

≤ D
√

1 +
1

σ2
.
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Thus,

R(α, b) ≤
{

Dπ
√

1+2π√
2π

when σ ≤
√

2π ;

Dπ
√

1 + 1/(2π) when σ ≥
√

2π .

Remark 2. The second part of Theorem implies that as b→∞ for α held fixed,
√
bα(1− α)Zα,b

L→ |N |.
Convergence is in the total variation sense. In fact, using the Stirling bounds used in our proof, we see

that the total variation distance decreases to zero at the rate O(1/b).

Speed-up: combining the steps

The rejection algorithm requires at least one computation of Zolotarev’s function. The Zolotarev

variate, in turn, is used in the generation of Tα,β via Theorem 1, which requires another evaluation of

Zolotarev’s function. Luckily, both can be combined into one, saving one expensive function evaluation,

which should cut computational time almost in half: indeed, B(x) = 1/A(x)1−α. For the sake of clarity

for those wishing to program our method, we give the combined algorithm.

set σ = 1/
√
β(1− α).

set B(0) = α−α(1− α)−(1−α).

if σ ≥
√

2π:

then repeat: Generate U uniformly on [0, π] and V uniformly on [0, 1].

Set X ← U.

Compute W ← B(X) =
sin(X)

(sin(αX))α(sin((1−α)X))1−α

until V ≤ (W/B(0))β/α

else repeat: Generate N standard normal, and V uniformly on [0, 1].

Set X ← σ|N |.
Compute W ← B(X) =

sin(X)
(sin(αX))α(sin((1−α)X))1−α

until X ≤ π and V e−N
2/2 ≤ (W/B(0))β/α

(X is now ready, but we only need W = B(X))

generate a gamma random variate G
L
= G1+β(1−α)/α.

return 1/
(
W G1−α)1/α
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The exponentially tilted unilateral stable distribution

If X is a random variable possessing density f on the positive halfline, then the exponentially

tilted random variable Xλ has density proportional to e−λxf(x), where λ ≥ 0 is the tilting parameter.

Random variate generation could trivially be done by rejection, and this is a common recommendation

in recent research work (see, e.g., Brix (1996)):

repeat generate X with density f

generate V uniformly on [0, 1]

until V ≤ e−λX
return X

The probability that X generated in the first step is accepted is

E
{
e−λX

}
= L(λ),

where L is the Laplace transform of X . The expected number of iterations before halting is thus 1/L(λ).

As λ→∞, this becomes quite unacceptable. For example, if X = Sα, then Xλ is the exponentially tilted

unilateral stable random variable Sα,λ, α ∈ (0, 1), λ ≥ 0. The expected complexity of the trivial rejection

algorithm would be formidable:
1

E
{
e−λSα

} = eλ
α
.

The task ahead of us is to develop an algorithm whose complexity is uniformly bounded over all values

of α ∈ (0, 1) and λ ≥ 0. The remainder of the paper develops just such a method.

The random variable Sα,λ has density

fα,λ(x) = eλ
α−λxgα(x), x > 0.

We just want to highlight the main approaches to random variate generation in these situations. Expo-

nential tilting, in all its simplicity, creates new challenges beyond those for Tα,β .

The Laplace transform of Sα,λ is

E
{
e−µSα,λ

}
= E

{
eλ
α−(µ+λ)Sα

}
= eλ

α−(µ+λ)α .

It would be useful as a project to develop random variate generators given Laplace transforms instead of

densities or distribution functions, but at present, no generic method of this kind exists. Instead, we rely

once again on Zolotarev’s integral respresentation and deduce (see Theorem 1) the density of Sα:

gα(x) =
α

1− αx
− 1

1−α 1

π

∫ π

0
A(u)e−A(u)/xα/(1−α)

du.

A little bit of calculus shows that the density of

Y = S
−α/(1−α)
α,λ (3)
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is
∫ π

0 h(y, u) du, which is just the marginal density of the bivariate density (in (y, u)) on [0,∞)× [0, π]:

h(y, u) =
A(u)eλ

α

π
exp

(
−λy− 1−α

α −A(u)y
)
. (4)

This is not a form that lends itself easily to a mixture representation. We will sample (Y, U) from h by

the method called double rejection, and then return Sα,λ = Y −(1−α)/α. Turning the one-dimensional

problem into a two-dimensional one will prove to be a good thing.

Remark 3. The references cited in the introduction often use an additional parameter in tilting and

define a family with Laplace transform (in µ)

eθ(λ
α−(µ+λ)α),

where θ is a new parameter. For the case that interests us, θ > 0, this is easily seen to be the Laplace

transform of

θ
1
αS

α,λθ
1
α
.

Thus, θ is not a true new shape parameter.

Remark 4. Rosinski (2007a, 2007b) discusses the simulation of exponentially and polynomially tilted

random vectors, where tilting is applied to the radius of the vectors. Uniformly fast generation in the sense

of our paper should prove an interesting future research project. Rosinski also discusses the simulation of

Lévy, stable, gamma and Bessel processes, while allowing approximations. For example, some processes

can be represented as infinite sums of functions of point processes, providing a fresh and natural angle to

process simulation. However, exact simulation, even at one point in time, would require infinite resources,

as we cannot truncate the sum without making an error. It is of interest to develop series representations

with a random but almost surely finite number of terms.

Remark 5. Gamma tilting. In this paper, we are only considering polynomial and exponential

tilting. Gamma tilting (Barndorff-Nielsen and Shephard, 2001) is also of interest in distributional theory.

Here tilting is done by a factor of the form xβe−λx, with β in an appropriate range (to make the resulting

function integrable) and λ ≥ 0 (for quickly decreasing densities, one could also relax the condition that

λ ≥ 0). It is worthwhile to extend the methods of this paper to this situation as well. In fact, one might

as well tackle general tilting by a factor eψ(x). We note here that if X has log-concave density f , and

ψ is concave, then eψ(x)f(x) is log-concave. Examples include gamma tilting with λ ∈ R and β ≥ 0,

normal tilting by e−λx
2

(as proposed for the stable law by Barndorff-Nielsen and Shephard in 2001), and

tilting by functions of the form xβe−λx
γ

. A first point of attack should be the universal and uniformly

fast log-concave generator of Devroye (1984). However, this requires the availability, at unit cost, of the

value of the density f , a condition that is not satisfied for the stable law. Therefore, gamma tilted stable

random variables will pose a (modest) technical hurdle.
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The double rejection method

To generate a random variate from the density

f(x) =

∫
h(x, u) du,

where h is a given bivariate density, the following method, dubbed the double rejection method, can be

used. We discuss it separately from the problem at hand because it is so flexible that many applications

in other situations can be foreseen.

The situations covered are the following: a marginal random variate X is to be generated when

its bivariate law (X,U) has a known density. The (marginal) density of X is thus given as an integral,

and exact random variate generation seems somehow difficult. One can generate X by first generating

the marginal random variate U , and then by drawing X from the joint density of (X,U) conditional on

U . However, the density of U too is only known as an integral, and random variate generation is difficult.

The double rejection method is applicable if we can find a dominating curve g ≥ h with the property

that its marginal integral g∗ is easy to compute explicitly:

g∗(u) =

∫
g(x, u) dx.

Let G∗ =
∫
g∗(u) du be its integral, so that g∗/G∗ is a density in u. If we are lucky and g∗ is easy to

sample from, and g, considered as a density in x for u fixed, is easy to sample from, then the rejection

method would be as follows:

repeat generate U with density g∗/G∗

generate X with density proportional to g(x, U)

generate V uniformly on [0, 1]

until V g(X,U)/h(X,U) ≤ 1

return X

The expected number of iterations is easily seen to be G∗.

Remark 6. Superficially, it may seem that taking U outside the loop accomplishes the same thing.

This is indeed the case:

generate U with density g∗/G∗

repeat generate X with density proportional to g(x, U)

generate V uniformly on [0, 1]

until V g(X,U)/h(X,U) ≤ 1

return X
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However, the expected number of iterations, given U is g∗(U)/h∗(U), where h∗(u) =
∫
h(x, u) dx.

Thus, unconditioning, the expected number of iterations is
∫

(g∗(u))2/h∗(u) du/G∗, and it is easy to find

examples in which this is infinite. In any case, it is always more than G∗, a fact easily established by the

Cauchy-Schwarz inequality. In fact, the procedure may not halt if g∗ > 0 and h∗ = 0 on a set of positive

Lebesgue measure. A similar phenomenon was pointed out by Devroye (1986) in the context of taking

the rejection variable (V above) out of the loop in the rejection algorithm.

It is easy to see that (X,U) generated at the outset of each loop has density proportional to

g(x, u), so that upon exit, the pair (X,U) has density h(x, u), and thus, X has density f . While g∗ may

be easy to compute, and generation from g(x, u) for u fixed may be simple to implement, it is sometimes

the case, as the present example will illustrate, that g∗ is not always easy to sample from. In that case, a

second level of rejection is often handy. For easy reading, we will use double stars. So, there is a function

g∗∗ ≥ g∗ which can be used to sample from g∗ by rejection. We summarize:

repeat repeat generate U with density proportional to g∗∗

generate W uniformly on [0, 1]

until Z
def
= Wg∗∗(U)/g∗(U) ≤ 1

(note: U now has density g∗/G∗)
generate X with density proportional to g(x, U)

generate V uniformly on [0, 1]

(note: we can take V = Z)

until V g(X,U)/h(X,U) ≤ 1

return X

The remark “we can take V = Z” refers to the fact conditional on Z having been obtained as a

result of the inner loop, Z is necessarily uniformly distributed on [0, 1] and independent of (X,U). The

expected number of outer loops is still
∫
g∗. By Wald’s identity, it is easily established that the expected

number of inner loops executed is
∫
g∗∗. We hope that the example below will convince the readers of

the utility of this method for many distributions, especially distributions that are described via integral

representations.
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The R distribution

The function g(y, u) we will use for fixed u takes a three-parameter bi-exponential form, which

we take the liberty of calling the R distribution. We cannot progress without developing a good generator

for it, and presenting its marginal law in u. The R(λ, a, b) distribution has density

r(y) = ac exp(−λy−b − ay), y > 0,

where λ ≥ 0, b > 0 and a > 0 are parameters, and c is a normalization constant.

Set L(y) = log r(y), and check that L′(y) = bλ/yb+1 − a, L′′(y) = −b(b+ 1)/yb+2, and that all

higher derivatives are of alternating signs. Thus, r is log-concave, with a peak at

m
def
=

(
bλ

a

) 1
b+1

.

Let δ > 0 be a number to be determined. The following bound follows from the properties given above:

L(y) ≤ log r∗(y)
def
=





L(m)− (y−m)2

2 |L′′(m)| (y ≤ m),

L(m) (m ≤ y ≤ m+ δ),

L(m)− (y −m− δ)|L′(m+ δ)| (y ≥ m+ δ).

The areas under the three pieces of the bounding curve are respectively, a1 =
∫m
−∞ r∗(y)dy, a2 =

∫m+δ
m r∗(y)dy and a3 =

∫∞
m+δ r

∗(y)dy. This yields a1 = eL(m)
√
π/(2|L′′(m)|), a2 = eL(m)δ, and

a3 = eL(m)

|L′(m+δ)| .

Set Q = 1 + 1/b and verify that

eL(m) = ac e−amQ, |L′′(m)| = (b+ 1)a

m
, |L′(m+ δ)| = a×

(
1 + δ

m

)b+1
− 1

(
1 + δ

m

)b+1
.

A random variate Y with density proportional to r∗ is easy to generate. We should proceed as follows:

Y
L
=





m− |N |√
|L′′(m)| with probability a1

a1+a2+a3
,

m+ V δ with probability a2
a1+a2+a3

,

m+ δ + E
|L′(m+δ)| with probability a3

a1+a2+a3
.

Here N is standard normal, E is exponential and V is uniform on [0, 1].

Finally, the rejection step is implemented by accepting Y if V ∗r∗(Y )/r(Y ) ≤ 1, or equivalently,

if log(r∗(Y )/r(Y )) ≤ E∗, where V ∗ is uniform [0, 1] and E∗ is exponential, independent of all other

random variables. Note that in this test, the coefficient ac cancels out, so that we do not need to know

the normalization constant.
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In what follows, we only need to know

R∗ def
=

∫
r∗(y) dy

= eL(m)
(√

π

2|L′′(m)| + δ +
1

|L′(m+ δ)|

)

= ce−amQ



√

πma

2(b+ 1)
+ aδ +

(
1 + δ

m

)b+1

(
1 + δ

m

)b+1
− 1


 . (5)

It is clear that δ must be chosen to minimize R∗. On the other hand, we do not wish to clutter our

algorithms. We will derive an upper bound for R∗, and that bound will immediately suggest a choice for

δ. Using the general bound for x, t > 0,

(1 + x)t

(1 + x)t − 1
=

1

1− (1 + x)−t
≤ 1

1− (1 + tx)−1
= 1 +

1

tx
,

we note that

R∗ ≤ ce−amQ
(√

πma

2(b+ 1)
+ aδ + 1 +

m

(b+ 1)δ

)
.

Now we optimize with respect to δ, equating the two terms that depend upon it: δ =
√
m/((b+ 1)a), to

conclude that

R∗ ≤ ce−amQ
(√

ma

(b+ 1)

(√
π

2
+ 2

)
+ 1

)
. (6)

The details for the exponentially tilted stable generator worked out

We return now to the formalism and notation of the double rejection method. The density of

(Y, U) on [0,∞) × [0, π] is h(y, u), given by (4). Recalling the bound h(y, u) ≤ g(y, u), we note that

for fixed u, g(y, u) is proportional to the density of a R(λ,A(u), (1 − α)/α) random variable. In the

previous section, we should thus replace the parameters as follows, keeping λ the same: a := A(u),

b := (1 − α)/α (so, b + 1 = 1/α), c := A(u) exp(λα)/π, Q := 1/(1− α), and m := ((1 − α)λ/(αA(u))α.

Recalling the notation B(x) from Zolotarev’s distribution, with B(0) = 1/(αα(1− α)1−α), and A(x) for

Zolotarev’s function, we see that amQ in the previous section becomes B(0)A(u)1−αλα and am/(b+1) is

B(0)A(u)1−αλαα(1−α). Since A(u)1−α = 1/B(u), the double rejection method would need the function

g∗(u) given by R∗ (formula (5)). Define

γ = λαα(1− α).

Then

g∗(u) =
1

π
× eλ

α
(

1−B(0)
B(u)

)




(
1 +

√
π

2

)√
B(0)

B(u)
γ +

(√
γ + α√

B(0)/B(u)

) 1
α

(√
γ + α√

B(0)/B(u)

) 1
α

−
(√
γ
) 1
α



.
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This is proportional to an unwieldy density, and that is precisely why the double rejection trick is so

useful. We will use g∗ ≤ g∗∗ using bound (6). With the parameters properly replaced, this yields:

g∗(u) ≤ 1

π
× eλ

α
(

1−B(0)
B(u)

)((
2 +

√
π

2

)√
B(0)

B(u)
γ + 1

)
.

But this is not better, because we still have the dependence upon B(u). However, we recall the gaussian

upper bound and linear lower bound for B(u), and estimate the last expression from above by

1

π
× e

λα


1−e

α(1−α)u2

2


((

2 +

√
π

2

)√
π

π − uγ + 1

)
≤ 1

π
× e−γu

2

2

((
2 +

√
π

2

)√
γπ

π − u + 1

)
.

Define

ξ
def
=

(
2 +

√
π
2

)√
2γ + 1

π
,

and

ψ =
e−

γπ2

8

π

(
2 +

√
π

2

)
×√γπ.

Simple bounding on the intervals [0, π/2] and [π/2, π] separately shows that we have

g∗(u) ≤ g∗∗(u)
def
=




ξe−

γu2

2 1[u≥0] + ψ√
π−u1[0<u<π] if γ ≥ 1;

ξ1[0≤u≤π] + ψ√
π−u1[0<u<π] if γ < 1.

The function g∗∗ is not only easy to evaluate, but it is also proportional to a density that is easily sampled

from.

In the definition of g∗∗, we recognize three components, a gaussian, a beta (1/2, 1), and a uniform.

The areas under these three curves are, respectively,

w1 = ξ
√
π/(2γ),

w2 = 2ψ
√
π,

w3 = ξπ.

Sampling is thus done as a mixture, as shown below. Note that the support of g∗∗ is the positive halfline,

not [0, π]. This is done to avoid an evaluation of the gaussian integral, but is inconsequential, as g∗/g∗∗ = 0

outside [0, π].
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(generator for a random variate with density proportional to g∗∗)

generate V uniformly on [0, 1]

if γ ≥ 1 then if V < w1
w1+w2

then set X ← |N |/√γ where N is standard normal

else set X ← π(1−W 2) where W is uniform [0, 1]

else generate W uniformly on [0, 1]

if V < w3
w3+w2

then set X ← πW

else set X ← π(1−W 2)

return X

We conclude this section and our struggle with a complexity result.

Theorem 3. Let R(λ, α) denote the expected number of loops necessary to generate a random variate

Y (and thus Sα,λ) by the double rejection method outlined above. Then

sup
α∈(0,1),λ≥0

R((λ, α) ≤
√

8 +
√
π + 1 +

8

π
√
e

+

√
8

πe
≈ 8.11328125.

Proof. As remarked above, the expected number of iterations is equal to
∫
g∗∗, which is w1 +w2 when

γ ≥ 1 and w2 + w3 when γ ≤ 1. First of all, this integral only depends upon the parameters through

γ ≥ 0. For γ ≤ 1,

w3 = ξπ ≤
√

8 +
√
π + 1.

Using the fact that
√
te−t ≤ 1/

√
2e, we see that

sup
γ≥0

w2 ≤
8

π
√
e

+

√
8

πe
.

Finally, for γ ≥ 1,

w1 = ξ

√
π

2γ
≤
√

1

2γπ
+

2√
π

+
1√
2
≤
√

1

2π
+

2√
π

+
1√
2
,

which is less than the bound on w1. Therefore,

sup
γ≥0

∫
g∗∗ ≤

√
8 +
√
π + 1 +

8

π
√
e

+

√
8

πe
.

I am sure that the uniform bound in Theorem 3 can be somewhat improved.
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Appendix: the full algorithm for exponentially tilted stable distributions

The following algorithm combines all the ideas explained above. Speed is sacrificed in the code

for readability. The two rejection blocks can clearly be distinguished within the algorithm. The ratio

B(x)/B(0) referred to in the algorithm is defined in the section on Zolotarev’s distribution. For numeric

stability it should be implemented using the sinc function as suggested there.

It is also noteworthy that in the case of no tilting (λ = 0), a trace of the algorithm reveals that

in the first loop, U is uniform on [0, π], and that X = E ′/A(U) (in the notation of the algorithm below).

We exit with (A(U)/E ′)(1−α)/α without looping. Thus, the algorithm reduces to Kanter’s method. Since

the design is continuous in the parameters, we return for small values of λ a random variate close to that

most of the time, and the acceptance ratio should be near one.
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set-up: define γ = λαα(1− α), ξ = π−1
(
2 +

√
π
2

)√
2γ + 1, ψ = π−1e−

γπ2

8

(
2 +

√
π/2

)
×√γπ,

w1 = ξ
√
π/(2γ), w2 = 2ψ

√
π, w3 = ξπ, b = (1− α)/α

repeat repeat generate U with density proportional to g∗∗:
generate V,W ′ uniformly on [0, 1]

if γ ≥ 1 then if V < w1
w1+w2

then U ← |N |/√γ where N is standard normal

else U ← π(1−W ′2)

else if V < w3
w3+w2

then U ← πW ′

else U ← π(1−W ′2)

(note: U has density proportional to g∗∗)
generate W uniformly on [0, 1]

ζ =
√
B(U)/B(0), φ =

(√
γ + αζ

) 1
α , z = φ/

(
φ−

(√
γ
) 1
α

)

ρ =

π×e−λ
α
(
1−ζ−2

)
×
(
ξe−

γU2

2 1[U≥0,γ≥1]+
ψ√
π−U 1[0<U<π]+ξ1[0≤U≤π,γ<1]

)

(
1+
√
π
2

)√
γ
ζ +z

until U < π and Z
def
= Wρ ≤ 1 (note: ρ = g∗∗(U)/g∗(U))

(note: U now has density g∗/G∗ and Z is uniform [0, 1])

generate X with density proportional to g(x, U)

set-up of constants:a = A(U), m = (bλ/a)α, δ =
√
mα/a,

a1 = δ
√
π/2, a2 = δ, a3 = z/a, s = a1 + a2 + a3

generate V ′ uniform on [0, 1]

if V ′ < a1/s then generate N ′ standard normal

X ← m− δ|N ′|
else if V ′ < a2/s then X ← uniform on [m,m+ δ]

else generate E ′ exponential
X ← m+ δ +E′a3

(note: X has density proportional to g(x, U))

generate E exponential (note: we can take E = − logZ)

until X ≥ 0 and a(X −m) + λ(X−b −m−b)− N ′2
2 1[X<m] −E′1[X>m+δ] ≤ E

return 1/Xb

—  —



Acknowledgments

The author thanks John Lau (University of Western Australia) for an implementation and ex-

perimental verification of both algorithms. He also thanks Lancelot James (Hong Kong University of

Science and Technology) for showing him why polynomially tilted stable laws are important. Finally, he

is grateful to all four referees for pointing out many possible improvements.

References

O. O. Aalen, “Modelling heterogeneity in survival analysis by the compound Poisson distribution,” An-

nals of Applied Probability, vol. 2, pp. 951–972, 1992.

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Tables, Dover Publications, New York,

N.Y., 1970.

J. H. Ahrens and U. Dieter, “Generating gamma variates by a modified rejection technique,” Communi-

cations of the ACM, vol. 25, pp. 47–54, 1982.

O. E. Barndorff-Nielsen and N. Shepard, “Normal modified stable processes,” Theoretical Probabil-

ity and Mathematical Statistics, vol. 65, pp. 1–19, 2001.

D. J. Best, “A note on gamma variate generators with shape parameter less than unity,” Comput-

ing, vol. 30, pp. 185–188, 1983.

A. Brix, “Generalized Gamma measures and shot-noise Cox processes,” Advances of Applied Probabil-

ity, vol. 31, pp. 929–953, 1999.

J. A. Bucklew, Large Deviation Techniques in Decision, Simulation and Estimation, John Wiley, New

York, 1990.

J. A. Bucklew, Introduction to Rare Event Simulation, Springer-Verlag, New York, 2004.

A. Cerquetti, “On a Gibbs characterization of normalized generalized Gamma processes,” pp. 1705–

1711, arXiv:0707.3408v1, 2007.

J. M. Chambers, C. L. Mallows, and B. W. Stuck, “A method for simulating stable random vari-

ables,” Journal of the American Statistical Association, vol. 71, pp. 340–344, 1976.

R. C. H. Cheng, “The generation of gamma variables with non-integral shape parameter,” Applied Statis-

tics, vol. 26, pp. 71–75, 1977.

R. C. H. Cheng and G. M. Feast, “Some simple gamma variate generators,” Applied Statistics, vol. 28,

pp. 290–295, 1979.

L. Devroye, “A simple algorithm for generating random variates with a log-concave density,” Comput-

ing, vol. 33, pp. 247–257, 1984.

L. Devroye, Non-Uniform Random Variate Generation, Springer-Verlag, New York, 1986.

—  —
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