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Abstract

We study a class of hypothesis testing problems in which, upon observing the realization of an n-
dimensional Gaussian vector, one has to decide whether the vector was drawn from a standard normal
distribution or, alternatively, whether there is a subset of the components belonging to a certain given
class of sets whose elements have been “contaminated,” that is, have a mean different from zero. We
establish some general conditions under which testing is possible and others under which testing is
hopeless with a small risk. The combinatorial and geometric structure of the class of sets is shown to
play a crucial role. The bounds are illustrated on various examples.

1 Introduction

In this paper we study the following hypothesis testing problem introduced by Arias-Castro, Candès, Hel-
gason and Zeitouni [3]. One observes an n-dimensional vector X = (X1, . . . , Xn). The null hypothesis H0

is that the components of X are independent and identically distributed (i.i.d.) standard normal random
variables. We denote the probability measure and expectation under H0 by P0 and E0, respectively.

To describe the alternative hypothesis H1, consider a class C = {S1, . . . , SN} of N sets of indices such
that Sk ⊂ {1, . . . , n} for all k = 1, . . . , N . Under H1, there exists an S ∈ C such that

Xi has distribution
{
N (0, 1) if i /∈ S
N (µ, 1) if i ∈ S

where µ > 0 is a positive parameter. The components of X are independent under H1 as well. The
probability measure of X defined this way by an S ∈ C is denoted by PS . Similarly, we write ES for the
expectation with respect to PS . Throughout we will assume that every S ∈ C has the same cardinality
|S| = K.

A test is a binary-valued function f : Rn → {0, 1}. If f(X) = 0 then we say that the test accepts the
null hypothesis, otherwise H0 is rejected. One would like to design tests such that H0 is accepted with a
large probability when X is distributed according to P0 and it is rejected when the distribution of X is PS
for some S ∈ C. Following Arias-Castro, Candès, Helgason, and Zeitouni [3], we consider the risk of a test
f measured by

R(f) = P0{f(X) = 1}+
1
N

∑
S∈C

PS{f(X) = 0}. (1)

∗The third author acknowledges support by the Spanish Ministry of Science and Technology grant MTM2006-05650 and by
the PASCAL Network of Excellence under EC grant no. 506778.
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This measure of risk corresponds to the view that, under the alternative hypothesis, a set S ⊂ C is selected
uniformly at random and the components of X belonging to S have mean µ. In the sequel, we refer to the
first and second terms on the right-hand side of (1) as the type I and type II errors, respectively.

We are interested in determining, or at least estimating the value of µ under which the risk can be made
small. Our aim is to understand the order of magnitude, when n is large, as a function of n, K, and the
structure of C, of the value of the smallest µ for which risk can be made small. The value of µ for which the
risk of the best possible test equals 1/2 is called critical.

Typically, the n components of X represent weights over the n edges of a given graph G and each S ∈ C
is a subgraph of G. When Xi ∼ N (µ, 1) then the edge i is “contaminated” and we wish to test whether
there is a subgraph in C that is entirely contaminated.

In [3] two examples were studied in detail. In one case C contains all paths between two given vertices in
a two-dimensional grid and in the other C is the set of paths from root to a leaf in a complete binary tree.
In both cases the order of magnitude of the critical value of µ was determined. Arias-Castro, Candès, and
Durand [4] investigate another class of examples in which elements of C correspond to clusters in a regular
grid. Both [3] and [4] describe numerous practical applications of problems of this type.

Some other interesting examples are when C is

the set of all subsets S ⊂ {1, . . . , n} of size K;

the set of all cliques of a given size in a complete graph;

the set of all bicliques (i.e., complete bipartite subgraphs) of a given size in a complete bipartite graph;

the set of all spanning trees of a complete graph;

the set of all perfect matchings in a complete bipartite graph;

the set of all sub-cubes of a given size of a binary hypercube.

The first of these examples, which lacks any combinatorial structure, has been studied in the rich literature
on multiple testing, see, for example, Ingster [24], Baraud [7], Donoho and Jin [14] and the references therein.

As pointed out in [3], regardless of what C is, one may determine explicitly the test f∗ minimizing the
risk. It follows from basic results of binary classification that for a given vector x = (x1, . . . , xn), f∗(x) = 1
if and only if the ratio of the likelihoods of x under (1/N)

∑
S∈C PS and P0 exceeds 1. Writing

φ0(x) = (2π)−n/2e−
Pn
i=1 x

2
i /2 and φS(x) = (2π)−n/2e−

P
i∈S(xi−µ)2/2−

P
i/∈S x

2
i /2

for the probability densities of P0 and PS , respectively, the likelihood ratio at x is

L(x) =
1
N

∑
S∈C φS(x)
φ0(x)

=
1
N

∑
S∈C

eµxS−Kµ
2/2,

where xS =
∑
i∈S xi. Thus, the optimal test is given by

f∗(x) = 1{L(x)>1} =

 0 if
1
N

∑
S∈C

eµxS−Kµ
2/2 ≤ 1

1 otherwise.

The risk of f∗ (often called the Bayes risk) may then be written as

R∗ = R∗C(µ) = R(f∗) = 1− 1
2

E0|L(X)− 1| = 1− 1
2

∫ ∣∣∣∣∣φ0(x)− 1
N

∑
S∈C

φS(x)

∣∣∣∣∣ dx .
We are interested in the behavior of R∗ as a function of C and µ. Clearly, R∗ is a monotone decreasing
function of µ. (This fact is intuitively clear and can be proved easily by differentiating R∗ with respect to
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µ.) For µ sufficiently large, R∗ is close to zero while for very small values of µ, R∗ is near its maximum
value 1, indicating that testing is virtually impossible. Our aim is to understand for what values of µ the
transition occurs. This depends on the combinatorial and geometric structure of the class C. We describe
various general conditions in both directions and illustrate them on examples.

Remark. (an alternative risk measure.) Arias-Castro, Candès, Helgason, and Zeitouni [3] also
consider the risk measure

R(f) = P0{f(X) = 1}+ max
S∈C

PS{f(X) = 0} .

Clearly, R(f) ≥ R(f) and when there is sufficient symmetry in f and C, we have equality. However, there
are significant differences between the two measures of risk. The alternative measure R obviously satisfies
the following monotonicity property: for a class C and parameter µ > 0, let R

∗
C(µ) denote the smallest

achievable risk. If A ⊂ C are two classes then for any µ, R
∗
A(µ) ≤ R∗C(µ). In contrast to this, the “Bayesian”

risk measure R(f) does not satisfy such a monotonicity property as is shown in Section 5. In this paper we
focus on the risk measure R(f).

Remark. Throughout the paper we assume, for simplicity, that each set S ∈ C has the same cardinality
K. We do this partly in order to avoid technicalities that are not difficult but make the arguments less
transparent. At the same time, in many natural examples this condition is satisfied. If C may contain sets
of different size such that all sets have approximately the same number of elements then all arguments go
through without essential changes. However, if C contains sets of very different size then the picture may
change because large sets become much easier to detect and small sets can basically be ignored. Another
approach to handle sets of different size, adopted by Arias-Castro, Candès, and Durand [4], is to change the
model of the alternative hypothesis such that the level µ of contamination is appropriately scaled depending
on the size of the set S.

Plan of the paper. The paper is organized as follows. In Section 2 we briefly discuss two suboptimal but
simple and general testing rules (the maximum test and the averaging test) that imply sufficient conditions
for testability that turn out to be useful in many examples.

In Section 3 a few general sufficient conditions are derived for the impossibility of testing under symmetry
assumptions for the class.

In Section 4 we work out several concrete examples, including the class of all K-sets, the class of all
cliques of a certain size in a complete graph, the class of all perfect matchings in the complete bipartite
graph, and the class of all spanning trees in a complete graph.

In Section 5 we show that, perhaps surprisingly, the optimal risk is not monotone in the sense that
larger classes may be significantly easier to test than small ones, though monotonicity holds under certain
symmetry conditions.

In the last two sections of the paper we use techniques developed in the theory of Gaussian processes to
establish upper and lower bounds related to geometrical properties of the class C. In Section 6 general lower
bounds are derived in terms of random subclasses and metric entropies of the class C. Finally, in Section
7 we take a closer look at the type I error of the optimal test and prove an upper bound that, in certain
situations, is significantly tighter than the natural bound obtained for a general-purpose maximum test.

2 Simple tests and upper bounds

As mentioned in the introduction, the test f∗ minimizing the risk is explicitly determined. However, the
performance of this test is not always easy to analyze. Moreover, efficient computation of the optimal test is
often a non-trivial problem though efficient algorithms are available in many interesting cases. (We discuss
computational issues for the examples of Section 4.) Because of these reasons it is often useful to consider
simpler, though suboptimal, tests. In this section we briefly discuss two simplistic tests, a test based on
averaging and a test based on maxima. These are often easier to analyze and help understand the behavior
of the optimal test as well. In many cases one of these tests turn out to have a near-optimal performance.
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A simple test based on averaging

Perhaps the simplest possible test is based on the fact that the sum of the components of X is zero-mean
normal under P0 and has mean µK under the alternative hypothesis. Thus, it is natural to consider the
averaging test

f(x) = 1{
Pn
i=1Xi>µK/2} .

Proposition 1 Let δ > 0. The risk of the averaging test f satisfies R(f) ≤ δ whenever

µ ≥
√

8n
K2

log
2
δ
.

Proof: Observe that under P0, the statistic
∑n
i=1Xi has normal N (0, n) distribution while for each S ∈ C,

under PS , it is distributed as N (µK, n). Thus, R(f) ≤ 2e−(µK)2/(8n). �

A test based on maxima

Another natural test is based on the fact that under the alternative hypothesis for some S ∈ C, XS =
∑
i∈S Xi

is normal (µK,K). Consider the maximum test

f(x) = 1 if and only if max
S∈C

XS ≥
µK + E0 maxS∈C XS

2
.

The test statistic maxS∈C XS is often referred to as a scan statistic and has been thoroughly studied for a
wide range of applications, see Glaz, Naus, and Wallenstein [20]. Here we only need the following simple
observation.

Proposition 2 The risk of the maximum test f satisfies R(f) ≤ δ whenever

µ ≥ E0 maxS∈C XS

K
+ 2

√
2
K

log
2
δ
.

In the analysis it is convenient to use the following simple Gaussian concentration inequality, see Tsirelson,
Ibragimov, and Sudakov [34].

Lemma 3 (tsirelson’s inequality.) Let X = (X1, . . . , Xn) be an vector of n independent standard
normal random variables. Let f : Rn → R denote a Lipschitz function with Lipschitz constant L (with
respect to the Euclidean distance). Then for all t > 0,

P {f(X)− Ef(X) ≥ t} ≤ e−t
2/(2L2) .

Proof of Proposition 2: Simply note that under the null hypothesis, for each S ∈ C, XS is a zero-mean
normally distributed random variable with variance K = |S|. Since maxS∈C XS is a Lipschitz function of X
with Lipschitz constant

√
K, by Tsirelson’s inequality, for all t > 0,

P0

{
max
S∈C

XS ≥ E0 max
S∈C

XS + t

}
≤ e−t

2/(2K) .

On the other hand, under PS for a fixed S ∈ C,

max
S′∈C

XS′ ≥ XS ∼ N (µK,K)

and therefore

PS
{

max
S∈C

XS ≤ µK − t
}
≤ e−t

2/(2K) ,
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which completes the proof. �

The maximum test is often easier to compute than the optimal test f∗, though maximization is not
always possible in polynomial time. If the value of E0 maxS∈C XS is not exactly known, one may replace it
in the definition of f by any upper bound and then the same upper bound will appear in the performance
bound.

Proposition 2 shows that the maximum test is guaranteed to work whenever µ is at least E0 maxS∈C XS/K+
const./

√
K. Thus, in order to better understand the behavior of the maximum test (and thus obtain sufficient

conditions for the optimal test to have a low risk), one needs to understand the expected value of maxS∈C XS

(under P0). As the maximum of Gaussian processes have been studied extensively, there are plenty of directly
applicable results available for expected maxima. The textbook of Talagrand [33] is dedicated to this topic.
Here we only recall some of the basic facts.

First note that one always has E0 maxS∈C XS ≤
√

2K logN but sharper bounds can be derived by
chaining arguments, see Talagrand’s [33] for an elegant and advanced treatment. The classical chaining
bound of Dudley [16] works as follows. Introduce a metric on C by

d(S, T ) =
√

E0(XS −XT )2 =
√
dH(S, T ) , S, T ∈ C

where dH(S, T ) =
∑n
i=1 1{1{i∈S} 6=1{i∈T}} denotes the Hamming distance. For t > 0, let N(t) denote the

t-covering number of C with respect to the metric d, that is, the smallest number of open balls of radius t
that cover C. By Dudley’s theorem, there exists a numerical constant C such that

E0 max
S∈C

XS ≤ C
∫ diam(C)

0

√
logN(t)dt

where diam(C) = maxS,T∈C d(S, T ) denotes the diameter of the metric space C. Note that since |S| = K

for all S ∈ C, diam(C) ≤
√

2K. Dudley’s theorem is not optimal but it is relatively easy to use. Dudley’s
theorem has been refined, based on “majorizing measures”, or “generic chaining” which gives sharp bounds,
see, for example, Talagrand [33].

Remark. (the vc dimension.) In certain cases it is convenient to further bound Dudley’s inequality in
terms of the vc dimension [35]. Recall that the vc dimension V (C) of C is the largest positive integer m such
that there exists an m-element set {i1, . . . , im} ⊂ {1, . . . , n} such that for all 2m subsets A ⊂ {i1, . . . , im}
there exists an S ∈ C such that S ∩ {i1, . . . , im} = A. Haussler [22] proved that the covering numbers of C
may be bounded as

N(t) ≤ e · (V (C) + 1)
(

2en
t2

)V (C)

so by Dudley’s bound,
E0 max

S∈C
XS ≤ C

√
V (C)K log n .

An interesting alternative to the maximum test, proposed and investigated by Durot and Rozenholc [17]
and Arlot, Blanchard and Roquain [5], is based on the idea that under the null hypothesis the distribution of
the vector X does not change if the sign of each component is changed randomly, while under the alternative
hypothesis the distribution changes. In [17] and [5] methods based on symmetrization and bootstrap are
suggested and analyzed. Such tests are meaningful and interesting in the setup of the present paper as well
and it would be interesting to analyze their behavior.

3 Lower bounds

In this section we investigate conditions under which the risk of any test is large. We start with a simple
universal bound that implies that regardless of what the class C is, small risk cannot be achieved unless µ is
substantially large compared to K−1/2.
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A universal lower bound

An often convenient way of bounding the Bayes risk R∗ is in terms of the Bhattacharyya measure of affinity
(Bhattacharyya [9])

ρ = ρC(µ) =
1
2

E0

√
L(X) .

It is well known (see, e.g., [13, Theorem 3.1]) that

1−
√

1− 4ρ2 ≤ R∗ ≤ 2ρ .

Thus, 2ρ essentially behaves as the Bayes error in the sense that R∗ is near 1 when 2ρ is near 1, and is small
when 2ρ is small. Observe that, by Jensen’s inequality,

2ρ = E0

√
L(X) =

∫ √
1
N

∑
S∈C

φS(x)φ0(x)dx ≥ 1
N

∑
S∈C

∫ √
φS(x)φ0(x)dx .

Straightforward calculation shows that for any S ∈ C,∫ √
φS(x)φ0(x)dx = e−µ

2K/8

and therefore we have the following.

Proposition 4 For all classes C, R∗ ≥ 1/2 whenever µ ≤
√

(4/K) log(4/3).

This shows that no matter what the class C is, detection is hopeless if µ is of the order of K−1/2. This
classical fact goes back to Le Cam [26].

A lower bound based on overlapping pairs

The next lemma is due to Arias-Castro, Candès, Helgason, and Zeitouni [3]. For completeness we recall their
proof.

Proposition 5 Let S and S′ be drawn independently, uniformly, at random from C and let Z = |S ∩ S′|.
Then

R∗ ≥ 1− 1
2

√
Eeµ2Z − 1 .

Proof: As noted above, by the Cauchy–Schwarz inequality,

R∗ = 1− 1
2

E0|L(X)− 1| ≥ 1− 1
2

√
E0|L(X)− 1|2

Since E0L(X) = 1,
E0|L(X)− 1|2 = Var0(L(X)) = E0[L(X)2]− 1 .

However, by definition L(X) = 1
N

∑
S∈C e

µXS−Kµ2/2, so we have

E0[L(X)2] =
1
N2

∑
S,S′∈C

e−Kµ
2
E0e

µ(XS+XS′ ) .

But

E0e
µ(XS+XS′ ) = E0

[
eµ

P
i∈S\S′ Xieµ

P
i∈S′\S Xie2µ

P
i∈S∩S′ Xi

]
=

(
E0e

µX
)2(K−|S∩S′|) (E0e

2µX
)|S∩S′|

= eµ
2(K−|S∩S′|)+2µ2|S∩S′|,
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and the statement follows. �

The beauty of this proposition is that it reduces the problem to studying a purely combinatorial quantity.
By deriving upper bounds for the moment generating function of the overlap |S ∩ S′| between two elements
of C drawn independently and uniformly at random, one obtains lower bounds for the critical value of µ.
This simple proposition turns out to be surprisingly powerful as it will be illustrated in various applications
below.

A lower bound for symmetric classes

We begin by deriving some simple consequences of Proposition 5 under some general symmetry conditions
on the class C. The following proposition shows that the universal bound of Proposition 4 can be improved
by a factor of

√
log(1 + n/K) for all sufficiently symmetric classes.

Proposition 6 Let δ ∈ (0, 1). Assume that C satisfies the following conditions of symmetry. Let S, S′

be drawn independently and uniformly at random from C. Assume that (i) the conditional distribution of
Z = |S ∩ S′| given S′ is identical for all values of S′; (ii) for any fixed S0 ∈ C and i ∈ S0, P{i ∈ S} = K/n.
Then R∗ ≥ δ for all µ with

µ ≤

√
1
K

log
(

1 +
4n(1− δ)2

K

)
.

Proof: We apply Proposition 5. By the first symmetry assumption it suffices to derive a suitable upper
bound for E[eµ

2Z ] = E[eµ
2Z |S′] for an arbitrary S′ ∈ C. After a possible relabeling, we may assume that

S′ = {1, . . . ,K} so we can write Z =
∑K
i=1 1{i∈S}. By Hölder’s inequality,

E[eµ
2Z ] = E

[
K∏
i=1

eµ
2
1{i∈S}

]

≤
K∏
i=1

(
E
[
eKµ

2
1{i∈S}

])1/K

= E
[
eKµ

2
1{1∈S}

]
(by assumption (ii))

=
(
eµ

2K − 1
) K
n

+ 1 .

Proposition 5 now implies the statement. �

Surprisingly, the lower bound of Proposition 6 is close to optimal in many cases. This is true, in particular
when the class C is “small,” made precise in the following statement.

Corollary 7 Assume that C is symmetric in the sense of Proposition 6 and that it contains at most nα

elements where α > 0. Then R∗ ≥ 1/2 for all µ with

µ ≤
√

1
K

log
(

1 +
n

K

)
and R∗ ≤ 1/2 for all µ with

µ ≥
√

2α
K

log n .
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Proof: The first statement follows from Proposition 6 while the second from Proposition 2 and the fact that
E0 maxS∈C XS ≤

√
2K log |C|. �

The proposition above shows that for any small and sufficiently symmetric class, the critical value of µ
is of the order of

√
(log n)/K, at least if K ≤ nβ for some β ∈ (0, 1). Later we will see examples of “large”

classes for which Proposition 6 also gives a bound of the correct order of magnitude.

Negative association

The bound of Proposition 6 may be improved significantly under an additional condition of negative as-
sociation that is satisfied in several interesting examples (see Section 4 below). Recall that a collection
Y1, . . . , Yn of random variables is negatively associated if for any pair of disjoint sets I, J ⊂ {1, . . . , n} and
(coordinate-wise) non-decreasing functions f and g,

E [f(Yi, i ∈ I)g(Yj , j ∈ J)] ≤ E [f(Yi, i ∈ I)] E [g(Yj , j ∈ J)] .

Proposition 8 Let δ ∈ (0, 1) and assume that the class C satisfies the conditions of Proposition 6. Suppose
that the labels are such that S′ = {1, 2, . . . ,K} ∈ C. Let S be a randomly chosen element of C. If the random
variables 1{1∈S}, . . . ,1{K∈S} are negatively associated then R∗ ≥ δ for all µ with

µ ≤

√
log
(

1 +
n log(1 + 4(1− δ)2)

K2

)
.

Proof: We proceed similarly to the proof of Proposition 6. We have

E[eµ
2Z ] = E

[
K∏
i=1

eµ
2
1{i∈S}

]

≤
K∏
i=1

E
[
eKµ

2
1{i∈S}

]
(by negative association)

=
((

eµ
2
− 1
) K
n

+ 1
)K

.

Proposition 5 and the upper bound above imply that R∗ at least δ for all µ such that

µ ≤

√√√√log

(
1 +

n
(
(1 + 4(1− δ)2)1/K − 1

)
K

)
.

The result follows by using ey ≥ 1 + y with y = K−1 log(1 + 4(1− δ)2). �

4 Examples

In this section we consider various concrete examples and work out upper and lower bounds for the critical
range of µ.
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4.1 Disjoint sets

We start with the simplest possible case, that is, when all S ∈ C are disjoint (and therefore KN ≤ n).
Fix δ ∈ (0, 1). Then, under P0, the XS are independent normal (0,K) random variables and the bound
E0 maxS∈C XS ≤

√
2K logN is close to being tight. By applying the maximum test f , we see that R∗ ≤

R(f) ≤ δ whenever

µ ≥
√

2 logN
K

+ 2

√
2 log(2/δ)

K
.

To see that this bound gives the correct order of magnitude, we may simply apply Proposition 5. Here Z
may take two values:

Z = K with probability 1/N , and Z = 0 with probability 1− 1/N .

Thus,

Eeµ
2Z − 1 =

1
N

(
eµ

2K − 1
)
≤ 1
N
eµ

2K

and therefore R∗ ≥ δ whenever

µ ≤
√

log(4N(1− δ)2)
K

.

So in this case the critical transition occurs when µ is of the order of
√

(1/K) logN . In Section 6 we use
this simple lower bound to establish lower bounds for general classes C of sets. Note that in this simple case
one may directly analyze the risk of the optimal test and obtain sharper bounds. In particular, the leading
constant in the lower bound is suboptimal. However, in this paper our aim is to understand some general
phenomena and we focus on orders of magnitude rather than on nailing down sharp constants.

Remark. (multiple hypothesis testing.) Taking K = 1 in the above example, we obtain a con-
nection with multiple hypothesis testing. In the latter, one tests “mi = 0” against “mi = µ” for every
1 ≤ i ≤ N , and traditionally uses as test statistics Xi, 1 ≤ i ≤ N , to build a multiple testing procedure
(often rejecting all the hypotheses corresponding to large Xi), see, for instance, Romano and Wolf [30] Arlot,
Blanchard and Roquain [6]. Such a procedure, which is calibrated to control the family wise error rate or
the false discovery rate, can be also used to test “∀i ∈ S,mi = 0” against “∀i ∈ S,mi = µ” with a controlled
type I error rate, by rejecting if one of the hypotheses is rejected (however note that the entire risk is not
controlled because of type II errors). As a consequence, any thresholding-based multiple testing procedure
falls in the framework of this example, with S = {{1}, . . . , {n}}, K = 1 and N = n ≥ 2.

4.2 K-sets

Consider the example when C contains all sets S ⊂ {1, . . . , n} of size K. Thus, N =
(
n
K

)
. As mentioned in

the introduction, this problem is very well understood as sharp bounds and sophisticated tests are available,
see, for example, Ingster [24], Baraud [7], Donoho and Jin [14]. We include it for illustration purposes only
and we warn the reader that the obtained bounds are not sharpest possible.

Let δ ∈ (0, 1). It is easy to see that the assumptions of Proposition 8 are satisfied (this follows, e.g., from
Proposition 11 of Dubhashi and Ranjan [15]) and therefore R∗ ≥ δ for all

µ ≤

√
log
(

1 +
n log(1 + 4(1− δ)2)

K2

)
.

This simple bound turns out to have the correct order of magnitude both when n� K2 (in which case it is
of the order of

√
log (n/K2)) and when n� K2 (when it is of the order of

√
n/K2).

This may be seen by considering the two simple tests described in Section 2 in the two different regimes.
Since

E0 maxS∈C XS

K
≤

√
2K log

(
n
K

)
K

≤
√

2 log
(ne
K

)
,
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we see from Proposition 2 that when K = O
(
n(1−ε)/2) for some fixed ε > 0, then the threshold value is

of the order of
√

log n. On the other hand, when K2/n is bounded away from zero, then the lower bound
implied by Proposition 8 above is of the order

√
n/K2 and the averaging test provides a matching upper

bound by Proposition 1.
Note that in this example the maximum test is easy to compute since it suffices to find the K largest

values among X1, . . . , Xn.

4.3 Perfect matchings

Let C be the set of all perfect matchings of the complete bipartite graph Km,m. Thus, we have n = m2

edges and N = m!, and K = m. By Proposition 1 (i.e., the averaging test), for δ ∈ (0, 1), one has R(f) ≤ δ
whenever µ ≥

√
8 log(2/δ).

To show that this bound has the right order of magnitude, we may apply Proposition 8. The symmetry
assumptions hold obviously and the negative association property follows from the fact that Z = |S ∩ S′|
has the same distribution as the number of fixed points in a random permutation. The proposition implies
that for all m, R∗ ≥ δ whenever

µ ≤
√

log(1 + log(1 + 4(1− δ)2)) .

Note that in this case the optimal test f∗ can be approximated in a computationally efficient way. To this
end, observe that computing

1
N

∑
S∈C

eµXS =
1
m!

∑
σ

m∏
j=1

eµX(j,σ(j))

(where the summation is over all permutations of {1, . . . ,m}) is equivalent to computing the permanent of
an m ×m matrix with non-negative elements. By a deep result of Jerrum, Sinclair, and Vigoda [25], this
may be done by a polynomial-time randomized approximation.

4.4 Stars

Consider a network of m nodes in which each pair of nodes interacts. One wishes to test if there is a
corrupted node in the network whose interactions slightly differ from the rest. This situation may be
modeled by considering the class of stars.

A star is a subgraph of the complete graph Km which contains all K = m − 1 edges containing a fixed
vertex (see Figure 1). Consider the set C of all stars. In this setting, n =

(
m
2

)
and N = m.

Figure 1: A star [36].

In this case Corollary 7 is applicable and we obtain that if C is the class of all stars in Km then for any
ε > 0,

lim
m→∞

R∗ =

 0 if µ ≥ (
√

2 + ε)
√

logm
m

1 if µ ≤ (1− ε)
√

logm
m .

10



4.5 Spanning trees

Consider again a network of m nodes in which each pair of nodes interact. One may wish to test if there
exists a corrupted connected subgraph containing each node. This leads us to considering the class of all
spanning trees as follows.

Let 1, 2, . . . , n =
(
m
2

)
represent the edges of the complete graph Km and let C be the set of all spanning

trees of Km. Thus, we have N = mm−2 spanning trees and K = m − 1 (See, e.g., [28].) By Proposition 1,
the averaging test has risk R(f) ≤ δ whenever µ ≥

√
4 log(2/δ).

This bound is indeed of the right order. To see this, we may start with Proposition 5. There are (at least)
two ways of proceeding. One is based on negative association. Even though Proposition 8 is not applicable
because of the lack of symmetry in C, negative association still holds. In particular, by a result of Feder
and Mihail [18] (see also Grimmett and Winkler [21] and Benjamini, Lyons, Peres, and Schramm [8]), if S
is a random uniform spanning tree of Km, then the indicators 1{1∈S}, . . . ,1{n∈S} are negatively associated.
This means that, if S and S′ are independent uniform spanning trees and Z = |S ∩ S′|,

E
[
eµ

2Z
]

= EE
[
eµ

2|S∩S′||S′
]

= EE
[
eµ

2 P
i∈S′ 1{i∈S} |S′

]
≤ E

∏
i∈S′

E
[
eµ

2
1{i∈S} |S′

]
(by negative association)

≤ E
∏
i∈S′

(
2
m
eµ

2
+ 1
)

=
(

2
m
eµ

2
+ 1
)m−1

≤ exp
(

2eµ
2
)
.

This, together with Proposition 5 shows that for any δ ∈ (0, 1), R∗ ≥ δ whenever

µ ≤

√
log
(

1 +
1
2

log(1 + 4(1− δ)2)
)
.

We note here that the same bound can be proved by a completely different way that does not use negative
association. The key is to note that we may generate the two random spanning trees based on 2(m − 1)
independent random variables X1, . . . , X2(m−1) taking values in {1, . . . ,m − 1} as in Aldous [1] (See also
[11]). The key property we need is that if Zi denotes the number of common edges in the two spanning trees
when Xi is replaced by an independent copy X ′i while keeping all other Xj ’s fixed, then

2(m−1)∑
i=1

(Z − Zi)+ ≤ Z

(the details are omitted). For random variables satisfying this last property, an inequality of Boucheron,
Lugosi, and Massart [10] implies the sub-Poissonian bound

E exp(µ2Z) ≤ exp
(
EZ(eµ

2
− 1)

)
.

Clearly, EZ = 2(n− 1)/n ≤ 2, so essentially the same bound as above is obtained.
As the bounds above show, the computationally trivial average test has a close-to-optimal performance.

In spite of this, one may wish to use the optimal test f∗. The “partition function” (1/N)
∑
S∈C e

µXS may
be computed by an algorithm of Propp and Wilson [29], who introduced a random sampling algorithm

11



that, given a graph with non-negative weights wi over the edges, samples a random spanning tree from a
distribution such that the probability of any spanning tree S is proportional to

∏
i∈S wi. The expected

running time of the algorithm is bounded by the cover time of an associated Markov chain that is defined as
a random walk over the graph in which the transition probabilities are proportional to the edge weights. If
µ is of the order of a constant (as in the critical range) then the cover time is easily shown to be polynomial
(with high probability) as all edge weights wi = eµ

2Xi are roughly of the same order both under the null
and under the alternative hypotheses.

4.6 Cliques

Another natural application is the class of all cliques of a certain size in a complete graph. More precisely,
the random variables X1, . . . , Xn are associated with the edges of the complete graph Km such that

(
m
2

)
= n

and let C contain all cliques of size k. Thus, K =
(
k
2

)
and N =

(
m
k

)
. This case is more difficult than the class

of K-sets discussed above because negative association does not hold anymore. (This may be easily seen by
considering the indicator variables of two adjacent edges both being in the randomly chosen clique.) Also,
computationally the class of cliques is much more complex. A related, well-studied model starts with the
subgraph Km containing each edge independently with probability 1/2, as null hypothesis. The alternative
hypothesis is the same as the null hypothesis, except that there is a clique of size k on which each edge is
independently present with probability p > 1/2. This is called the “hidden clique” problem (usually only the
special case p = 1 is considered). Despite substantial interest in the hidden clique problem, polynomial time
detection algorithms are only known when k = Ω(

√
n) [2, 19]. We may obtain the hidden clique model from

our model by thresholding at weight zero (retaining only edges whose normal random variable is positive),
and so our model is easier for testing than the hidden clique model. However, it seems likely that designing
an efficient test in the normal setting will be as difficult as it has proved for hidden cliques. It would be of
interest to construct near-optimal tests that are computable in polynomial time for larger values of k.

We have the following bounds for the performance of the optimal test. It shows that when k is a most
of the order of

√
m, the critical value of µ is of the order of

√
(1/k) log(m/k). The proof below may be

adjusted to handle larger values of k as well but we prefer to keep the calculations more transparent.

Proposition 9 Let C represent the class of all N =
(
m
k

)
cliques of a complete graph Km and assume that

k ≤
√
m(log 2)/e. Then

(i) for all δ ∈ (0, 1), R∗ ≤ δ whenever

µ ≥ 2

√
1

k − 1
log
(me
k

)
+ 4

√
log(2/δ)
k(k − 1)

,

(ii) R∗ ≥ 1/2 whenever

µ ≤
√

1
k

log
(m

2k

)
.

Proof: (i) follows simply by a straightforward application of Proposition 2 and the bound E0 maxS∈C XS ≤√
2K logN .

To prove the lower bound (ii), by Proposition 5, it suffices to show that if S, S′ are k-cliques drawn
randomly and independently from C and Z denotes the number of edges in the intersection of S and S′, then
E
[
exp(µ2Z)

]
≤ 2 for the indicated values of µ.

Because of symmetry, E
[
exp(µ2Z)

]
= E

[
exp(µ2Z)|S′

]
for all S′ and therefore we might as well fix an

arbitrary clique S′. If Y denotes the number of vertices in the clique S ∩ S′ then Z =
(
Y
2

)
. Moreover, the

distribution of Y is hypergeometrical with parameters m and k. If B is a binomial random variable with
parameters k and k/m, then since exp(µ2x2/2) is a convex function of x, an inequality of Hoeffding [23]
implies that

E
[
eµ

2Z
]

= E
[
eµ

2Y 2/2
]
≤ E

[
eµ

2B2/2
]
.

12



Thus, it remains to derive an appropriate upper bound for the moment generating function of the squared
binomial. To this end, let c > 1 be a parameter whose value will be specified later. Using

B2 ≤ B
(
k1{B>c k2m }

+ c
k2

m

)
and the Cauchy–Schwarz inequality, it suffices to show that

E
[
exp

(
µ2c

k2

m
B

)]
· E
[
exp

(
µ2kB1{B>c k2m }

)]
≤ 4 . (2)

We show that, if µ satisfies the condition of (ii), for an appropriate choice of c, both terms on the left-hand
side are at most 2.

The first term on the left-hand side of (2) is

E
[
exp

(
µ2c

k2

m
B

)]
=
(

1 +
k

m

(
exp

(
µ2c

k2

m

)
− 1
))k

which is at most 2 if and only if

k

m

(
exp

(
µ2c

k2

m

)
− 1
)
≤ 21/k − 1 .

Since 21/k − 1 ≥ (log 2)/k, this is implied by

µ ≤

√
m

ck2
log
(

1 +
m log 2
k2

)
.

To bound the second term on the left-hand side of (2), note that

E
[
exp

(
µ2kB1{B>c k2m }

)]
≤ 1 + E

[
1{B>c k2m }

exp
(
µ2kB

)]
≤ 1 +

(
P
{
B > c

k2

m

})1/2 (
E
[
exp

(
µ2kB

)])1/2
,

by the Cauchy–Schwarz inequality, so it suffices to show that

P
{
B > c

k2

m

}
· E
[
exp

(
µ2kB

)]
≤ 1 .

Denoting h(x) = (1 + x) log(1 + x)− x, Chernoff’s bound implies

P
{
B > c

k2

m

}
≤ exp

(
−k

2

m
h(c− 1)

)
.

On the other hand,

E
[
exp

(
µ2kB

)]
=
(

1 +
k

m
exp

(
µ2k

))k
,

and therefore the second term on the left-hand side of (2) is at most 2 whenever

1 +
k

m
exp

(
µ2k

)
≤ exp

(
k

m
h(c− 1)

)
.

13



Using exp
(
k
mh(c− 1)

)
≥ 1 + k

mh(c− 1), we obtain the sufficient condition

µ ≤
√

1
k

log h(c− 1) .

Summarizing, we have shown that R∗ ≥ 1/2 for all µ satisfying

µ ≤ 2 ·min

(√
1
k

log h(c− 1) ,

√
m

ck2
log
(

1 +
m log 2
k2

))
.

Choosing

c =
m

k

log(m/k)
log(m log 2/k2)

(which is greater than 1 for k ≤
√
m(log 2)/e), the second term on the right-hand side is at most

√
(1/k) log(m/k).

Now observe that since h(c− 1) = c log c− c+ 1 is convex, for any a > 0, h(c− 1) ≥ c log a−a+ 1. Choosing
a = log(m/k)

log(m log 2/k2) , the first term is at least√
1
k

log
(
m

k
− log(m/k)

log(m log 2/k2)

)
≥
√

1
k

log
(m

2k

)
where we used the condition that m log 2/k2 ≥ e and that x ≥ 2 log x for all x > 0. �

Remark. (a related problem.) A closely related problem arising in the exploratory analysis of microar-
ray data (see Shabalin, Weigman, Perou, and Nobel [31]) is when each member of C represents the K edges
of a

√
K ×

√
K biclique of the complete bipartite graph Km,m where m =

√
n. (A biclique is a complete

bipartite subgraph of Km,m.) The analysis and the bounds are completely analogous to the one worked out
above, the details are omitted.

5 On the monotonicity of the risk

Intuitively, one would expect that the testing problem becomes harder as the class C gets larger. More
precisely, one may expect that if A ⊂ C are two classes of subsets of {1, . . . , n}, then R∗A(µ) ≤ R∗C(µ) holds
for all µ. The purpose of this section is to show that this intuition is wrong in quite a strong sense as not
only such general monotonicity property does not hold for the risk, but there are classes A ⊂ C for which
R∗A(µ) is arbitrary close to 1 and R∗C(µ) is arbitrary close to 0 for the same value of µ.

However, monotonicity does hold if the class C is sufficiently symmetric. Call a class C symmetric if for
the optimal test f∗C (x) = 1{(1/N)

P
S∈C exp(µ

P
i∈S xi)≥exp(Kµ2/2)}, the value of PT {f∗C (X) = 0} is the same for

all T ∈ C. Note that several of the examples discussed in Section 4 satisfy the symmetry assumption, such
as the classes of K-sets, stars, perfect matchings, and cliques. However, the class of spanning trees is not
symmetric in the required sense.

Theorem 10 Let C be a symmetric class of subsets of {1, . . . , n}. If A is an arbitrary subclass of C, then
for all µ > 0, R∗A(µ) ≤ R∗C(µ).

Proof: In this proof we fix the value of µ > 0 and suppress it in the notation. Recall the definition of the
alternative risk measure

RC(f) = P0{f(X) = 1}+ max
S∈C

PS{f(X) = 0}

which is to be contrasted with our main risk measure

RC(f) = P0{f(X) = 1}+
1
N

∑
S∈C

PS{f(X) = 0} .
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The risk R is obviously monotone in the sense that if A ⊂ C then for every f , RA(f) ≤ RC(f). Let f
∗
C and

f∗C denote the optimal tests with respect to both measures of risk.
First observe that if C is symmetric, then RC(f∗C ) = RC(f∗C ). But since RC(f) ≤ RC(f) for every f , we

have
RC(f

∗
C) ≤ RC(f∗C ) = RC(f∗C ) ≤ RC(f

∗
C) ≤ RC(f

∗
C) .

This means that all inequalities are equalities and, in particular, f
∗
C = f∗C .

Now if A is an arbitrary subclass of C, then

R∗C = RC(f∗C ) = RC(f
∗
C) ≥ RA(f

∗
C) ≥ RA(f

∗
C) ≥ RA(f∗A) = R∗A ,

which completes the proof. �

Theorem 11 For every ε ∈ (0, 1) there exist n, µ, and classes A ⊂ C ⊂ {1, . . . , n} such that R∗A(µ) ≥ 1− ε
and R∗C(µ) ≤ 2ε.

Proof: We work with L1 distances. For any class L, denote φL(x) = 1
N

∑
S∈L φS(x). Recall that

R∗L(µ) = 1− 1
2

∫
|φ0(x)− φL(x)| dx .

Given ε, we fix an integer K = K(ε) large enough that K + 1 ≥ 1/ε and that√
log(4(K + 1)ε2)

K + 1
≥

√
8
K

log
(

2
ε

)
,

and let n = n(ε) = (K + 1)2. We let A consist of M disjoint subsets of {1, . . . , n}, each of size K + 1. We
let B consist of all sets of the form {1, . . . ,K, i}, where i ranges from K + 1 to n, and assume A has been
chosen so that A ∩ B = ∅. We then let C = A ∪ B. We take

µ =

√
log(4(K + 1)ε2)

K + 1
,

so that, as seen in Section 4.1, we have R∗A(µ) ≥ 1− ε. We will require an upper bound on R∗B(µ), which we
obtain by considering the averaging test on variables 1, . . . ,K,

f(x) = 1{
PK
i=1 xi≥

µK
2 }
.

Just as in Proposition 1, we have R(f) ≤ ε whenever µ ≥
√

8
K log

(
2
ε

)
, which is indeed the case by our

choices of µ and K. It follows that R∗B(µ) ≤ ε. We remark that∫
|φ− φA| = 2− 2R∗A(µ) ≤ 2ε.

We let M = |B| = (K + 1)2 −K; then N = |C| = M +K + 1 = (K + 1)2 + 1, and note∫
|φ− φC | =

∫ ∣∣∣∣φ− (K + 1)φA +MφB
N

∣∣∣∣
=

∫ ∣∣∣∣ (K + 1)(φ− φA) +M(φ− φB)
N

∣∣∣∣
≥ M

N

∫
|φ− φB| −

(K + 1)
N

∫
|φ− φA|

≥ (1− ε)
∫
|φ− φB| − 2ε2

= (1− ε)(2− 2R∗B(µ))− 2ε2

≥ 2− 4ε.
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Thus, R∗C(µ) ≤ 2ε. �

Observe that non-monotonicity of the Bhattacharyya affinity also follows from the same argument. To
this end, we may express ρC(µ) = 1

2

∫ √
φ0(x)φS(x)dx in function of the Hellinger distance

H(φ0, φC) =

√∫
(
√
φ0(x)−

√
φC(x))2dx

as ρC(x) = 1
2 −

1
4H(φ0, φC)2. Recalling (see, e.g., Devroye and Györfi [12, p.225]) that

H(φ0, φC)2 ≤
∫
|φ0(x)− φC(x)| ≤ 2H(φ0, φC) ,

we see that the same example as in the proof above, for n large enough, shows the non-monotonicity of the
Bhattacharyya affinity as well.

6 Lower bounds on based random subclasses and metric entropy

In this section we derive lower bounds for the Bayes risk R∗ = R∗C(µ). The bounds are in terms of some
geometric features of the class C. Again, we treat C as a metric space equipped with the canonical distance
d(S, T ) =

√
E0(XS −XT )2 (i.e., the square root of the Hamming distance dH(S, T )).

For an integer M ≤ N we define a real-valued parameter tC(M) > 0 of the class C as follows. Let A ⊂ C
be obtained by choosing M elements of C at random, without replacement. Let the random variable τ denote
the smallest distance between elements of A and let tC(M) be a median of τ .

Theorem 12 Let M ≤ N be an integer. Then for any class C,

R∗C ≥ 1/4

whenever

µ ≤ min

(√
log(M/16)

K
,

8 log(
√

3/8)√
K − tC(M)2/2

)
.

To interpret the statement of the theorem, note that

K − τ2/2 = max
S,T∈A
S 6=T

|S ∩ T |

is the largest overlap between any pair of elements of A. Thus, just like in Proposition 5, the distribution of
the overlap between random elements of C plays a key role in establishing lower bounds for the optimal risk.
However, while in Proposition 5 the moment generating function E exp(µ2|S∩T |) of the overlap between two
random elements determines an upper bound for the critical value of µ, here it is the median of the largest
overlap between many random elements that counts. The latter seems to carry more information about the
fine geometry of the class. In fact, invoking a simple union bound, upper bounds for E exp(µ2|S ∩ T |) may
be used together with Theorem 12.

In applications often it suffices to consider the following special case.

Corollary 13 Let M ≤ N be the largest integer for which zero is a median of maxS,T∈A
S 6=T

|S ∩ T | where A is

a random subset of C of size M (i.e., tC(M)2 = 2K). Then R∗C(µ) ≥ 1/4 for all µ ≤
√

log(M/16)/K.
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Example. (sub-squares of a grid.) To illustrate the corollary, consider the following example which is
the simplest in a family of problems investigated by Arias-Castro, Candès, and Durand [4]: assume that n
and K are both perfect squares and that the indices {1, . . . , n} are arranged in a

√
n×
√
n grid. The class

C contains all
√
K ×

√
K sub-squares. Now if S and T are randomly chosen elements of C (with or without

replacement) then, if (K + 1)2 ≤ 2
√
n,

P{|S ∩ T | 6= 0} ≥ (
√
n− 2K)2

(
√
n−K + 1)2

· K

(
√
n−K + 1)2

≥ K

n

and therefore

P

max
S,T∈A
S 6=T

|S ∩ T | = 0

 = 1− P

max
S,T∈A
S 6=T

|S ∩ T | > 0

 ≥ 1−M2K

n

which is at least 1/2 if M ≤
√
n/(2K) in which case tC(M)2 = 2K. Thus, by Corollary 13, R∗C(µ) ≥ 1/4 for

all µ ≤
√

log(n/(512K))/(2K). This bound is of the optimal order of magnitude as it is easily seen by an
application of Proposition 2.

In some other applications a better bound is obtained if some overlap is allowed. A case in point is the
example of stars from Section 4.4. In that case any two elements of C overlap but by taking M = N(= m),
we have K − tC(M)2/2 = 1, so Theorem 12 still implies R∗C(µ) ≥ 1/4 whenever µ ≤

√
(1/K) log(m/16).

The main tool of the proof of Theorem 12 is Slepian’s lemma which we recall here [32]. (For this version,
see Ledoux and Talagrand [27, Theorem 3.11].)

Lemma 14 (slepian’s lemma.) Let ξ = (ξ1, . . . , ξN ), ζ = (ζ1 . . . , ζN ) ∈ RN be zero-mean Gaussian vectors
such that for each i, j = 1, . . . , N ,

Eξ2i = Eζ2
i for each i = 1, . . . , N and Eξiξj ≤ Eζiζj for all i 6= j.

Let F : RN → R be such that for all x ∈ RN and i 6= j,

∂2F

∂xi∂xj
(x) ≤ 0 .

Then EF (ξ) ≥ EF (ζ).

Proof of Theorem 12: Let M ≤ N be fixed and choose M sets from C uniformly at random (without
replacement). Let A denote the random subclass of C obtained this way. Denote the likelihood ratio
associated to this class by

LA(X) =
1
M

∑
S∈A φS(X)
φ0(X)

=
1
M

∑
S∈A

VS

where VS = eµXS−Kµ
2/2. Then the optimal risk of the class C may be lower bounded by

R∗C(µ)−R∗A(µ) =
1
2

(E0|LA(X)− 1| − E0|LC(X)− 1|) ≥ −1
2

E0|LA(X)− LC(X)| .

17



Denoting by Ê expectation with respect to the random choice of A, we have

R∗C(µ) ≥ ÊR∗A(µ)− 1
2

E0Ê

∣∣∣∣∣ 1
M

∑
S∈A

VS −
1
N

∑
S∈C

VS

∣∣∣∣∣
≥ ÊR∗A(µ)− 1

2

√√√√E0Ê

(
1
M

∑
S∈A

VS −
1
N

∑
S∈C

VS

)2

≥ ÊR∗A(µ)− 1
2

√√√√√E0

 1
M
· 1
N

∑
T∈C

(
VT −

1
N

∑
S∈C

VS

)2


(since the variance of a sample without replacement is less than that with replacement)

= ÊR∗A(µ)− 1
2
√
M

√√√√ 1
N

∑
T∈C

E0

(
VT −

1
N

∑
S∈C

VS

)2

An easy way to bound the right-hand side is by writing

E0

(
VT −

1
N

∑
S∈C

VS

)2

≤ 2E0 (VT − 1)2 + 2E0

(
1− 1

N

∑
S∈C

VS

)2

≤ 2E0 (VT − 1)2 +
2
N

∑
S∈C

E0 (1− VS)2

= 4Var(VT ) = 4
(
eµ

2K − 1
)
.

Summarizing, we have

R∗C(µ) ≥ ÊR∗A(µ)−
√
eµ2K − 1

M
≥ ÊR∗A(µ)− 1

4

where we used the assumption that µ ≤
√

(1/K) log(M/16). Thus, it suffices to prove that ÊR∗A(µ) ≥ 1/2.
We bound the optimal risk associated with A in terms of the Bhattacharyya affinity

ρA(µ) =
1
2

E0

√
(1/M)

∑
S∈A φS(X)

φ0(X)
=

1
2

E0

√
1
|A|

∑
S∈A

VS .

Recalling from Section 3 that R∗A(µ) ≥ 1−
√

1− 4ρA(µ)2 and using that
√

1− 4x2 is concave, we have

ÊR∗A(µ) ≥ 1−
√

1− 4
(
ÊρA(µ)

)2

.

Therefore, it suffices to show that the expected Bhattacharyya affinity ÊρA(µ) corresponding to the random
class A satisfies

ÊρA(µ) =
1
2

ÊE0

√
1
|A|

∑
S∈A

VS ≥
√

3
4

.

In the argument below we fix the random class A, relabel the elements so that A = {1, 2, . . . , |A|}, and
bound ρA(µ) from below. Denote the minimum distance between any two elements of A by τ . To bound
ρA(µ), we apply Slepian’s lemma with the function

F (x) =

√√√√ 1
|A|

|A|∑
i=1

eµxi−Kµ2/2,
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where x = (x1, . . . , x|A|). Simple calculation shows that the mixed second partial derivatives of F are
negative, so Slepian’s lemma is indeed applicable.

Next we introduce the random vectors ξ and ζ. Let the components of ξ be indexed by elements
S ∈ A and define ξS = XS =

∑
i∈S Xi. Thus, under P0, each ξS is normal (0,K) and EF (ξ) is just the

Bhattacharyya affinity ρA(µ). To define the random vector ζ, introduce N +1 independent standard normal
random variables: one variable GS for each S ∈ A and an extra variable G0. Recall that the definition of τ
guarantees that the minimal distance between any two elements of A as at least τ . Now let

ζS = GS
τ√
2

+G0

√
K − τ2

2
.

Then clearly for each S, T ∈ A, Eζ2
S = K and EζSζT = K − τ2/2 (S 6= T ). On the other hand, Eξ2S = K

and

EξSξT = |S ∩ T | = K − d(S, T )2

2
≤ K − τ2

2
= EζSζT .

Therefore, by Slepian’s lemma, ρA(µ) = EF (ξ) ≥ EF (ζ). However,

EF (ζ) = E
√

1
|A|

∑
S∈A

eµζS−Kµ2/2

= E
√
eµ
√
K−τ2/2G0−(K−τ2/2)µ2/2 1

|A|
∑
S∈A

eµτGS/
√

2−τ2µ2/4

= Eeµ
√
K−τ2/2G0/2−(K−τ2/2)µ2/4E

√
1
|A|

∑
S∈A

eµτGS/
√

2−τ2µ2/4

= e−µ
2(K−τ2/2)/8E

√
1
|A|

∑
S∈A

eµτGS/
√

2−τ2µ2/4 .

To finish the proof, it suffices to observe that the last expression is the Bhattacharyya affinity corresponding
to a class of disjoint sets, all of size τ2/2, of cardinality |A| = M . This case has been handled in the first
example of Section 4 where we showed that

E
√

1
|A|

∑
S∈A

eµτGS/
√

2−τ2µ2/4 ≥ R∗A ≥ 1− 1
2

√
1
M
eµ2τ2/2 ≥ 3

4

where again we used the condition µ ≤
√

log(M/16)/K and the fact that τ2/2 ≤ K.
Therefore, under this condition on µ, we have that for any fixed A,

ρA(µ) =
1
2

EF (ζ) ≥ 3
8
e−µ

2(K−τ2/2)/8

and therefore
ÊρA(µ) ≥ 3

16
e−µ

2(K−tC(M)2/2)/8

where tC(M) is the median of τ . This concludes the proof. �

Remark. (an improvement.) At the price of losing a constant factor in the statement of Theorem 12,
one may replace the parameter tC(M) by a larger quantity. The idea is that by thinning the random subclass
A one may consider a subset of A that has better separation properties. More precisely, for an even integer
M ≤ N we may define a real-valued parameter tC(M) > 0 of the class C as follows. Let A ⊂ C be obtained
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by choosing M elements of C at random, without replacement. Order the elements S1, . . . , SM of A such
that

min
i 6=1

d(S1, Si) ≥ min
i 6=2

d(S2, Si) ≥ · · · ≥ min
i6=M

d(SM , Si)

and define the subset Â ⊂ A by Â = {A1, . . . , AM/2}. Let the random variable τ denote the smallest distance
between elements of Â and let tC(M) be the median of τ . It is easy to see that the proof of Theorem 12
goes through, and one may replace tC(M) by tC(M) (by adjusting the constants appropriately). One simply
needs to observe that since each VS is non-negative,

ρA(µ) =
1
2

E0

√
1
|A|

∑
S∈A

VS ≥
1
2

E0

√√√√ 1
|A|

∑
S∈ bA

VS =
1√
2
ρ bA(µ) .

If tC(M) is significantly larger than tC(M) that the gain may be substantial.

If the class C is symmetric then thanks to Theorem 10, the theorem above can be improved and simplified.
If the class is symmetric, instead of having to work with randomly chosen subclasses, one may optimally
choose a separated subset. Then the bounds can be expressed in terms of the metric entropy of C, more
precisely, by its packing numbers with respect to the canonical distance d(S, T ) =

√
E0(XS −XT )2.

We say that A ⊂ C is a t-separated set (or t-packing) if for any S, T ∈ A, d(S, T ) ≥ t. For t <
√

2K, define
the packing number M(t) as the size of a maximal t-separated subset A of C. It is a simple well-known fact
that packing numbers are closely related to the covering numbers introduced in Section 2 by the inequalities
N(t) ≤M(t) ≤ N(t/2).

Theorem 15 Let C be symmetric in the sense of Theorem 10 and let t ≤
√

2K. Then

R∗C ≥ 1/2

whenever

µ ≤ min

(√
log(M(t)/16)

K
,

8 log(
√

3/2)√
K − t2/2

)
.

Proof: Let A ⊂ C be a maximal t-separated subclass. Since C is symmetric, by Theorem 10, R∗C ≥ R∗A so
it suffices to show that R∗A ≥ 1/2 for the indicated values of µ. The rest of the proof is identical to that of
Theorem 12. �

To interpret this result, take t =
√

2K(1− ε) for some ε ∈ (0, 1/2). Then, by the theorem, R∗ ≥ 1/2 if

µ ≤ 1√
K

min

(
8 log(

√
3/2)√
ε

,

√
log(M(

√
2K(1− ε))/16)

)
.

As an example, suppose that the class C is such that there exists a constant V > 0 such that M(t) ∼ (n/t2)V .
(Recall that all classes with vc dimension V have an upper bound of this form for the packing numbers,
see Remark p. 5.) In this case one may choose ε ∼ V log(n/K) and obtain a sufficient condition of the form
µ ≥ c

√
(V/K) log(n/K) (for some constant c), closely matching the bound obtained for the maximum test

by Dudley’s chaining bound.

7 Optimal versus maximum test: an analysis of the type I error

In all examples considered above, upper bounds for the optimal risk R∗ are derived by analyzing either the
maximum test or the averaging test. As the examples show, very often these simple tests have a near-optimal
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performance. The optimal test f∗ is generally more difficult to study. In this section we analyze directly the
performance of the optimal test. More precisely, we derive general upper bounds for the type I error (i.e.,
the probability that the null hypothesis is rejected under P0) of f∗. The upper bound involves the expected
value of the maximum of a Gaussian process indexed by a sparse subset of C and can be significantly smaller
than the maximum over the whole class that appears in the performance bound of the maximum test in
Proposition 2. Unfortunately we do not have an analogous bound for the type II error.

We consider the type I error of the optimal test f∗

P0{f∗(X) = 1} = P0{L(X) > 1} = P0

{
1
N

∑
S∈C

eµXS > eKµ
2/2

}
.

An easy bound is 1
N

∑
S∈C e

µXS ≤ eµmaxS∈C XS so

P0{L(X) > 1} ≤ P0

{
max
S

XS > Kµ/2
}

Thus, P0{L(X) > 1} ≤ δ whenever µ ≥ (1/K)E0 maxS XS +
√

(2/K) log(1/δ). Of course, we already know
this from Proposition 2 where this bound was derived for the (suboptimal) test based on maxima.

In order to understand the difference between the performance of the optimal test f∗ and the maximum
test, one needs to compare the random variables (1/µ) log 1

N

∑
S∈C e

µXS and maxS∈C XS .

Proposition 16 For any δ ∈ (0, 1), the type I error of the optimal test f∗ satisfies

P0{f∗(X) = 1} ≤ δ

whenever

µ ≥ 2
K

E0 max
S∈A

XS +

√
32 log(2/δ)

K
.

where A is any
√
K/2-cover of C.

If A is a minimal
√
K/2-cover of C then (1/K)E0 maxS∈AXS ≤

√
2 logN(

√
K/2)

K . By “Sudakov’s minora-
tion” (see Ledoux and Talagrand [27, Theorem 3.18]) this upper bound is sharp up to a constant factor.

It is instructive to compare this bound with that of Proposition 2 for the performance of the maximum
test. In Proposition 16 we were able to replace the expected maximum E0 maxS∈C XS by E0 maxS∈AXS

where now the maximum is taken over a potentially much smaller subset A ⊂ C. It is not difficult to
construct examples when there is a substantial difference, even in the order of magnitude, between the two
expected maxima so we have a genuine gain over the simple upper bound of Proposition 2. Unfortunately,
we do not know if an analog upper bound holds for the type II error (1/N)

∑
S∈C PS{f∗(X) = 0} of the

optimal test f∗. In cases when E0 maxS∈AXS � E0 maxS∈AXS , we suspect that the maximum test is far
from optimal. However, to verify this conjecture, one would need a similar analysis for the type II error as
well.

Proof: Introduce the notation

MC(µ) = E0
1
µ

log

(
1
N

∑
S∈C

eµXS

)
.

Then

P0

{
1
N

∑
S∈C

eµXS > eKµ
2/2

}
= P0

{
1
µ

log

(
1
N

∑
S∈C

eµXS

)
>
Kµ

2

}

= P0

{
1
µ

log

(
1
N

∑
S∈C

eµXS

)
−MC(µ) >

Kµ

2
−MC(µ)

}
.
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We use Tsirelson’s inequality (Lemma 3) to bound this probability. To this end, we need to show that the
function h : RN → R defined by

h(x) =
1
µ

log

(
1
N

∑
S∈C

eµ
P
i∈S xi

)
is Lipschitz (where x = (x1, . . . , xN )). Observing that

∂h

∂xj
(x) =

1
N

∑
S∈C 1{j∈S}e

µxS

1
N

∑
S∈C e

µxS
∈ (0, 1) ,

we have

‖∇h(x)‖2 =
n∑
j=1

(
∂h

∂xj
(x)
)2

≤
n∑
j=1

∂h

∂xj
(x) = K

and therefore h is indeed Lipschitz
√
K. By Tsirelson’s inequality, we have

P0{f∗(X) = 1} ≤ exp

(
− (Kµ/2−MC(µ))2

2K

)
.

Thus, the type I error is bounded by δ if

µ ≥ 2MC(µ)
K

+

√
8
K

log
1
δ
.

It remains to bound MC(µ).
Let t ≤

√
2K be a positive integer and consider a minimal t-cover of the set C, that is, a set A ⊂ C with

cardinality |A| = N(t) such that, if π(S) denotes an element in A whose distance to S ∈ C is minimal then
d(S, π(S)) ≤ t for all S ∈ C. Then clearly,

MC(µ) ≤ E0
1
µ

log

(
1
N

∑
S∈C

eµ(XS−Xπ(S))

)
+ E0 max

S∈A
XS .

To bound the first term on the right-hand side, note that, by Jensen’s inequality,

E0
1
µ

log

(
1
N

∑
S∈C

eµ(XS−Xπ(S))

)
≤ 1
µ

log

(
1
N

∑
S∈C

E0e
µ(XS−Xπ(S))

)
≤ µt2

2

since for each S, dH(XS , Xπ(S)) ≤ t2 and therefore XS −Xπ(S) is a centered normal random variable with
variance dH(XS , Xπ(S)). For the second term we have

E0 max
S∈A

XS ≤
√

2K logN(t) .

Choosing t2 = K/4, we obtain the proposition. �
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