
Weighted height of random trees

N. Broutin L. Devroye E. McLeish∗

January 3, 2008

Abstract

We consider a model of random trees similar to the split trees of Devroye
[30] in which a set of items is recursively partitioned. Our model allows for more
flexibility in the choice of the partitioning procedure, and has weighted edges.
We prove that for this model, the height Hn of a random tree is asymptotic to
c log n in probability for a constant c that is uniquely characterized in terms of
multivariate large deviations rate functions. This extension permits us to obtain
the height of pebbled tries, pebbled ternary search tries, d-ary pyramids, and to
study geometric properties of partitions generated by k-d trees. The model also
includes all polynomial families of increasing trees recently studied by Broutin,
Devroye, McLeish, and de la Salle [17].

Keywords and phrases: Height, random tree, split tree, branching process, large
deviations, probabilistic analysis.

1 Introduction

In this paper, we propose a general framework for finding heights of random trees
with bounded degree d using branching processes. This extends previous work on
the heights of a handful of random tree models [11, 14, 17, 27, 30]. Our model makes
the connection between two different ways of constructing random trees: the split
trees of Devroye [30] based on the partition of a set of items into recursive bins,
and the branching process techniques of Broutin and Devroye [14] and generalizes
both of them. The resulting framework encompasses all the kinds of trees that were
captured by other branching process techniques such as binary search trees [27],
random recursive trees [28, 56], plane oriented trees [56], median-of-(2k + 1) trees
[66], d-ary pyramids [11] and increasing trees [17].

The split tree model is a very natural way to build a random tree: a tree shall
be seen as the outcome of a recursive process partitioning a finite set of items.
∗Research of the authors was supported by NSERC Grant A3456 and a James McGill fellow-

ship. Address: School of Computer Science, McGill University, Montreal H3A2K6 Canada. Email:
{nbrout,luc,mcleish}@cs.mcgill.ca.

1

The process starts from the root with a number n of items. Some items remain
stored at the root, the others proceed to further levels, Ni going to the i-th subtree
for 1 ≤ i ≤ d. The latter subsets of items are further partitioned in a recursive
way. At each level, the items are partitioned according to some rule specifying the
distribution of the integers Ni, 1 ≤ i ≤ d. The rules considered by Devroye [30] are
essentially mixtures of multinomials: each item that goes to further levels chooses a
subtree independently of the others with some probability specified by some random
variable whose distribution is fixed (but the value is independent for each node).
Although this model is of great interest, as shown by the number of different cases
it captures, it is still too constrained for some important applications. An example
is the increasing tree of Bergeron, Flajolet, and Salvy [6]. The partitioning rules
we allow here are very general, and the edges of the random trees we consider are
weighted to allow for more flexibility. Trees constructed using this discrete model
are called weighted split trees.

The second important case our study covers is the bidimensional model intro-
duced by Broutin and Devroye [14], which is related to weighted branching processes
studied by Biggins [9, 10]. Here, instead of recursively splitting a set of n discrete
items, the tree represents nested partitions of the unit interval [0, 1]. In this sense,
this is a continuous counterpart of the split trees of the previous paragraph. In this
model, every node is associated with two random vectors, Z, describing the lengths
of the edges to the children, and V, describing the sizes of the next level intervals.
The process is stopped when all the intervals are smaller than some specified value.
The model treated by Broutin and Devroye [14] has independent Z and V. We gen-
eralize it and consider trees in which Z and V may be dependent. Trees constructed
using the continuous model are called ideal trees.

Although less natural than the weighted split trees, the ideal trees are easier to
analyze. In particular, the height of a random ideal tree stopped when the intervals
are all smaller than 1/n is asymptotic to c log n in probability. The constant c is
uniquely characterized as the only solution of an (often implicit) equation involving
large deviations rate functions. Although the model of ideal trees slightly generalizes
previously known results, the main contribution of this paper concerns the more
difficult model of weighted split trees. In analyzing this general discrete model,
ideal trees appear to be a crucial intermediate object. In particular, we make the
connection between a large class of weighted split trees and the continuous ideal
trees. We prove that under some mild conditions, the heights of a random (discrete)
split tree of size n and of a suitable ideal tree stopped at 1/n are asymptotically
comparable, i.e., are both asymptotic to c log n in probability.

The paper is organized as follows. We first introduce an ideal model of trees
and discuss asymptotic properties of their heights (Section 2). Random weighted
split trees are described and studied in Section 3. We highlight the generality of
our main result (Theorem 2) concerning the heights of such trees by giving various

2

applications in Section 5. All the proofs are based on theory of large deviations
[24, 26] and branching processes [2].

2 An ideal model of weighted random trees

Let T∞ be an infinite rooted d-ary tree (with dk nodes at level k), and let r be its
root. Let π(u) be the set of edges on the unique path from a node u up to the root.
We assign independently to each node of T∞ a vector

((Z1, V1), (Z2, V2), . . . , (Zd, Vd)),

where Vi ≥ 0,
∑d

i=1 Vi = 1 and Zi ∈ [−∞,∞). We do not assume any independence
between the Vi’s and the Zi’s. If an edge e connects u with its i-th child, then, for
convenience, we define Ve = Vi and Ze = Zi.

The shape of the tree. With each node u ∈ T∞ we can associate an interval of
length Lu. For the root, we set Lr = 1. The children of a node u have intervals of
lengths Lu · V1, . . . , Lu · Vd so that the total length

∑d
i=1 LuVi = Lu is preserved.

In this model, the sums of the lengths of the intervals at each level of T∞ remain 1.
The tree thus describes a random sequence of nested partitions. The length of the
interval of a node u is Lu =

∏
e∈π(u) Ve. The ideal tree with parameter n, Tn, consists

of the nodes u ∈ T∞ for which Lu > 1/n:

Tn = {u ∈ T∞ : Lu > 1/n}.

Note that here, n is a parameter and the tree Tn does not have n nodes in general.

The weights. The Zi’s represent edge lengths. More specifically, the lengths of
the edges connecting u to its children are Z1, . . . , Zd. In some applications we may
have negative values, and in general, the range of each extended random variable Zi
is [−∞,∞). We define the weighted depth of a node u ∈ T∞ by Du =

∑
e∈π(u) Ze.

Alternatively, we can see the tree as a birth process. The root is born at time 0.
The random vector of interest associated with a node u is then (E1, . . . , Ed), with
Ei = − log Vi, if Vi > 0; if Vi = 0, we define Ei = ∞. The variables Ei, 1 ≤ i ≤ d,
represent differences between the time of birth of u and the times of birth of its
children. In other words, the time at which u is born is Bu =

∑
e∈π(u)Ee. Then,

Tn consists of the nodes of T∞ that are born before time log n. We are interested in
the weighted height Hn of Tn:

Hn = max{Du : u ∈ Tn}
= max{Du : Lu > 1/n, u ∈ T∞}
= max{Du : Bu < log n, u ∈ T∞}.

Since we deal with heights, we may assume without loss of generality that the
components of all vectors are identically distributed. Indeed, randomly permuting

3

them does not affect the height Hn. So, in the sequel, we write V , E and Z for the
typical distributions of components of ((Z1, V1), . . . , (Zd, Vd)) or

X = ((Z1, E1), . . . , (Zd, Ed)), (1)

and define X = (Z,E).

The active portion of the tree. In general, it is possible that for an edge e,
Ve = 0, Ee = ∞ or Ze = −∞. This implies that for any u such that e ∈ π(u),
Lu = 0, Bu = ∞, or Du = −∞, respectively. So, in all these cases, the node u
cannot contribute to the weighted height. Thus we call a node u active if Lu > 0,
Bu < ∞ and Du > −∞. The active portion of the tree is largest subtree rooted
at the root of T∞ consisting of active nodes only. One should see active nodes as
participating.

We are only interested in the ideal trees that satisfy some specific constraints.
In particular, every node u should have at least one active child, and the active
portion of the tree should not be a path. Also, we enforce some constraints on X
defined in (1) so that depths behave nicely in the active portion of the tree. This
leads us to valid split vectors. Only ideal trees with such vectors will be considered.
The definition requires moment conditions, and we first introduce the cumulant
generating function Λ of X = (Z,E) by

Λ(λ, µ) = log E
[
eλZ+µE

∣∣∣ Z > −∞, E <∞
]

+ P {Z > −∞, E <∞} ∀λ, µ ∈ R.

This definition allows to deal with Z and E taking infinite values, and matches with
the usual cumulant generating function when Z,E ∈ R almost surely.

Definition 1. Consider X = ((Z1, E1), . . . , (Zd, Ed)), and write (Z,E) for the dis-
tribution of a typical component. We say that X is a valid split vector if Z ∈
[−∞,∞), E ∈ [0,∞],

∑d
i=1 e

−Ei = 1, and the following conditions hold:
(a) 0 ∈ DoΛ,the interior of the domain DΛ

def= {(λ, µ) : Λ(λ, µ) <∞}.
(b) (Zi, Ei), 1 ≤ i ≤ d, are identically distributed.
(c) P {∃i : Zi > −∞, Ei <∞} = 1 and dP {Z > −∞, E <∞} > 1.
(d) E [Z | Z > −∞, E <∞] ≥ 0 and E [E | Z > −∞, E <∞] > 0.

Remark. If P {Z > −∞, E <∞} = 1, then T∞ is active. Then, we only need the
range conditions, 0 ∈ DoΛ, EZ ≥ 0 and EE > 0 for X to be a valid split vector.

For ideal trees with a valid split vector X , the first term of the asymptotic expan-
sion of the weighted height can be characterized by an implicit equation involving the
large deviations rate function Λ? = Λ?X associated with X = (Z,E). The function
Λ? is the convex dual of Λ [24, 58]:

Λ?(α, ρ) = sup
λ,µ
{λα+ µρ− Λ(λ, µ)} ∀α, ρ ∈ R.

4

Theorem 1. Let Tn be an ideal tree with split vector X and let Hn be its weighted
height. Let Λ? be the large deviations rate function of X, a typical component of X .
Then

Hn = c log n+ o(log n)

in probability, as n→∞, where c = sup{α/ρ : Λ?(α, ρ) ≤ log d}.

Remarks. (a) Note that for a valid split vector X , ρ = 0 is never possible in the
supremum defining c (see Lemma 1). This is the case every time we write such a
supremum.
(b) If Z and E are independent and do not take infinite values, then Λ?(α, ρ) =
Λ?Z(α) + Λ?E(ρ), where Λ?Z(α) and Λ?E(ρ) are defined as the usual Fenchel–Legendre
transforms of ΛZ(λ) = log E

[
eλZ
]

and ΛE(µ) = log E
[
eµE

]
, respectively. Hence

Theorem 2 agrees with the result of Broutin and Devroye [14] which claims that
c is the maximal value of α/ρ in {Λ?Z(α) + Λ?E(ρ) ≤ log d}. Actually, under their
assumptions, the optimal value is attained at a point in {Λ?Z(α) + Λ?E(ρ) = log d}.

The definition of the constant c. The level sets of Λ? play an essential role
in the properties of c. Let Ψ(`) = {(α, ρ) ∈ R2 : Λ?(α, ρ) ≤ `}. Then, we have

c = sup{α/ρ : Λ?(α, ρ) ≤ log d} = sup{α/ρ : (α, ρ) ∈ Ψ(log d)}.

In the sequel, we let (Zr, Er) be distributed as (Z,E) conditional on the components
being real, i.e., {Z > −∞, E <∞}. We first argue about the definition of c itself.

Lemma 1. Assume 0 ∈ DoΛ and p = P {Z > −∞, E <∞} ≥ 1/d.
(a) (EZr,EEr) ∈ Ψ(log d) 6= ∅ and c = sup{α/ρ : Λ?(α, ρ) ≤ log d} is well defined.
(b) If furthermore, EZr ≥ 0 then c ≥ 0.
(c) If P {E = 0} < 1/d, then there exists δ > 0 such that

c ≤ sup{α/ρ : Λ?(α, ρ) ≤ log d+ δ} <∞.

Proof. Note that since 0 ∈ DoΛ, by Lemma 15 (c), (EZr,EEr) ∈ R2.
(a) For any λ, µ ∈ R, by Jensen’s inequality,

Λ(λ, µ) = log E
[
eλZ

r+µEr
]

+ log p ≥ λEZr + µEEr + log p.

It follows that λEZr +µEEr−Λ(λ, µ) ≤ − log p and thus, Λ?(EZr,EEr) ≤ − log p.
Since p ≥ 1/d, (EZr,EEr) ∈ {(α, ρ) : Λ?(α, ρ) ≤ log d} 6= ∅.
(b) If EZr ≥ 0 we have c ≥ EZr/EEr ≥ 0, potentially infinite if EEr = 0.
(c) For all δ > 0, c ≤ sup{α/ρ : Λ?(α, ρ) ≤ log d + δ}, so we need only prove
that the right-hand side is finite for some δ > 0. Since P {E = 0} < 1/d, we
can pick δ > 0 such that P {E = 0} < e−δ/d. By Lemma 15 (c), Λ? is a good
rate function (see Appendix B), and hence the level sets Ψ(·) are compact. As a
consequence, it suffices to prove that {ρ = 0} ∩ Ψ(log d + δ) = ∅. We show that
infα∈R lim infρ↓0 Λ?(α, ρ) ≥ log d+ δ, which would prove the claim. For all α, ρ ∈ R,

Λ?(α, ρ) = sup
λ,µ∈R

{λα+ µρ− Λ(λ, µ)} ≥ sup
µ∈R
{µρ− Λ(0, µ)} = Λ?Er(ρ)− log p.

5

Let q = P {Er = 0}. Then,

ΛEr(µ) = log E
[
eµE

r]
= log

(
q + (1− q) ·E

[
eµE

r ∣∣ Er > 0
])
.

For ρn ↓ 0,

Λ?Er(ρn) = sup
µ∈R

{
µρn − log

(
q + (1− q)E

[
eµE

r ∣∣ Er > 0
])}

≥ −√ρn − log
(
q + (1− q)E

[
e−E

r/
√
ρn
∣∣∣ Er > 0

])
→ − log q.

So lim infn→∞ Λ?Er(ρn) ≥ − log q. Therefore, for any α ∈ R,

lim inf
ρ↓0

Λ?(α, ρ) ≥ − log P {Er = 0} − log p = − log P {E = 0} > log d+ δ,

and infα lim infρ↓0 Λ?(α, ρ) ≥ log d+ δ, which completes the proof.

A geometric interpretation. Observe that in a diagram of α versus ρ, α/ρ is
the slope of the line connecting the origin with the point (α, ρ). In such a diagram,
Ψ(log d) is a compact convex set by Lemma 15 (see Appendix). Then, if one imagines
that Ψ(log d) is embossed, c is the just the slope of the line with a joint at the origin
that would be dropped from the vertical at the origin. This is illustrated by Figure 1.

α

ρ

Figure 1. Typical level sets for Λ? and I
are shown. The shaded region is the set
Ψ(log d) = {Λ?(α, ρ) ≤ log d}. The thick
line is the border of {I(α, ρ) ≤ log d}. We
also show three points together with the
lines of interest. The steepest is used for
the upper bound, the most gentle for the
lower bound. The intermediate one is the
optimal line.

3 Random weighted split trees

3.1 An embedding to construct random trees

In ideal trees, all nodes receive an independent copy of the same random vector, and
the description of a finite tree is done in a very natural way by pruning the branches
of T∞. However, ideal trees do not cover some important kinds of random trees.

6

Just consider trees for which the distribution of the split vector varies, like most
increasing trees [6, 17]. Moreover, the size of an ideal tree is random in general. We
now propose a model that is not subject to these constraints, and hence captures
many more applications. As stated in the introduction, our model is related to the
split trees of Devroye [30] and a tree of size n is seen as a recursive partition of a
set of n items.

Random trees can be constructed using a variety of methods, also called em-
beddings. We propose an embedding which emphasizes an underlying structure
consisting of independent random variables. Many important brands of random
trees can be captured by this model. Some examples are presented in Section 5.

Different types of nodes. Consider a family {Xm,m ≥ 0} of random vectors,
where Xm = ((Zm1 , E

m
1), . . . , (Zmd , E

m
d)). Assume that for all m, and 1 ≤ i ≤ d,

m exp(−Emi) is almost surely integer-valued, and Emi ≥ 0. Assign independently
a copy of the sequence {Xm,m ≥ 0} to each one of the nodes of an infinite d-ary
tree T∞. The different elements of the sequence {Xm,m ≥ 0} provide sufficient
flexibility.

Building a random tree on n items. Given an integer n and the copies of
{Xm,m ≥ 0}, we build a sequence {(Du, Bu), u ∈ T∞} of weighted depths and birth
times of the nodes of T∞. Observe that although the dependence is not explicitly
written, {(Du, Bu), u ∈ T∞} depends on n. The construction is made easier by using
the auxiliary sequence {Nu, u ∈ T∞}, where Nu is the cardinality of a node u, that is
the number of items in its subtree. Let n ≥ 0 and consider ((Zn1 , E

n
1), . . . , (Znd , E

n
d)),

the copy of X n at the root of T∞. The children u1, . . . , ud of the root are assigned
cardinalities Nui = n exp(−Eni) ∈ N, 1 ≤ i ≤ d. Given the values of Nu1 , . . . , Nud ,
the sequences {Nv : v ∈ T∞(ui)}, 1 ≤ i ≤ d, describing the trees rooted at ui,
1 ≤ i ≤ d are recursively built in the same way, unless 1 ≤ Nui ≤ b or Nui = 0.
Here b is the number of items that a node can contain.

Using {Nu, u ∈ T∞}, and the copies of {Xm,m ≥ 0}, we now assign random
variables (Ze, Ee) to the edges of T∞. Let e be the i-th edge out of a node u ∈ T∞.
We set

Ze = ZNui and Ee = ENui .

Recall that π(u) denotes the set of edges on the path from u up to the root in T∞. As
for the case of ideal trees, we define the weighted depth of a node u, Du =

∑
e∈π(u) Ze

and the birth time of a node u, Bu =
∑

e∈π(u)Ee. This finishes the construction of
{(Du, Bu), u ∈ T∞} which fully describes our random weighted tree. Then we have

Tn
def= {u ∈ T∞ : Nu > 0} = {u ∈ T∞ : Bu < log n}.

We are interested in the weighted height Hn = max{Du : u ∈ Tn} of the random
tree Tn. Again, it is sufficient to consider the trees for which, for each n, the

7

components of X n are identically distributed. We say that a random tree is valid if
it can be constructed by the above process and the following conditions hold:

• Permutation invariance. For any integer n, and any permutation σ, we
have

((Znσ(1), E
n
σ(1)), . . . , (Z

n
σ(d), E

n
σ(d))) = ((Zn1 , E

n
1), . . . , (Znd , E

n
d)) in distribution.

• Convergence. There exists a valid split vector X∞ (see Definition 1) such
that the cumulant generating functions of the vectors X n and X∞ satisfy
ΛXn → ΛX∞ ≤ ∞ everywhere as n→∞ and 0 ∈ DoΛX∞ .

• Bounded height. There exists a deterministic function ψ such that for all
n, Hn ≤ ψ(n).

Remarks. (a) Observe that since 0 ∈ DoΛ∞ , ΛX → ΛX∞ implies that X → X∞ in
distribution [see 12, p. 390].
(b) We can slightly relax the constraint that the height be bounded. For instance,
subexponential tails for the height would suffice: for all M ≥ 1, there exists a
function f with f(t)/t→∞ as t→∞ such that

sup
n≤M

{
ef(t) ·P {Hn ≥ t}

}
≤ 1.

Ordinary tries violate this condition, and are be treated separately [15, 16].

Lemma 2. Let Tn be a valid random tree as defined above. Then we have:
• Conditional independence. For any node u, the σ-algebras generated by the
variables associated with edges in the subtrees rooted at the children u1, . . . , ud are
independent, conditioned on the sizes Nu1 , . . . , Nud.
• Size-dependent distribution. Conditioning on Nu = k, the subtree rooted at
u, Tn(u), is distributed as Tk.

As in the case of ideal trees, the height may be characterized using large de-
viations functions. The height of Tn and of an ideal tree with split vector X∞
are asymptotically comparable in probability. The main result of this paper is the
following theorem.

Theorem 2. Let X∞ be a valid split vector. Let Tn be a valid random tree with
limit split vector X∞ and let Hn be its weighted height. Then,

Hn = c log n+ o(log n)

in probability, as n→∞ where c = sup{α/ρ : Λ?(α, ρ) ≤ log d} and Λ? is the large
deviations rate function for X∞, a typical component of X∞.

The heights of many known trees fall within the scope of Theorem 2. These
include binary search trees [27], bounded degree increasing trees [6, 17], random
recursive trees [28, 56], plane-oriented trees [56], scale-free trees [3, 56], pyramids
[11, 50], and most models captured by the less general result of Broutin and Devroye
[14]. Many applications are treated in Section 5. For more applications see [13].

8

3.2 Relying on ideal trees

In the proof of Theorem 2 we approximate depths in random trees by those in a
suitable ideal tree that is easier to deal with. The approximation is based on a
coupling of the random trees with the ideal tree with split vector X∞.

By assumption, X n → X∞ in distribution as n → ∞, hence by Skorohod’s
theorem [see, e.g., 12], we can find a coupling for which the convergence holds almost
surely. In the following, we let X n be the copies of the random variables such that
X n → X∞ almost surely. If we use copies of this coupled sequence {Xm,m ≥ 0}
to build the random trees, we obtain a coupled sequence {Tn, n ≥ 0}. Since the
convergence of X n to X∞ is almost sure, each node has a copy of X∞ as well. These
copies, in turn, define a proper ideal tree with split vector X∞. This latter tree is
called the ideal tree associated with the coupled sequence {Tn, n ≥ 0}.

Lemma 3. Consider the coupled sequence of random trees {Tn, n ≥ 0}, and the
associated ideal tree. Let ` be a fixed positive integer. Let L` be the set of nodes at
level ` in T∞. Then, as n→∞,

{(Dv, Bv) : v ∈ L`} →
{

(D∞v , B
∞
v) : v ∈ L`

}
a.s., where D∞v and B∞v are the weighted depth and birth time of v in an ideal tree
with valid split vector X∞.

Proof. Since X n → X∞ a.s., each node has an independent copy of the limit as
well. These limit random variables are used to define {(D∞u , B∞u), u ∈ T∞}, which
characterizes fully a coupled ideal tree. Assume for now that, for all u ∈ T∞, and
some coupled random variables (D′u, B

′
u) is distributed as (Du, Bu),

(D′u, B
′
u) −−−→

n→∞
(D∞u , B

∞
u) almost surely. (2)

Then {(D′v, B′v) : v ∈ L`} → {(D∞v , B∞v) : v ∈ L`} a.s., as n → ∞. Therefore, to
prove the lemma, it suffices to show that (2) holds for all u ∈ T∞.

Let A be a set of probability 1 on which, for all u, X nu → X∞u . We prove by
induction on the (unweighted) depth that

∀ω ∈ A, (D′u(ω), B′u(ω))→ (D∞u (ω), B∞u (ω)).

For the sake of simplicity, we drop the ω and simply write (D′u, B
′
u) and (D∞u , B

∞
u),

remembering that, in fact, these values are measurable functions of ω. If u is the
root, then (D′u, B

′
u) = (0, 0) = (D∞u , B

∞
u). Otherwise, u is the i-th child of some

node v. The induction hypothesis tells us that (D′v, B
′
v) → (D∞v , B

∞
v) as n → ∞.

Let the components of X∞ be (Z∞i , E
∞
i), 1 ≤ i ≤ d. Assume first that B∞v = ∞,

then B∞u = B∞v +E∞i (v) =∞. As B′u ≥ B′v, if follows that B′u → B∞u . If B∞v <∞,
we have N ′v = n exp(−B′v) ∼ n exp(−B∞v)→∞ as n→∞. As a consequence,

D′u = D′v + Z
N ′v
i (u) −−−→

n→∞
D∞v + Z∞i (v) = D∞u , and

B′u = B′v + E
N ′v
i (v) −−−→

n→∞
B∞v + E∞i (v) = B∞u .

9

Therefore, (D′u, B
′
u)→ (D∞u , B

∞
u), as n→∞, which completes the proof.

Important remark. Proving Theorem 2 amounts to showing that a property holds
in probability. As a consequence, we can use the coupled sequence of trees we have
just described. In the remainder of the paper, the trees we consider are always taken
from this coupled sequence. In particular, there always exists a coupled ideal tree to
rely on, and it does make sense to condition on events happening on this ideal tree
to study random variables in Tn. We let Z∞, E∞, D∞, and B∞ be the variables
associated with the coupled ideal tree, so for a node u ∈ T∞ the variables of interest
in the ideal tree are

D∞u =
∑
e∈π(u)

Z∞e and B∞u =
∑
e∈π(u)

E∞e .

3.3 Towards the proof

The proofs are based on large deviations theory (see, e.g., [26], [24], or [25]). We are
interested in the case of extended random vectors whose components may also take
one (only) of the values ∞ or −∞. We now focus on this slight generalization.

Let {Xi, 1 ≤ i ≤ n} be a family of independent and identically distributed (i.i.d.)
extended random vectors distributed like X = (Z,E). Assume Z ∈ [−∞,∞) and
E ∈ [0,∞]. Set p = P {Z > −∞, E <∞}. For α and ρ real numbers, we are
interested in the tail probability

P

{
n∑
i=1

Zi > αn,
n∑
i=1

Ei < ρn

}
. (3)

Before we state the result, recall that the cumulant generating function Λ of an
(extended) random vector X is defined by

Λ(λ, µ) = log E
[
eλZ+µE

∣∣∣ Z > −∞, E <∞
]

+ log p ∀λ, µ ∈ R.

Observe that if Z and E are a.s. real, then Λ(λ, µ) = E
[
eλZ+µE

]
, which matches the

usual definition. The tail probability in (3) is characterized using Λ?, the Fenchel–
Legendre dual of Λ [see 58]: for α, ρ ∈ R, we define

Λ?(α, ρ) = sup
λ,µ
{λα+ µρ− Λ(λ, µ)}.

Theorem 3 (Cramér, see [24]). Assume that {(Zi, Ei), i ≥ 1} are i.i.d. random
vectors distributed as (Z,E), and that 0 ∈ DoΛ. Then for any α, ρ ∈ R,

lim
n→∞

1
n

log P

{
n∑
i=1

Zi > αn,
n∑
i=1

Ei < ρn

}
= −I(α, ρ) def= − inf{Λ?(x, y) : x > α, y < ρ}.

10

Remarks.(a) It is possible that Λ? = ∞ everywhere except at a point, and conse-
quently I may be infinite as well.
(b) Observe that the inequalities in Theorem 3 are strict. The result is false if one
allows equality (see [44] or [24, Exercise 2.2.37] for a counterexample built by taking
(α, ρ) on the boundary of DΛ). This technicality may be avoided if one enforces
(α, ρ) ∈ DoΛ? (see Lemma 15).

Proof. The quadrant (α,∞)× (−∞, ρ) is a convex open set. Hence Theorem 6.1.8
of Dembo and Zeitouni [24] applies when P {Z = −∞ or E =∞} = 0 (thus, p = 1).
We now show the details in the extended case. Note that

P

{
n∑
i=1

Zi > αn,
n∑
i=1

Ei < ρn

}

= P

{
n∑
i=1

Zi > αn,

n∑
i=1

Ei < ρn

∣∣∣∣∣ ∀i, Zi > −∞, Ei <∞
}
· pn.

The classical form of Cramér’s theorem applies to the first factor, and hence, writing

Λc(λ, µ) 7→ log E
[
eλZ+µE

∣∣∣ Z > −∞, E <∞
]
,

the cumulant generating function of (Z,E) conditioned on {Z > −∞, E <∞}, and
Λ?c for its dual,

lim
n→∞

1
n

log P

{
n∑
i=1

Zi > αn,
n∑
i=1

Ei < ρn

}
= − inf{Λ?c(x, y) : x > α, y < ρ}+ log p.

However, Λ = Λc+log p, and therefore Λ? = Λ?c− log p, which finishes the proof.

The Gärtner–Ellis theorem is an extension of Theorem 3 for sequences of random
variables that are neither independent nor identically distributed [35, 40]. We will
only use the upper bound.

Theorem 4 (Gärtner–Ellis). Let {(Zn, En), n ≥ 1} be random vectors taking
values in [−∞,∞) × [0,∞]. Let Fn = {Zi > −∞, Ei < ∞, 1 ≤ i ≤ n}. Let
Am,m ≥ 0, be an arbitrary sequence of events. Assume that for all (λ, µ) ∈ R2, and
δ > 0, there exists M = M(λ, µ, δ) such that

sup
n≥1

1
n

log E

[
1[Fn, AM] · exp

(
n∑
i=1

λZi + µEi

)]
≤ Λ(λ, µ) + δ ≤ ∞. (4)

Assume that Λ is the cumulant generating function of some extended random vector
X = (Z,E). Let Γ be a closed set such that {−∞}× [0,∞]∪ [−∞,+∞)×{∞} 6∈ Γ.
Assume that 0 ∈ DoΛ. Then, for any γ > 0, there exists M ′ such that

lim sup
n→∞

1
n

log P

{
1
n

n∑
i=1

(Zi, Ei) ∈ Γ, AM ′

}
≤ −min

{
1/γ, inf

(α,ρ)∈Γ
Λ?(α, ρ)− γ

}
,

where Λ? is the convex dual of Λ.

11

Remark. This is just a statement of a relaxed version of the classical Gärtner–
Ellis theorem [35, 40], that requires convergence to Λ instead of our asymptotic
bounds. Observe that we only require pointwise asymptotic bounds on the moment
generating functions. A formal proof can be found in Appendix B.

The Gärtner–Ellis and Cramér theorems do not give directly the constant c
in terms of Λ? but in terms of I(·, ·). The following alternate expressions for the
constant c will be useful in the proofs. Until the end of the section, Λ(·, ·), Λ?(·, ·)
and I(·, ·) are the functions associated with (Z,E).

Lemma 4. Assume that 0 ∈ DoΛ, P {Z > −∞, E <∞} ≥ 1/d and P {E = 0} <
1/d. Let c def= sup{α/ρ : Λ?(α, ρ) ≤ log d}. Then
(a) c = infε>0 sup{α/ρ : Λ?(α, ρ) ≤ log d+ ε}.
(b) c = sup{α/ρ : I(α, ρ) ≤ log d}.
(c) c = sup{α/ρ : (α, ρ) ∈ Ψ(log d) ∩ DoΛ?}.

Proof. For ` ∈ R, let ΨI(`) = {(α, ρ) : I(α, ρ) ≤ `}. Observe that Lemma 1 ensures
that Ψ(log d) 6= ∅ and that c is well-defined.
(a) Since {Λ?(α, ρ) ≤ log d} ⊆ {Λ?(α, ρ) ≤ log d + ε} for all d ≥ 1 and ε > 0, it
is straightforward that sup{α/ρ : Λ?(α, ρ) ≤ log d} ≤ infε>0 sup{α/ρ : Λ?(α, ρ) ≤
log d+ ε}.

For n ≥ 1, write cn
def= sup{α/ρ : Λ?(α, ρ) ≤ log d + 1/n}. By Lemma 1 (c),

there exists n0 large enough that cn < ∞ for all n ≥ n0. Let δ > 0. For n ≥ n0,
let (αn, ρn) ∈ Ψ(log d + 1/n) be a sequence of points such that αn/ρn ≥ cn − δ.
Clearly (αn, ρn) ∈ Ψ(log d + 1/n0) for all n ≥ n0 and since Ψ(log d + 1/n0) is
compact, there exists a subsequence {(αn, ρn), n ≥ n0} that converges to (α∞, ρ∞) ∈
Ψ(log d + 1/n0) as n → ∞. For each n ≥ n0 in the subsequence we have that
Λ?(αn, ρn) ≤ log d + 1/n, and since Λ? is continuous in Ψ(log d + 1/n0) (since it is
compact), then Λ?(α∞, ρ∞) ≤ log d. Thus α∞/ρ∞ ≤ sup{α/ρ : Λ?(α, ρ) ≤ log d}.
Also, since αn/ρn ≥ cn − δ for all n ≥ n0, then α∞/ρ∞ ≥ limn→∞ cn − δ =
infε>0 sup{α/ρ : Λ?(α, ρ) ≤ log d+ ε} − δ. Taking δ → 0 concludes the proof.

(b) Recall that the rate function I is defined by I(α, ρ) = inf{Λ?(x, y) : x > α, y <
ρ}, for α, ρ ∈ R. We fist show that sup{α/ρ : Λ?(α, ρ) ≤ log d} ≤ sup{α/ρ :
I(α, ρ) ≤ log d}. For any ε > 0, we can pick α0 < α and ρ0 > ρ such that
α0/ρ0 > α/ρ − ε. Then (α0, ρ0) ∈ ΨI(log d), implying that sup{α/ρ : Λ?(α, ρ) ≤
log d} ≤ sup{α/ρ : I(α, ρ) ≤ log d} + ε. Since ε is arbitrary, sup{α/ρ : Λ?(α, ρ) ≤
log d} ≤ sup{α/ρ : I(α, ρ) ≤ log d}.

Next, we show that sup{α/ρ : I(α, ρ) ≤ log d} ≤ sup{α/ρ : Λ?(α, ρ) ≤ log d}.
Assume that I(α, ρ) ≤ log d, or, equivalently, (α, ρ) ∈ ΨI(log d). Then by definition,
there exist (x, y) such that x > α, y < ρ and Λ?(x, y) ≤ log d. Clearly, (x, y) ∈
Ψ(log d) and x/y > α/ρ, which proves the claim.

(c) Since Λ? is finite on Ψ(log d), we see that Ψ(log d)o ⊂ Ψ(log d)∩DoΛ? ⊂ Ψ(log d).
By Lemma 1, {ρ = 0} ∩ Ψ(log d) = ∅, and hence α/ρ is continuous on Ψ(log d).

12

Accordingly, sup{α/ρ : (α, ρ) ∈ Ψ(log d)o} = sup{α/ρ : (α, ρ) ∈ Ψ(log d)}. The
result follows.

Lemma 5. Assume 0 ∈ DoΛ. Let p = P {Z > −∞, E <∞}. Then Ψ(− log p) ⊂
{(α, ρ) : α ≤ EZc, ρ ≥ EEc}, where (Zc, Ec) denotes a random vector distributed as
(Z,E) conditioned on {Z > −∞, E <∞}.

Proof. We have Λ? = Λ?(Zc,Ec) − log p. So it suffices to prove the claim when p = 1,
and hence (Z,E) = (Zc, Ec) almost surely. Assume that α > EZc. For any ρ ∈ R,
we have Λ?(α, ρ) = supλ,µ{λα+µρ−Λ(λ, µ)} ≥ supλ{λα−Λ(λ, 0)}. Since 0 ∈ DoΛ,
Λ is differentiable at 0 and Λ(λ, 0) = λEZc + o(λ), as λ → 0. As a consequence,
λα−Λ(λ, 0) = λ(α−EZc)+o(λ) ∼ λ(α−EZc) by assumption. It follows that there
exists λ > 0 such that λα−Λ(λ, 0) > 0, and hence Λ?(α, ρ) > 0, hence proving that
(α, ρ) 6∈ Ψ(0) if α > EZc. The case when ρ < EEc is treated in a similar way.

Around the optimal value. To prove Theorem 1, we shall need to show that, for
ε > 0, P {Hn ≥ (c+ ε) log n} = o(1), and P {Hn ≥ (c− ε) log n} = 1−o(1). In other
words, taking for granted the link between these tail probabilities and Λ?(·, ·) and
I(·, ·), we need some information about the behavior of the curves around {α = cρ}.
This is why the next lemma is the key to proving the upper and lower bounds of
Theorems 1 and 2.

Lemma 6. Assume 0 ∈ DoΛ and p = P {Z > −∞, E <∞} > 1/d. Let c def=
sup{α/ρ : Λ?(α, ρ) ≤ log d}.
(a) ∀ε > 0, there exists (α, ρ) ∈ R2 such that I(α, ρ) < log d, and c− ε < α/ρ < c.
(b) If P {E = 0} < 1/d, then, for any ε > 0, inf{Λ?(x, y) : x/y ≥ c+ ε} > log d.

Proof. Lemma 1 ensures that Ψ(log d) 6= ∅.
(a) Let ε > 0. By definition, we can pick (α0, ρ0) such that Λ?(α0, ρ0) ≤ log d and
α0/ρ0 > c−ε/2. Consider the region Ψ(log d)∩B∩DoΛ? where B is a non-empty open
ball centered at (α0, ρ0) for which all points (x, y) ∈ B satisfy x/y > c− ε. Since Λ?

is convex and Λ?(EZc,EEc) = − log p < log d, this implies that Λ?(x, y) < log d for
some (x, y) ∈ Ψ(log d)∩B∩DoΛ? . Furthermore, we can pick such an (x, y) such that
x/y < c. Next, pick (α, ρ) ∈ Ψ(log d) ∩ B such that α < x and ρ > y (and hence
α/ρ < c). Since Λ?(x, y) < log d, I(α, ρ) < log d, and c− ε < α/ρ < c.

(b) Let ε > 0 and assume for a contradiction that inf{Λ?(α, ρ) : α/ρ ≥ c+ε} ≤ log d.
Then, for any δ > 0, there exist (α, ρ) such that Λ?(α, ρ) ≤ log d+δ and α/ρ ≥ c+ε.
As a consequence, ∀δ > 0, sup{α/ρ : Λ?(α, ρ) ≤ log d + δ} ≥ c + ε. This implies
that infδ>0 sup{α/ρ : Λ?(α, ρ) ≤ log d + δ} ≥ c + ε. By Lemma 4 (b), we have
infδ>0 sup{x/y : Λ?(α, ρ) ≤ log d} = c, and obtain a contradiction.

3.4 The upper bound

Let Λn denote be the cumulant generating function of a typical component (Zn, En)
of X n. Let Lk be the set of nodes k levels away from the root in T∞. Let uk be the

13

left-most node in Lk. We introduce the event Fk defined by

Fk
def= {Ze > −∞, Ee <∞, ∀e ∈ π(uk)}.

The upper bound is based on the Gärtner–Ellis theorem (Theorem 4). The following
result proves that the conditions for its application hold, with the event AM being
Nu ≥M .

Lemma 7. Let λ, µ ∈ R. For any δ > 0, there exists M large enough such that

sup
n,k

{
1
k

log E [1[Fk, Nuk ≥M] · exp (λDuk + µBuk) | Nu0 = n]
}
≤ Λ(λ, µ) + δ,

where Λ is the cumulant generating function of (Z∞, E∞).

Proof. In order to improve the readability of the equations, and in this proof only, let
us reindex the random vectors (Ze, Ee) on the left-most path to T∞ as {(Zi, Ei), i ≥
1}, where the indices increase with the distance from the root. In the same spirit, for
i ≥ 0, write Ni, Di and Bi for Nui , Dui and Bui , respectively. If n < M , we clearly
have 1[Nk ≥M] = 0 and the result holds. With our new notation, Dk =

∑k
i=1 Zi

and Bk =
∑k

i=1Ei, so proving the results reduces to bounding

C
def= E

[
1[Fk, Nk ≥M] · eλDk+µBk

∣∣∣ N0

]
= E

[
1[Fk, Nk ≥M] · e

Pk
i=1(λZi+µEi)

∣∣∣ N0

]
.

The random vectors (Zi, Ei) are not independent. However, by conditioning on N1,

C = E
[

E
[

1[Fk, Nk ≥M] · e
Pk
i=1(λZi+µEi)

∣∣∣ N1

] ∣∣∣ N0

]
.

Let F 2
k be the event that {Zi, Ei ∈ R, 2 ≤ i ≤ k}. Then, given N0 and N1, the

random variables 1[F 2
k , Nk ≥M] exp(

∑k
i=2(λZi + µEi)) and 1[F1] exp(λZ1 + µE1)

are independent. Hence

C ≤ E

 E
[

1[F 2
k , Nk ≥M] · e

Pk
i=2(λZi+µEi)

∣∣∣ N1

]
︸ ︷︷ ︸

I

·E
[

1[F 2
1]eλZ1+µE1

∣∣∣ N1

] ∣∣∣∣∣∣∣∣ N0

 ,
where we used 1[N1 ≥M] ≤ 1 in the second factor. The first factor can be bounded
by

I ≤ sup
m≥M

E
[

1[F 2
k , Nk ≥M] · e

Pk
i=2(λZi+µEi)

∣∣∣ N1 = m
]
,

which is independent of N1 and N0. Let δ > 0 and let M be large enough that for
all m ≥M , Λm(λ, µ) ≤ Λ(λ, µ) + δ. Then

C ≤ sup
m≥M

E
[

1[F 2
k , Nk ≥M] · e

Pk
i=2(λZi+µEi)

∣∣∣ N1 = m
]
· eΛ(λ,µ)+δ

= sup
m≥M

E
[

1[Fk−1, Nk−1 ≥M] · e
Pk−1
i=1 (λZi+µEi)

∣∣∣ N0 = m
]
· eΛ(λ,µ)+δ.

14

An easy induction then shows that

sup
n≥M

E
[

1[Fk, Nk ≥M] · eλDk+µBk
∣∣∣ N0 = n

]
≤ ekΛ(λ,µ)+kδ.

Since δ was arbitrary, the proof is complete.

Let ε > 0. Let c′ = c+ ε, where c = sup{α/ρ : Λ?(α, ρ) ≤ log d} is the constant
defined in the statement of Theorem 2. By definition,

P
{
Hn > c′ log n

}
= P

{
∃v ∈ Tn : Dv > c′ log n

}
.

Recall that Lk denotes the set of nodes at level k in T∞. The union bound yields

P
{
Hn > c′ log n

}
≤
∑
k≥0

P
{
∃v ∈ Lk : Dv > c′ log n, v ∈ Tn

}
.

Using a second union bound over the nodes in each level,

P
{
Hn > c′ log n

}
≤
∑
k≥0

dk ·P
{
Duk > c′ log n, uk ∈ Tn

}
. (5)

In order to further bound (5), we first restrict our attention to the case Nuk ≥ M .
We have

P
{
Duk > c′ log n,Nuk ≥M

}
≤ P {(Duk , Buk) ∈ Γ, Nuk ≥M} ,

where Γ = {(x, y) ∈ R2 : x ≥ c′y}. By Lemma 7, and since 0 ∈ DoΛ, the upper
bound of Gärtner–Ellis theorem (Theorem 4) holds: for any γ > 0, there exists M1

such that for all M ≥M1,

lim sup
k→∞

1
k

log P
{
Duk > c′ log n,Nuk ≥M

}
≤ −min

{
1
γ
, inf

(x,y)∈Γ
Λ?(x, y)− γ

}
.

By Lemma 6, there exists β > 0 such that inf{Λ?(x, y) : (x, y) ∈ Γ} ≥ log d+ β.
Then, choosing γ < β/2, we have∑
k≥K

dk ·P
{
Duk ≥ c

′ log n,Nuk ≥M
}
≤
∑
k≥K

dk · e−k(β/2+log d) ≤ C1 · e−Kβ/2, (6)

for all K ≥ K1 large enough and some constant C1 = C1(K1),

As in the proof of Theorem 1, we treat the values of k ≤ K using Markov’s
inequality. Let λ > 0, such that (λ, 0) ∈ DoΛ. There exists C2 ≥ 0 and M2 > 0 such
that sup{Λn(λ, 0) : n ≥M2} ≤ C2 <∞. Then, for this value of λ, by Lemma 7,

P
{
Duk ≥ c

′ log n,Nuk ≥M2

}
≤ ekC2−λc′ logn.

15

Therefore, by the union bound,

∑
k≤K

P
{
∃v ∈ Lk : Dv ≥ c′ log n,Nv ≥M2

}
≤ KdKeKC2

nλc′
. (7)

Let now M3 = max{M1,M2}. We have obtained bounds on the terms of (6) for
every k when Nuk ≥ M3. It remains to deal with the nodes at the bottom of the
tree for which N < M3. Recall that by assumption, P {Hn ≥ ψ(n)} = 0.

P {Hn ≥ (c+ 2ε) log n} ≤ P {∃v ∈ Tn : Dv ≥ (c+ 2ε) log n− ψ(M3), Nv ≥M3}
≤ P {∃v ∈ Tn : Dv ≥ (c+ ε) log n,Nv ≥M3} .

Hence, putting (6) and (7) together,

P {Hn ≥ (c+ 2ε) log n} ≤ KdKeKC2

nλc′
+ C1e

−Kβ/2.

As λc′ > 0, this can be made as small as we want by first choosing K and next
letting n go to infinity. Since ε was arbitrary, this finishes the proof of the upper
bound.

3.5 The lower bound

The aim of this section is to build a surviving Galton–Watson process that ensures
that nodes with large weighted depth exist in Tn with probability 1− o(1). We split
the construction of this process into stages. We first show that deep nodes do occur
with positive probability. Then, we proceed with proving that “deep nodes” occur
in Tn with probability 1− o(1) using a standard boosting argument and considering
the subtrees rooted at level t > 0. We first have to ensure that there are enough
nodes at level t that are suitable for the boosting argument. Indeed, it is possible
that Du = −∞ or Bu =∞ which would prevent any node in the subtree of u from
having any effect on the height.

Skimming the tree. Our aim here is to find nodes of sufficiently large weighted
depth in Tn. We start by finding nodes with large weighted depth in the coupled
ideal tree, and then prove that the corresponding nodes in Tn are also sufficiently
deep.

Lemma 8. Let Tn be a random tree as described in Section 3. Let c = sup{α/ρ :
Λ?(α, ρ) ≤ log d}. For all ε > 0, there exists n0 such that

inf
n≥n0

P {∃u ∈ Tn : Du ≥ (c− ε) log n} > 0.

Proof. Let ε > 0. By Lemma 6, there exists α and ρ such that α/ρ = c′ and
I(α, ρ) < log d, for some c′ such that c − ε/2 < c′ < c. Let α and ρ be fixed. Let `
be an arbitrary positive integer to be chosen later. A node v ∈ T∞ is called ideally

16

good if either it is the root, or v lies ` levels below an ideally good node u and we
have

D∞v ≥ D∞u + `α and E∞v ≤ E∞u + `ρ.

The set of ideally good nodes forms a Galton–Watson tree. Let Y∞ be the size of
the progeny of u in this Galton–Watson process. By linearity of expectation, writing
π(u, v) for the set of edges on the unique path from u to v in the ideal tree, with v
lying ` levels below u,

EY∞ = d` ·P {D∞v −D∞u ≥ α`,E∞v − E∞u ≤ ρ`}

= d` ·P

 ∑
e∈π(u,v)

Z∞e ≥ α`,
∑

e∈π(u,v)

E∞e ≤ ρ`

 .

By Cramér’s theorem (Theorem 3), and because of our choice for α and ρ, we have

EY∞ = d` · e−I(α,ρ)`+o(`) = e` log d−`I(α,ρ)+o(`) −−−→
`→∞

∞.

Thus, there exists ` large enough such that EY∞ > 1. This choice makes the process
supercritical. Let ` now be fixed.

Consider the coupled random trees Tn, with size-dependent vectors. A node
v ∈ T∞ is called good if it is the root, or it lies ` levels below a good node u and we
have

Ev ≤ Eu + ρ` and Dv ≥ Du + α`.

The set of good nodes is a branching process. However, the progeny distribution Yu
of a node u now depends on u and the process is not a Galton–Watson process. We
deal with this minor issue using Lemma 13. By Lemma 3, we have

lim inf
n→∞

P {Yu ≥ t | Nu = n} ≥ P {Y∞ ≥ t} ,

for all 0 ≤ t ≤ d`. Since EY∞ > 1, there exists M large enough that for all n ≥M ,

P {Yu ≥ t | Nu = n} ≥ P {Y∞ ≥ t}+
1−EY∞

2d`
.

Now, by Lemma 13, there exists a random variable Y ′ such that, for all t,

P
{
Y ′ ≥ t

}
= max

(
P {Y∞ ≥ t}+

1−EY∞

2d`
, 0
)
.

Further, there exist coupled copies of Y ′, {Y ′u, u ∈ T∞} such that have Y ′u ≤ Yu if

17

Nu ≥M . The Galton–Watson process with progeny distribution Y ′ is supercritical:

E
[
Y ′
]

=
d`∑
t=1

P
{
Y ′ ≥ t

}
≥

d`∑
t=1

(
P {Y∞ ≥ t}+

1−EY∞

2d`

)
= EY∞ +

1−EY∞

2

=
1 + EY∞

2
> 1.

Therefore, it survives with probability 1− q > 0. Note that the guarantee Y ′u ≤ Yu
only holds if Nu ≥M . In particular, it is not true that every node u in the coupled
Galton–Watson process with progeny distribution Y ′ is also a good node.

However, in the case of survival, either (a) there is an infinite path of good
nodes u with Nu ≥M , or (b) there is some good node w with Nw < M . Now, if (a)
happens, for every integer k, there exists a node v such that Dv ≥ α`k and Nv ≥M .
So in particular, with

k1 =
⌊

log n
ρ`

⌋
,

Dv ≥ c′ log n − α`, and v ∈ Tn since Nv ≥ M ≥ 1. In case (b), consider the
shallowest good node w such that Nw < M . Then, w is part of some generation k2

of the process (at level k2` in T∞). Since w is good, M > Nw ≥ n exp(−ρk2`), and
hence,

k2 ≥
log n− logM

ρ`
.

It follows that Dw ≥ c′ log n− c′ logM. As a consequence, in both cases, for n large
enough, there exists a node u ∈ Tn with Du ≥ (c − ε) log n, and this happens with
probability at least 1− q > 0.

Lemma 8 ensures that nodes with a large weighted depth exist with positive
probability. We now show that such nodes actually exist with probability 1− o(1).
To this aim, we intend to use the standard boosting technique: we run multiple
copies of the branching process to increase the chance that one survives. Instead of
using the root as a first individual, we want to use some of the dt nodes at level t
as starting individuals of independent processes. However, as for the case of ideal
trees, not all such nodes are suitable as starting individuals.

The nice portion of the tree. Since P{Z = −∞, E =∞} may be positive, we
cannot expect in general that all dt nodes at level t are good starting individuals.
Indeed, some node u may not even be active, i.e., Du = −∞ or Bu = ∞. In spite
of this fact, we claim that there are enough good starting individuals when X∞ is a

18

valid split vector. In order to prove this claim, we use a second branching process
defined on the top t levels.

We first look at the ideal tree. Let v ∈ T∞ be called ideally nice if either it is
the root, or it is linked to an ideally nice node by an edge e and we have

Z∞e > a and E∞e < b.

Let R∞t be the number of ideally nice nodes in Lt, the set of nodes t levels away
from the root in T∞. Then {R∞t , t ≥ 0} is a Galton–Watson process. By Defini-
tion 1 (c) of a valid split vector, P {Z∞ > −∞, E∞ <∞} > 1/d, hence there exist
δ > 0, a0 and b0 such that for all a ≤ a0 and b ≥ b0, P {Z∞ > a,E∞ < b} >
1/d + δ. Now, by Definition 1 (c), P {∃i : Z∞i > −∞, E∞i <∞} = 1, and thus
P {∃i : Z∞i > a,E∞i < b} → 1, as a → −∞ and b → ∞. By Theorem 12, the pro-
cess survives with probability at least 1− q′, and q′ = q′(a, b) can be made as small
as we want by choice of a and b. If R∞t > 0 for all t ≥ 0, then R∞t →∞ as t→∞
with probability one [2]. As a consequence, for any integer r, there exists t0 such
that P

{
R∞t0 ≤ r

∣∣ R∞t > 0,∀t ≥ 0
}
≤ 1/r.

We return to the random tree Tn. A node at level t in Tn is called nice if Du ≥ at
and Bu ≤ bt. By Lemma 3, the number Rt0 of nice nodes u at level t0 satisfies, for
n large enough,

P {Rt0 ≤ r | R∞t > 0, ∀t ≥ 0} ≤ 2/r. (8)

Observe in particular that the conditioning is meaningful since we consider the
coupled sequence of trees. Equation (8) gives us the handle we need on the number
of nodes we can use as starting individuals in the boosting step.

Boosting the survival probability. Let ε > 0. Let {T∞(vi), 1 ≤ i ≤ Rt0}
be the family of subtrees of T∞ rooted at the nice nodes {vi, 1 ≤ i ≤ Rt0}. The
processes of good nodes described in the proof of Lemma 8 evolve independently in
every T∞(vi). Furthermore, by Lemma 8, there is n0 such that for all 1 ≤ i ≤ Rt0
and for all m ≥ n0,

P
{
∃u ∈ T∞(vi) : Du −Dvi ≥

(
c− ε

2

)
logm,Bu −Bvi < logm

}
≥ 1− q. (9)

By construction, we have Dvi ≥ at0 and Bvi ≤ bt0, for 1 ≤ i ≤ Rt0 . Let n be large
enough, and let m be such that logm = log n − bt0. If one can find a node u in
T∞(vi) as described in (9), then

Du ≥ at0 −
(
c− ε

2

)
t0b+

(
c− ε

2

)
log n ≥ (c− ε) log n,

for n large enough. Such a node u is called a deep node. Moreover, Bu < logm +
Bvi ≤ log n so u ∈ Tn and Hn ≥ Du ≥ (c− ε) log n.

19

If no deep node exists, then one of the following must occur: either {Rt, t ≥ 0}
dies, or it survives but Rt0 ≤ r, or we cannot find a deep node in any of the Rt0 ≥ r
independent trees T∞(vi). As a consequence, for n large enough,

P {Hn ≤ (c− ε) log n} ≤ P {Rt0 < r}+ P {Hn ≤ (c− ε) log n | Rt0 ≥ r}
≤ P {∃t ≥ 0 : Rt = 0}+ P {1 ≤ Rt0 < r}+ qr,

by independence of T∞(vi), 1 ≤ i ≤ Rt0 . It follows that

P {Hn ≤ (c− ε) log n} ≤ q′ + 2
r

+ qr.

This can be made as small as we want by choice of q′ = q′(a, b) and r. This completes
the proof of the lower bound.

4 The height of trees of effective size n

In some applications, one wants to express the height of the tree in terms of the
number of significant nodes. Only the active portion of the tree is significant for
the height, and we shall define the effective size #Tn of Tn as the size of its active
portion:

#Tn = |{u ∈ Tn : Du > −∞}|.

When P {Z = −∞} = 0, the effective size is just the number of nodes |Tn|. The
only difference between the height Hn and that of a tree of effective size n is a scale
factor.

Theorem 5. Let Tn be a valid weighted random tree with limit split vector X , of
(random) effective size sn = #Tn. Let Λ? be the rate function of a typical component
X of X . Then, the height of Tn satisfies Hn = c

γ log sn + o(log sn) in probability, as
n→∞, where c = sup{α/ρ : Λ?(α, ρ) ≤ log d} and γ = − sup{φ : ΛY (φ) ≤ − log d},
with Y = E +∞ · 1[Z = −∞].

We start by proving an equivalent result for ideal trees.

Theorem 6. Let Tn be an ideal tree with valid split vector X , of (random) effective
size sn = #Tn. Let Λ? be the rate function of a typical component X of X . Then,
the height of Tn satisfies Hn = c

γ log sn + o(log sn) in probability, as n→∞, where
c = sup{α/ρ : Λ?(α, ρ) ≤ log d} and γ = − sup{φ : ΛY (φ) ≤ − log d}, with Y =
E +∞ · 1[Z = −∞].

Theorem 6 follows easily from following lemma about the effective size of Tn.
The ideas are borrowed from Nerman [55]. See also the papers of Biggins [9, 10]
who uses Nerman’s results in settings that are similar to ours.

Lemma 9. Let Tn be an ideal tree with valid split vector X . Let (Z,E) be a typ-
ical component of X . Let γ = − sup{φ : ΛY (φ) ≤ − log d}, where Y = E +∞ ·
1[Z = −∞]. Then log #Tn ∼ γ log n in probability, as n→∞.

20

Proof. The effect of Z = −∞ is to cut down a subtree. We introduce a modified time
random variable Y producing the same effect: Y = E +∞ · 1[Z = −∞]. Because
the proofs rely on the renewal theorem, Biggins [10] assumes the distributions are
nonlattice. However, the theorems can be proved in the lattice case as well [10, 55].
Theorem 2.1 of Biggins [10] can be used without modification, provided we translate
it to our setting. We use the cumulant generating function ΛY defined by

ΛY (φ) = log E
[
eφY

]
+ log P {Y <∞} ,

for φ ∈ R. The Malthusian parameter

γ = − sup{φ : ΛY (φ) ≤ − log d}

is the quantity of interest. For all φ,

ΛY (φ) = log P {Z > −∞, E <∞}+ log E
[
eφE

∣∣∣ Z > −∞, E <∞
]
.

Also, ΛY (0) = log P {Z > −∞, E <∞} > − log d by assumption. Hence, γ > 0
(which just means that the process is supercritical). Clearly, supt e−γt < ∞. By
Theorem 2.1 of [10], we thus conclude that log #Tn ∼ γ log n on the surviving set.
However, by Definition 1 the process survives with probability 1. As a consequence,
we have log #Tn ∼ γ log n a.s. and thus in probability.

Remark. Lemma 9 can also be proved using properties of recursive equations and
the contraction method (see, e.g., [54, 57, 59, 60]).

Proof of Theorem 6. By Theorem 1, Hn = c log n+o(log n) in probability as n→∞.
Also, by Lemma 9, sn = #Tn ∼ γ log n in probability, as n→∞. Now,

Hn

log n
→ c and

log n
log sn

→ 1
γ

in probability, as n→∞. Therefore, the product converges in probability.

We can now sandwich the effective sizes of random trees between that of two
ideal trees. This provides a result similar to Lemma 9. The proof of Theorem 5 goes
along the same lines as that of Theorem 6, and is omitted.

Lemma 10. Let Tn be a weighted random tree with valid limit split vector X . Let
(Z,E) be a typical component of X . Then, as n → ∞, log #Tn ∼ γ log n in proba-
bility, where γ = − sup{φ : ΛY (φ) ≤ − log d}.

Proof. The modified size-dependent time random variables are now {Y m,m ≥ 0}
where Y m = Em +∞ · 1[Zm = −∞]. Upper and lower bounds on #Tn may be
obtained by respectively lower, and upper bounding Y n so as to have i.i.d. variables,

21

and then use Lemma 9 above. We describe the upper bound and omit the proof of
the lower bound since it follows along the same lines. We have

ΛYm(φ) = log P {Zm > −∞, Em <∞}+ Λm(0, φ)
→ log P {Z > −∞, E <∞}+ Λ(0, φ),

as m→∞. Since 0 ∈ DoΛ, Y m → Y in distribution [12, p. 390]. We use a coupling
argument. Let Fm and F be the distribution functions of Y m and Y , respectively.
Let GM (x) = sup{Fm(x),m ≥ M}. The function GM is the distribution function
of a proper random variable W . By the dominated convergence theorem, we have
ΛW (γ + ε)→ Λ(γ + ε) < log d. As a consequence, there exists M large enough that
ΛW (γ + ε) ≤ log d.

Now, for m ≥ M , Y m stochastically dominates WM . Let U be a [0, 1]-uniform
random variable. For each node u ∈ T∞, F (Yu) is a [0, 1]-random variable, and
G−1
M ◦ F (Yu) ≤ Yu is distributed as W . Let TMn be the subtree of Tn consisting of

nodes u with Nu ≥M . There are at most #TMn · d hanging subtrees with Nu < M ,
each one of effective size at most M . It follows that #Tn ≤ #TMn (1 + dM) and

lim sup
n→∞

log #Tn
log n

≤ lim sup
n→∞

log #TMn + log(1 + dM)
log n

≤ γ + ε,

where the last inequalities follows from the choice of M and Lemma 9. Since ε was
arbitrary, the proof is complete.

5 Applications

5.1 Variations on binary search trees

Binary search trees [47] are search trees built on a set of keys {1, 2, . . . , n}. Given
a permutation {σ1, σ2, . . . , σn} of the keys, the first element σ1 is stored at the root
of a binary tree. The set of keys is then partitioned according to their values into
{σi : σi < σ1} and {σi : σi > σ1}. Both subsets are then treated recursively to form
the left and right subtrees of the root, respectively.

If the permutation is taken uniformly at random from the set of permutations
of {1, . . . , n}, the tree is called a random binary search tree. This model is of
great interest, particularly because of its ubiquity in computer science as, e.g., the
tree emerging from the branching structure of quicksort [45]. In this model of
randomness, σ1 is an element of {1, . . . , n} taken uniformly at random and hence
the sizes of the left and right subtrees are distributed as Bin(n− 1, U) and Bin(n−
1, 1− U), respectively, where U is a [0, 1]-uniform random variable. More precisely,
writing (N1, N2) for a vector that is distributed as a multinomial(n − 1;U, 1 − U),
the vector of interest is

X n =
((

1,− log
(
N1

n

))
,

(
1,− log

(
N2

n

)))
. (10)

22

One can show that the conditions required to apply Theorem 2, are satisfied. In
particular:

Lemma 11. Let X n be defined by (10). Let X = ((1,− logU), (1,− log(1 − U))).
Then, ΛXn → ΛX everywhere.

Proof. The weights are irrelevant here, and we consider

(En1 , E
n
2) = (log n− logN1, log n− logN2)

only. Observe that (N1, N2) is distributed as (bnUc , bn(1− U)c), where U is a
[0, 1]-uniform random variable. For all µ1, µ2 ∈ R,

Mn(µ1, µ2) def= E
[
eµ1E1+µ2E2

]
= E

[(
bnUc
n

)−µ1

·
(
bn(1− U)c

n

)−µ2
]
.

Thus, (
bnUc
n

)−µ1

·
(
bn(1− U)c

n

)−µ2

−−−→
n→∞

U−µ1 · (1− U)−µ2

almost surely. Therefore, if µ1 < 1 and µ2 < 1, by the bounded convergence theorem,

Mn(µ1, µ2)→ E
[
U−µ1 · (1− U)−µ2

]
.

If, on the other hand, either µ1 ≥ 1 or µ2 ≥ 1, then by Fatou’s Lemma [see, e.g.,
12],

lim inf
n→∞

Mn(µ1, µ2) ≥ E
[
U−µ1 · (1− U)−µ2

]
=∞.

Thus, we have convergence everywhere in R∪{+∞}, which completes the proof.

Hence, for this model, E = − logU and Z = 1. The random variable E is
then distributed as an exponential random variable with mean 1 and Theorem 2
immediately implies the following theorem of Devroye [27].

Theorem 7 (Devroye [27]). Let Tn be a random binary search tree. Let Hn be its
height. Then Hn ∼ c log n, in probability as n→∞, where c = 1/ρ = 4.311 . . . and
ρ is the smallest solution of ρ− 1− log ρ = log 2.

Remark. In the following, we will not prove the convergence of the cumulant
generating functions any more, and only refer to Lemma 11.

The value 4.311 . . . log n is fairly large compared to log2 n, the height of a com-
plete binary tree with n nodes. As this value represents the worst case search
time, various methods have been used to shrink it and hence obtain more effi-
cient searching data structures. One of the easiest approaches is to ensure that
the splits are more balanced towards (1/2, 1/2). One way to achieve more bal-
anced splits is to use the median of 2k + 1 keys as a pivot [66]. When k is fixed,
the split at every node is still given by (10) but now (N1, N2) is distributed as a
multinomial(n−1;Uk, 1−Uk) and Uk is a beta(k+1, k+1) random variable. Again,
we see that for X = ((1,− logUk), (1,− log(1 − Uk))), ΛXn → ΛX everywhere as
n→∞. This suffices for the hypothesis of Theorem 2 to hold.

23

Theorem 8 (Devroye [29]). Let Tn be a binary search tree built with the medians of
2k+1 keys as pivots. Then the height Hn of Tn satisfies Hn ∼ ck log n in probability
as n→∞, where ck is the unique solution of

s

ck
+

2k+1∑
i=k+1

log
(

1− s

i

)
= log 2,

and s is implicitly defined by

1
ck

=
2k+1∑
i=k+1

1
i− s

.

If k is fixed, we can make ck close to 1/ log 2. However, for each k we have
ck > 1/ log 2. One can improve this by taking values of k that depend on the
number of keys stored in a subtree. If k → ∞ as n → ∞, we see that X n → X =
((1, log 2), (1, log 2)) a.s. as n → ∞. Theorem 2 then implies that Hn ∼ log2 n, in
probability as n → ∞. This strengthens the theorem of Mart́ınez and Roura [51]
which asserts that the average depth, in this case, is asymptotic to log2 n [see also
66].

5.2 Digital search trees

This example is a weighted version of the one of Broutin et al. [17]. We consider
tries on a finite alphabet A = {1, 2, . . . , d} with the Bernoulli model of randomness:
each datum consists of an infinite sequence Ai = Ai1, A

i
2 . . . of i.i.d. random elements

of A [23, 39, 65]. A string Ai corresponds to an infinite path in a d-ary tree defined
in the following way: from the root, take the Ai1-th first child, next the Ai2-th, and
so forth. We prune the subtrees of each node that contain only one single string.
The remaining tree is the trie associated with the n strings.

For tries, there is no deterministic bound on the height of a trie built from n
or even two strings. Neither Theorem 1 nor Theorem 2 applies to tries. Various
techniques have been used to shrink the height of tries such as patricia [53] and
digital search trees [22, 48]. See also the recent survey by Flajolet [37]. We focus
on digital search trees, which are, strictly speaking, not search trees. We prefer the
term pebbled tries, to emphasize the trie structure: a string (a “pebble”) is assigned
to each node in the tree instead of to each leaf. In this “pebbled” version of tries, a
string, taken at random, is associated to the root. Then, the n−1 remaining strings
are distributed to the k subtrees depending on the value of their first character. The
tree is then built recursively.

In a computer, the characters are coded in binary. The cost of a character in
terms of bit comparisons is then the length of its binary code. The model of pebbled
tries has been studied by Broutin et al. [17] in the case where all k characters have

24

the same cost. However, if one uses an optimal code (one that minimizes the costs of
the characters), the lengths of the codewords depend on the character, and hence the
costs of characters vary. Also, in such a code, the length of a codeword is obviously
dependent of the probability that the corresponding character occurs (prefix codes
of Huffman [46]). Hence, this model of pebbled tries built with Huffman coded
characters is a perfect application for Theorem 2.

Let pi be the probability that character i occurs at some fixed position of a string.
Let `i be the length of the binary codeword for character i. Then, at a node u with
Nu = n + 1, the split Vn is distributed as a multinomial(n, p1, p2, . . . , pd) random
vector. The weights (Z1, . . . , Zd) are deterministic and equal to (`1, `2, . . . , `d). Now,
Vn → (p1, p2, . . . , pd) almost surely, and hence it is easily checked that the required
conditions on the random variables are satisfied with X = (`K , pK) where K is
uniform in {1, . . . , d}. It follows that

Λ(λ, µ) = − log k + log

(
d∑
i=1

eλ`i−µ log pi

)
.

Also, since for all i, `i > 0 and log pi < 0 (or there is a.s. only one character in the
alphabet and the tree is degenerate), eΛ+log d is a sum of positive convex functions
whose gradient spans (0,∞)2. As a result, for α, ρ ∈ (0,∞), there exist λ and µ for
which supλ′,µ′{λ′α+µ′ρ−Λ(λ′, µ′)} = λα+µρ−Λ(λ, µ) which are given implicitly
by

α =
∑d

i=1 `ie
λ`ip−µi∑d

i=1 e
λ`ip−µi

and ρ =
−
∑d

i=1 log pieλ`ip
−µ
i∑d

i=1 e
λ`ip−µi

.

Then, by Theorem 1, the height of the pebbled trie is asymptotic to c log n in
probability, where c the maximum value of α/ρ along the curve

λα+ µρ = log

(
d∑
i=1

eλ`i−µ log pi

)
.

Numerical values can easily be obtained for every set of parameters {(pi, `i), 0 ≤ i ≤
d}.

5.3 Pebbled TST

In the same vein, we can study the height of a pebbled version of ternary search trees
(TST). The (non-pebbled) TST structure introduced by Bentley and Sedgewick [5]
uses early ideas of Clampett [19] to improve on array-based implementations of tries.
If an array is used to implement the branching structure of a node, the number of
null pointers can become an issue when the alphabet is large. In TSTs, instead of
the usual array, the node structure consists of a binary search tree (BST), therefore
forcing small branching factors and limiting the amount of null pointers. The TST
may be seen as a hybrid structure combining tries and binary search trees: the

25

high level structure is still that of a trie ; only the structure of a node and the way
character matching are handled changes. The additive parameters of TSTs have
been studied thoroughly by Clément, Flajolet, and Vallée [20, 21], but the question
of the height was left open.

a b c d e f
a

b

c

d

e

f

Figure 2. The structure of a
node in an array-based trie (left)
and TST (right) over the alphabet
{a, b, c, d, e, f}. The pointers used
for the high level trie structure are
dashed.

We now describe the modified pebbled version. Let {A1, A2, . . . , An} be the
set of strings, where we write Ai = Ai1A

i
2 . . . for the sequence of characters. We

distinguish the nodes of the trie structure from the slots of the local binary search
trees. As shown in Figure 2, each node contains d slots. The nodes at the same
distance j from the root are said to be at level j. At level j, the key used for the
comparisons is the j-th character of the sequences.

The tree is built by assigning the sequences to the first empty slot as they come
along in order A1, A2, The first string A1 is stored in the first slot of the root of
the TST and partitions the following sequences with respect to their first characters
into three groups {Ai : Ai1 < A1

1}, {Ai : Ai1 = A1
1} and {Ai : Ai1 > A1

1}. In general,
a sequence Aj stored in a slot at level ` induces a partition of further strings into
{Ai : Ai` < Aj`}, {A

i : Ai` = Aj`} and {Ai : Ai` > Aj`}. Given the TST built from
the first m − 1 sequences, we may think of Am as an item moving down the tree:
it starts at the root and moves as indicated by the sequences stored in the slots
encountered, the comparisons being done on the `-th character at level `. It changes
level only upon finding a matching character, in the other cases, it moves in the
slots of the same node until it eventually finds either an empty slot, or a matching
character. The sequence Am is stored in the first empty slot encountered, and is
used to partition the next strings according the same rules. As a consequence, the
structure of a node is that of a structure of binary search tree (see Figures 2 and 3).

Assume now that the strings are independent sequences of i.i.d. characters where
a character a ∈ {1, . . . , d} has probability pa > 0. We are interested in the height
of a pebbled TST built from n of these independent sequences. Consider a node u
whose subtree stores n+ 1 strings. As in the previous section, the split vector at u,
(N1, N2, . . . , Nd), is clearly multinomial(n, p1, . . . , pd). Looking at the high level trie
structure, the edges may be seen as being weighted by the number of edges in the
local binary search tree structure (Figure 3). Clearly, the cost of the edge leading
to a character a is the 1 plus the depth of the node labeled a in the BST of the

26

Figure 3. The outer structure of trie (left) and the expanded binary search tree structure
of the nodes of a TST on an alphabet of size four. The nodes are shown as circles whereas
the slots are represented by squares.

node considered. Let Zna be the random variable accounting for this value. Then
the vector of interest is

X n =
((

Zn1 ,− log
(
N1

n

))
, . . . ,

(
Znd ,− log

(
Nd

n

)))
.

The random variable Zna has been studied by Clément et al. [20] and Archibald
and Clément [1]. In particular they studied the expected values and variances of
{Zna , 1 ≤ a ≤ d}. However, we need information about the distributions of Zna and
their limits as n→∞. Let τ be the smallest n for which {Ai1, 0 ≤ i ≤ n} contains a
copy of each character. Then, for each n ≥ τ , the distribution of Zna is that of Za =
Zτa , independent of n. The random variable τ is a stopping time and P {τ ≥ n} ≤
(1 − min{pi, 1 ≤ i ≤ d})n. This proves that τ is a.s. finite and that Zna → Za,
in distribution. Then, with X distributed as ((Z1,− log p1), . . . , (Zd,− log pd)), one
can show that ΛXn → ΛX everywhere as n→∞.

This is sufficient for Theorem 2 to apply. The height of the pebbled TST is
asymptotic to c log n in probability, where c is the the maximum value of α/ρ in
{(α, ρ) : Λ?(α, ρ) ≤ log d}, and Λ? is the Cramér function associated with X =
(ZK ,− log pK) where K is uniform in {1, . . . , d}. Numerical values can be obtained
for examples of {pi, 1 ≤ i ≤ d}.

Remark. The height of the non-pebbled version of TST requires more care and
studied by Broutin and Devroye [15, 16].

Example: symmetric pebbled TST. We can obtain more concrete results for
symmetric TST, i.e., when p1 = p2 = · · · = pd = 1/d. In such a case, E = log d
almost surely, and only Z matters. Also, Z is distributed as one plus the depth of
a random node in a random binary search tree of size d. This distribution is known

27

exactly [18, 49]:

P {Z = k} =
2k−1

d · d!

d∑
j=k

[
d
j

]
∀1 ≤ k ≤ d, (11)

where
[
n
k

]
is the Stirling number of the first kind with parameters n and k [43, 63].

Using (11) one can compute Λ, Λ?, and values of the constant cd such that the
height of a pebbled TST of size n is asymptotic to cd log n in probability, as n→∞.
Numerical values are found in Table 1.

d 2 3 4 5 10 20

cd 2.88539. . . 2.63747. . . 2.64612. . . 2.69384. . . 2.91785. . . 3.14445. . .

Table 1. Some numerical values for the height of symmetric pebbled TST.

5.4 Skinny cells in k-d trees

We consider the k-d tree introduced by Bentley [4]. This geometric structure gen-
eralizes binary search trees to multidimensional data sets. Given a set D of d-
dimensional data points {Y 1, Y 2, . . . , Y n}, where Y i = (yi1, . . . , y

i
d) for all i, we

recursively build the following binary tree structure partitioning the data set us-
ing comparisons of some of their components. The first datum Y 1 is stored at the
root. The remaining data are processed as follows: {Y i : i ≥ 2, yi1 ≤ y1

1} and
{Y i : yi1 > y1

1} are assigned respectively to the left and right subtrees, and both
subtrees are recursively built using the same method. The comparisons are done in
a cyclical way depending on the depth of the node at which they occur: the key
used at a node at depth ` is the (`mod d+ 1)-st component of a vector. For a more
complete account on k-d trees see [42] or [61, 62].

When the data points are i.i.d. [0, 1]d-uniform random variables, one can see a
k-d tree as a random refining partition of [0, 1]d. The root represents [0, 1]d, and
more generally, a node u represents the set of points x ∈ [0, 1]d that would be stored
in its subtree if they were data points inserted after u. Therefore, each cell is split
into two along a dividing line, on which lies one of the points Y i, and whose direction
changes in a cyclical way. The cells are obviously rectangular. Let Cu be the cell
associated with a node u. Let L1(u), L2(u), . . . , Ld(u) be the its lengths with respect
to the d dimensions. We are interested in the worst case ratio of two dimensions
of a cell. For example, if d = 2, this is the worst case ratio length over width. By
symmetry, since d is bounded, we can always consider the worst case of the first two
dimensions, L1 and L2. Such a parameter is of great importance in applications.
Indeed, for partial match queries, the running times of algorithms depend on the
shape of the cells, and in particular on how close they are to squares [31, 33, 38, 52].
We prove the following:

28

Figure 4. A (randomly generated) k-d
tree on 150 points uniformly distributed
in [0, 1]2.

Theorem 9. Let Tn be a k-d tree built from n i.i.d. [0, 1]d-uniform random points.
Let

Rn
def= max

{
L1(u)
L2(u)

: u ∈ Tn
}
.

Then Rn = ncd+o(1) in probability, as n → ∞. Furthermore, cd is the maximum
value of α/ρ in the set {(α, ρ) : λα+ µρ+ log

(
(1− µ)2 − λ2

)
+ (d− 2) log(1− µ) ≤

d log 2}, where

µ = 1−
ρ(d− 1) +

√
ρ2 + α2d(d− 2)

ρ2 − α2
and λ = −α· d(d− 2)− 2ρ(d− 1)(1− µ)

(ρ2 − α2)(ρ(1− µ)− (d− 2))
.

In particular, cd < 1 for all d ≥ 2.

Remark. The same result holds for the shape of cells in the quadtrees of Finkel
and Bentley [36]. Indeed, the distribution of (Z,E) given by (12) also describes the
shape of cells in quadtrees.

d 2 3 5 10 40 100

cd 0.86602. . . 0.79047. . . 0.71246. . . 0.63483. . . 0.54976. . . 0.52442. . .

Table 2. Some numerical values for the constant cd describing the asymptotic values of Rn
in a d-dimensional k-d tree.

Proof. We intend to express the maximum ratio as a weighted height. Since in
k-d trees, not all the levels in the tree are equivalent, proceed in two stages: first
consider the levels of depth 0 mod d, and consider the levels 1 mod d since for the
other d− 2 choices mod d, the ratio L1/L2 is not modified.

If we group the levels by bunches of d, then all bunches behave similarly. We
obtain a 2d-ary tree. In this tree, each node corresponds to a rectangular region

29

of [0, 1]d, and its children are the result of its split into 2d subregions. The points
come uniformly at random, and hence the probability that a region is hit is its area.
Figure 5 illustrates the way we turn the question about the ratio into the weighted
height of some tree.

L1

L2

L2 ·U2

L1 ·U1

Figure 5. The way a node is interpreted
when d = 2.

The area of a rectangle is the product of [0, 1]-uniform random variables deter-
mining the splits, and the ratio L1/L2 is the ratio of two products of some of these
random variables. More precisely, let Ui, 1 ≤ i ≤ d be i.i.d. [0, 1]-uniform random
variables. Taking the logarithms of the areas and of the ratios, we see that the
increments are distributed like

E = −
d∑
i=1

logUi and Z = − logU1 + logU2. (12)

To use Theorem 2, we need to compute Λ? associated with X = (Z,E). We start
with the moment generating function: for any real numbers λ and µ, by indepen-
dence,

E
[
eλZ+µE

]
= E

[
U−λ−µ1 · Uλ−µ2

d∏
i=3

U−µi

]
= E

[
U−λ−µ1

]
·E
[
Uλ−µ2

]
·
d∏
i=3

E
[
U−µi

]
.

As a consequence,

E
[
eλZ+µE

]
=


1

(1− µ)2 − λ2
· 1

(1− µ)d−2
if µ < 1− |λ|

∞ otherwise.

It follows that

Λ(λ, µ) =
{
− log

(
(1− µ)2 − λ2

)
− (d− 2) log(1− µ) if µ < 1− |λ|,

∞ otherwise.

So DΛ = {(λ, µ) : µ < 1 − |λ|}. To compute Λ?, we find the maximum of (λ, µ) 7→
λα+ µρ− Λ(λ, µ), which is achieved for λ and µ such that

α =
∂Λ(λ, µ)
∂λ

=
2λ

(1− µ)2 − λ2
and

ρ =
∂Λ(λ, µ)
∂µ

=
2(1− µ)

(1− µ)2 − λ2
+
d− 2
1− µ

,
(13)

30

if such a point exists. For d ≥ 2, such a point does exist and the system above has
solution 

µ = 1−
ρ(d− 1)±

√
ρ2 + α2d(d− 2)

ρ2 − α2

λ =
α

ρ2 − α2
· 2ρ(µ− 1)(d− 1) + d(d− 2)

ρ(µ− 1) + d− 2
.

(14)

Observe that the mere fact that this is a solution of (13) ensures that (λ, µ) ∈ DΛ.
Hence, we have DΛ? = R2, and by Theorem 2, c is the maximum of α/ρ with (α, ρ)
in the set

Ψ(d log 2) = {(α, ρ) : λα+ µρ+ log
(
(1− µ)2 − λ2

)
+ (d− 2) log(1− µ) ≤ d log 2},

where λ and µ are defined by (14). Since this only accounts for the levels whose
depths are 0 mod d, this gives only a lower bound on the actual weighted depth of
the tree. However, one can find a matching upper bound easily. Indeed, to account
for the levels 1 mod d, it suffices to group the levels starting at level 1. Doing this,
the distribution for E and Z remains unchanged, but the ratio L1/L2 is now off
by one single multiplicative factor of 1/U . It follows immediately that the weighted
height on the levels 1 mod d is also c log n, which finishes the proof of Theorem 9.

ρ

α

0 1 2 3 4

0

1

2

3

4

-1

-2

-3

-4

0 1 2 3 4

0

1

2

3

4

-1

-2

-3

-4

ρ

α

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

-1

-2

-3

-4

-5

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

-1

-2

-3

-4

-5

Figure 6. The sets {(ρ, α) : Λ?(α, ρ) ≤ d log 2} together with the lines of maximum slopes
for the maximum ratio of two dimensions of a cell in a k-d tree in R2 and R5.

Corollary 1. For d = 2, we have c2 =
√

3/2.

Proof. If d = 2, µ and λ simplify and we have

µ = 1− 2ρ
ρ2 − α2

and λ =
2α

ρ2 − α2
.

The condition µ − 1 < −|λ| is equivalent to ρ > |α|, so the set to consider is
{(α, ρ) : ρ > |α|}. It follows that

Λ?(α, ρ) =
2α2

ρ2 − α2
+ ρ− 2ρ2

ρ2 − α2
+ log

(
2λ
α

)
= ρ− 2 + 2 log 2− log(ρ2 − α2).

31

Therefore, we need to find the maximum value of α/ρ subject to ρ−2 ≤ log(ρ2−α2).
The optimum is clearly obtained on the boundary of the set, i.e., for ρ − 2 =
log(ρ2 − α2). Then, we have

α

ρ
=

√
1− eρ−2

ρ2
,

which is maximum when the derivative vanishes:

d

dρ

(
α

ρ

)
=
−eρ−2

(
1
ρ2
− 2

ρ3

)
2
√

1− eρ−2

ρ2

= 0.

This happens when ρ = 2 and then α/ρ =
√

3/2. (Note that ρ > |α|.)

Remark. We have limd→∞ cd = 1/2. Indeed, the optimal point is at ρ = d. Using
α ∼ cd, note that

1− µ =
1

1− c
+ o(1) and λ =

1
1− c

+ o(1).

So,

Λ?(α, ρ) =
cd

1− c
+ d− d

1− c
− d log(1− c) + o(d).

Finally, if c = 1/2, we have Λ?(α, ρ) = d log 2 + o(d).

5.5 Skinny cells in relaxed k-d trees

The model of k-d trees described above is a bit constrained due to the cyclical
way in which the components of a vector are used as keys. In particular, k-d trees
are data structures that are mostly static: they are built once, and then used to
perform multiple queries on the same data. To cope with the issue of updating k-
dimensional search structures, Duch, Estivill-Castro, and Mart́ınez [34] introduced
a randomized data structure that is similar to k-d trees, but are not subject to
the same constraints. The symmetry is reintroduced by choosing the index of the
component used as a key at random when a node is inserted in the structure. This
tree structure is naturally called relaxed k-d tree. The structure leads to update
algorithms that are easy to implement, but it is not known whether the structure is
indeed efficient.

Theorem 10. Let Tn be a relaxed k-d tree built from n i.i.d. [0, 1]2-uniform random
points. Let

Rn = max
{
L1(u)
L2(u)

: u ∈ Tn
}
.

Then Rn = n1+o(1) in probability, as n→∞.

32

Figure 7. A (randomly generated) re-
laxed k-d tree on 150 uniformly dis-
tributed points in [0, 1]2. One can no-
tice in at the first glance that the cells
look skinnier than those shown in Fig-
ure 7.

Remark. The cells of 2-dimensional relaxed k-d trees are skinnier than those of
k-d trees. This explains why partial match queries are more costly in relaxed k-d
trees [32, 33] than in k-d trees [38].

Proof of Theorem 10. Consider a cell that does not contain any data point. In the
tree, it corresponds to an external node u. A new incoming point falls in this cell
with probability L1(u) · L2(u). If this happens, two new cells are created. Clearly,
the cell gets divided uniformly. Let U be a [0, 1]-uniform random variable. Then, if
the number Nu of nodes contained in the subtree rooted at u is n, the sizes of the
subcells are distributed as a multinomial(n− 1, U, 1− U) random vector.

As in the case of k-d trees, the ratio L1/L2 is either multiplied or divided by U .
Each of this cases happens with probability 1/2 at every split, so with the additive
formalism, the increase in log(L1/L2) is

Z(U) =
{
− logU w.p. 1/2
logU w.p. 1/2.

Again, X n → ((Z(U),− logU), (Z(1− U),− log(1− U))) almost surely as n → ∞.
Hence we have X = (Z(U),− logU), and for λ, µ ∈ R,

E
[
eλZ+µE

]
=

1
2
E
[
U−λ−µ

]
+

1
2
E
[
Uλ−µ

]
.

Therefore, we have

E
[
eλZ+µE

]
=

 ∞ if λ ≥ 1− µ or λ ≤ µ− 1
1− µ

(1− µ)2 − λ2
otherwise,

and

Λ(λ, µ) =
{
∞ if λ ≥ 1− µ or λ ≤ µ− 1
log(1− µ)− log

(
(1− µ)2 − λ2

)
otherwise.

33

The maximum of (λ, µ) 7→ λα+ µρ− Λ(λ, µ) is achieved for λ and µ, with µ− 1 ≤
λ ≤ 1− µ, satisfying

α =
∂Λ(λ, µ)
∂λ

=
2λ

(1− µ)2 − λ2
and ρ =

∂Λ(λ, µ)
∂µ

=
2(1− µ)

(1− µ)2 − λ2
− 1

1− µ
,

if such a point exists. This implies in particular that

ρ2 − α2 =
4(1− µ)2

((1− µ)2 − λ2)2
+

1
(1− µ)2

− 4
(1− µ)2 − λ2

− 4λ2

((1− µ)2 − λ2)2

=
1

(1− µ)2
≥ 0,

for µ− 1 ≤ λ ≤ 1− µ. Then, provided |α| < |ρ|, the solution is given by

µ = 1− 1√
ρ2 − α2

and λ =
α

ρ2 − α2
· 1

1 + (1− µ)ρ
. (15)

If |α| ≥ |ρ|, then Λ?(α, ρ) = ∞. Indeed, assume that α = ρ + δ, for some δ > 0 (a
symmetric argument holds when α = −ρ− δ). Let ε > 0, and write λ0 = 1−µ− ε ≤
1− µ. Then,

Λ?(α, ρ) ≥ λ0α+ µ0ρ− Λ(λ0, µ0)
= λ0δ + ρ− ρε+ log 2 + log ε+O(1/λ0)→∞

as λ0 →∞. It follows by Theorem 2 that c is the maximum value of α/ρ in the set

0 1 2 3

0

1

2

-1

-2

0 1 2 3

0

1

2

-1

-2

ρ

α

Figure 8. The set {(ρ, α) : Λ?(α, ρ) ≤
log 2} and the line of maximum slope
for the maximum ratio of two dimen-
sions of a cell in a relaxed k-d tree in
R2.

Ψ(log 2) = {λα+ µρ− log(1− µ) + log
(
(1− µ)2 − λ2

)
≤ log 2},

where λ and µ are defined in (15).
Since DΛ? ⊂ {|α| ≤ |ρ|}, it is clear that c ≤ 1, so we only need to prove that

c ≥ 1. In particular, it suffices to find points (α, ρ) ∈ Ψ(log 2) with α/ρ arbitrarily

34

close to 1. Because µ and hence Λ? is not properly defined for α = ρ, we consider
Λ?(1− ε, 1) for ε ∈ (0, 1). One can verify that, as ε→ 0,

Λ?(1− ε) = log 2−
√

2ε+ o
(√
ε
)
,

and therefore, (1− ε, 1) ∈ Ψ(log 2) for ε small enough. This proves that c ≥ 1− ε for
any small enough ε > 0 and hence, by Theorem 2, that logRn ∼ log n in probability
as n→∞.

5.6 d-ary pyramids

Allowing Z = −∞ can be useful when one needs to exclude some tree paths in the
definition of the height. Pyramids [7, 41] are built incrementally as follows. A d-ary
pyramid of size 1 is a single node. Given a d-ary pyramid of size n, pick a node u
uniformly at random among those that have degree at most d − 1. The next node
becomes a child of u. The height of a 2-ary pyramid has been studied by Mahmoud
[50]. Biggins and Grey [11] obtained it for d ≥ 2.

Theorem 11 ([11, 50]). The height Hn of a d-ary pyramid of size n is Hn ∼
log n/(γρ0) in probability, as n→∞, where γ is given by

d∑
i=1

1
(1 + γ)i

= 1, (16)

and ρ0 is defined as the smallest root of

ρ · µ = log

(
d∑
i=1

1
(1− µ)i

)
where ρ =

∑d
i=1 i(1− µ)−i−1∑d
i=1 (1− µ)−i

, (17)

where µ < 1. Numerical values are given in Table 3.

d 2 3 5 10

γ 0.6180339880. . . 0.8392867552. . . 0.9659482366. . . 0.9990186327. . .
ρ0 0.4056580492. . . 0.3759749401. . . 0.3684055189. . . 0.3678801695. . .

(γρ0)−1 3.988664818. . . 3.169061969. . . 2.810088635. . . 2.720946695. . .

Table 3. Some numerical values for the height of d-ary pyramids of effective size n. It is not
surprising to observe that (γρ0)→ 1/e as d→∞, since the height of the random recursive
tree is asymptotic to e log n.

We derive Theorem 11 using our framework. Random recursive trees [64] are
∞-ary pyramids. A random recursive tree of size one consists of a single node. A
random recursive tree of size n+ 1 is built from one of size n by picking a uniform
random node u, and adding a new node as a child of u. Clearly, conditioning on
the new node being a child of an unsaturated node u, u is still uniform among the

35

Figure 9. A 2-ary pyramid seen as the
subtree of a random recursive tree consist-
ing of the first two children of any node.
The black vertices are part of the 2-ary
pyramid.

unsaturated nodes. Hence, one can see a d-ary pyramid as the subtree of a random
recursive tree consisting only of the first d children of any node (Figure 9).

This gives a simple way to obtain the height of d-ary pyramids: build a random
recursive tree in which the first d children of any node have an edge of weight 1
leading to their parent, and the others a weight of −∞: (Z1, . . . , Zd, Zd+1, . . .) =
(1, . . . , 1,−∞, . . .). One can verify [see, e.g., 14] that the (infinite) split vector
(V1, V2, . . . , Vi, . . .) for a random recursive tree is distributed likeU1, (1− U1)U2, . . . ,

i−1∏
j=1

(1− Uj)Ui, . . .

 ,

where {Ui, i ≥ 1} is a family of i.i.d. [0, 1]-uniform random variables. Since our
result only holds for trees of bounded degree, we can rewrite the split vector by
collecting the children with index greater than d+ 1 in a single “bin”:

(V1, V2, . . . , Vd+1) =

U1, (1− U1)U2, . . . ,

d−1∏
j=1

(1− Uj)Ud,
d∏
j=1

(1− Uj)

 , (18)

and (Z1, Z2, . . . , Zd+1) = (1, . . . , 1,−∞). Write Ek = − log Vk. The height is not
affected by a random permutation of the children, so the random variable of interest
is X = (Z,E) = (ZK , EK), where K be taken uniformly at random in {1, . . . , d+1}.
Then, according to the definition of Λ, we have that for all λ and µ real numbers,

Λ(λ, µ) = log E
[
eλ+µEK

∣∣∣ K ≤ d]+ log d− log(d+ 1).

Using the definition (18) for the split vector (V1, . . . , Vd+1), we find that,

Λ(λ, µ) = λ+ log

(
d∑
i=1

E
[
U−µ1

]i)
− log(d+ 1),

and therefore,

Λ(λ, µ) =

{
∞ if µ ≥ 1,
λ+ log

(∑d
i=1(1− µ)−i

)
− log(d+ 1) otherwise.

36

We have DΛ = {(λ, µ) : µ < 1}. It follows that the optimum value for µ = µ(ρ) is
obtained for

α =
∂Λ(λ, µ)
∂λ

= 1 and ρ =
∂Λ(λ, µ)
∂µ

=
∑d

i=1 i(1− µ)−i−1∑d
i=1 (1− µ)−i

. (19)

The function f defined on (0,∞) by

x 7→
d∑
i=1

ix−i−1
/ d∑

i=1

x−i

is continuous, limx→∞ f(x) = 0 and limx↓0 f(x) = ∞. Therefore, (19) admits a
well-defined solution µ(ρ) for all ρ > 0. By Theorem 5, one needs a rescaling factor
γ to express the height of d-ary pyramids of size n. The constant γ is given by

d∑
i=1

1
(1 + γ)i

= 1.

Then, the height of a d-ary pyramid is asymptotic to log n
/

(γρ0), where ρ0 satisfies

λ+ µ(ρ0)ρ0 − Λ(λ, µ(ρ0)) = log(d+ 1),

which proves (17) since λ cancels.

6 Concluding remarks

The model we have introduced in this paper allowed us to unify number of results
concerning heights of random trees. As a payback, we were able to obtain new
results about geometric structures such as the shape of the skinniest cell in random
k-d trees. We forced Z to take values in R. However, our results apply equally to
some, but not all, parameters for multivariate Z. We could ask about the maximum
value of a function of the components of Z. For example, Biggins [8] treats the
question of the maximum of projections of the positions of particles in a branching
random walk.

The model developed here does not encompass tries, a species of trees for which
the bounded height condition does not hold (see p. 8). The height of a random trie
under the standard model of randomness is the sum of two contributions: the first
one is explained by the bulk of the tree and is similar to the present analysis; the
second is a corrective term accounting for the fringe of the tree. See the related
study of digital structures by Broutin and Devroye [15, 16].

37

References

[1] M. Archibald and J. Clément. Average depth in binary search tree with repeated keys.
In Fourth Colloquium on Mathematics and Computer Science, volume AG of DMTCS
Proceedings, pages 309–320. Discrete Mathematics and Theoretical Computer Science,
2006.

[2] K. B. Athreya and P. E. Ney. Branching Processes. Springer, Berlin, 1972.

[3] A.L. Barabási and R. Albert. Emergence of scaling in random network. Science, 286:
509–512, 1999.

[4] J. L. Bentley. Multidimensional binary search trees used for associative searching.
Communication of the ACM, 18:509–517, 1975.

[5] J. L. Bentley and R. Sedgewick. Fast algorithm for sorting and searching strings. In
Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 360–369. SIAM,
1997.

[6] F. Bergeron, P. Flajolet, and B. Salvy. Varieties of increasing trees. In CAAP, volume
581 of Lecture Notes in Computer Science, pages 24–48. Springer, 1992.

[7] P.K. Bhattacharya and J.L. Gastwirth. A nonhomogeneous markov model of a chain-
letter scheme. In M.H. Rizvi, J.S. Rustagi, and D. Siegmund, editors, Recent Advances
in Statistics: Papers in Honor of Herman Chernoff. Academic Press, New York, 1983.

[8] J. D. Biggins. The asymptotic shape of the branching random walk. Advanced Applied
Probability, 10:62–84, 1978.

[9] J. D. Biggins. The growth and spread of the general branching random walk. The
Annals of Applied Probability, 5:1008–1024, 1995.

[10] J. D. Biggins. How fast does a general branching random walk spread. In K. B.
Athreya and P. Jagers, editors, Classical and modern branching processes, New York,
1996. Springer-Verlag.

[11] J. D. Biggins and D. R. Grey. A note on the growth of random trees. Statistics and
Probability letters, 32:339–342, 1997.

[12] P. Billingsley. Probability and Measure. Wiley, New York, 3rd edition, 1995.

[13] N. Broutin. Shedding New Light on Random Trees. Phd thesis, McGill University,
Montreal, 2007.

[14] N. Broutin and L. Devroye. Large deviations for the weighted height of an extended
class of trees. Algorithmica, 46:271–297, 2006.

[15] N. Broutin and L. Devroye. An analysis of the height of tries with random weights on
the edges. Combinatorics, Probability and Computing, 2007. (42 pages), in press.

[16] N. Broutin and L. Devroye. The height of list tries and TST. In International Con-
ference on Analysis of Algorithms, DMTCS Proceedings. Discrete Mathematics and
Theoretical Computer Science, 2007. (13 pages). To appear.

38

[17] N. Broutin, L. Devroye, E. McLeish, and M. de la Salle. The height of increasing trees.
Random Structures and Algorithms, 2007. (25 pages), in press.

[18] G.G. Brown and B.O. Shubert. On random binary trees. Mathematics of Operations
Research, 9:43–65, 1984.

[19] H. A. Clampett. Randomized binary searching with tree structures. Communications
of the ACM, 7(3):163–165, 1964.

[20] J. Clément, P. Flajolet, and B. Vallée. The analysis of hybrid trie structures. In 9th
annual ACM-SIAM Symposium on Discrete Algorithms, pages 531–539, Philadelphia,
PA, 1998. SIAM Press.

[21] J. Clément, P. Flajolet, and B. Vallée. Dynamical source in information theory: a
general analysis of trie structures. Algorithmica, 29:307–369, 2001.

[22] E. G. Coffman and J. Eve. File structures using hashing functions. Communications
of the ACM, 13:427–436, 1970.

[23] R. de la Briandais. File searching using variable length keys. In Proceedings of the
Western Joint Computer Conference, Montvale, NJ, USA. AFIPS Press, 1959.

[24] A. Dembo and O. Zeitouni. Large Deviation Techniques and Applications. Springer
Verlag, second edition, 1998.

[25] F. den Hollander. Large Deviations. American Mathematical Society, Providence, RI,
2000.

[26] J.-D. Deuschel and D.W. Stroock. Large Deviations. American Mathematical Society,
Providence, RI, 1989.

[27] L. Devroye. A note on the height of binary search trees. Journal of the ACM, 33:
489–498, 1986.

[28] L. Devroye. Branching processes in the analysis of the heights of trees. Acta Informatica,
24:277–298, 1987.

[29] L. Devroye. On the expected height of fringe balanced trees. Acta Informatica, 30:
459–466, 1993.

[30] L. Devroye. Universal limit laws for depth in random trees. SIAM Journal on Com-
puting, 28(2):409–432, 1998.

[31] L. Devroye, J. Jabbour, and C. Zamora-Cura. Squarish k-d trees. SIAM Journal on
Computing, 30:1678–1700, 2001.

[32] A. Duch. Design and Analysis of Multidimensional Data Structures. PhD thesis, UPC,
Barcelona, 2004.

[33] A. Duch and C. Mart́ınez. On the average performance of orthogonal range search in
multidimensional data structures. Journal of Algorithms, 44(1):226–245, 2002.

39

[34] A. Duch, V. Estivill-Castro, and C. Mart́ınez. Randomized k-dimensional binary search
trees. In K.-Y. Chwa and O.H. Ibarra, editors, Proc. of the 9th International Sympo-
sium on Algorithms and Computation (ISAAC’98), volume 1533 of Lecture Notes in
Computer Science, pages 199–208. Springer Verlag, 1998.

[35] R. S. Ellis. Large deviations for a general class of random vectors. The Annals of
Probability, 12:1–12, 1984.

[36] R. A. Finkel and J. L. Bentley. Quad trees, a data structure for retrieval on composite
keys. Acta Informatica, 4:1–19, 1974.

[37] P. Flajolet. The ubiquitous digital tree. In B. Durand and W. Thomas, editors, STACS
2006, Annual Symposium on Theoretical Aspects of Computer Science, volume 3884 of
Lecture Notes in Computer Science, pages 1–22. Springer, 2006.

[38] P. Flajolet and C. Puech. Partial match retrieval of multidimensional data. Jounal of
the ACM, 33(2):371–407, 1986.

[39] E. Fredkin. Trie memory. Communications of the ACM, 3(9):490–499, 1960.

[40] J. Gärtner. On large deviations from the invariant measure. Theory of Probabability
and its Applications, 22:24–39, 1977.

[41] J.L. Gastwirth and P.K. Bhattacharya. Two probability models of pyramid or chain
letter schemes demonstrating that their promotional claims are unreliable. Operations
Research, 32(3):527–536, 1984.

[42] G. H. Gonnet and R. Baeza-Yates. Handbook of Algorithms and Data Structures.
Addison-Wesley, Workingham, second edition, 1991.

[43] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics. Addison-Wesley,
Reading, MA, second edition, 1994.

[44] P. Groeneboom, J. Oosterhoff, and F.H. Ruymgaart. Large deviation theorems for
empirical probability measures. The Annals of Probability, 7:553–586, 1979.

[45] C. A. R. Hoare. Quicksort. The Computer Journal, 5:10–15, 1962.

[46] D.A. Huffman. A method for constructing minimum redundancy codes. Proceedings of
the Institude of Radio Engineers, pages 1098–1102, 1952.

[47] D. E. Knuth. The Art of Computer Programming: Sorting and Searching, volume 3.
Addison-Wesley, Reading, MA, 1973.

[48] A.G. Konheim and D.J. Newman. A note on growing binary trees. Discrete Mathe-
matics, 4:57–63, 1973.

[49] W.C. Lynch. More combinatorial properties of certain trees. Computing J., 7:299–302,
1965.

[50] H. M. Mahmoud. A strong law for the height of random binary pyramids. The Annals
of Applied Probability, 4:923–932, 1994.

[51] C. Mart́ınez and S. Roura. Optimal sampling strategies in quicksort and quickselect.
SIAM Journal on Computing, 31:683–705, 2001.

40

[52] C. Mart́ınez, A. Panholzer, and H. Prodinger. Partial match in relaxed multidimen-
sional search trees. Algorithmica, 29(1–2):181–204, 2001.

[53] D. R. Morrison. patricia — Practical Algorithm To Retrieve Information Coded in
Alphanumeric. Journal of the ACM, 15:514–534, 1968.

[54] R. Neininger and L. Rüschendorf. A survey of multivariate aspects of the contraction
method. Discrete Mathematics and Theoretical Computer Science, 8:31–56, 2006.

[55] O. Nerman. On the convergence of a supercritical general (C-M-J) branching process.
Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 57:365–395, 1981.

[56] B. Pittel. Note on the height of random recursive trees and m-ary search trees. Random
Structures and Algorithms, 5:337–347, 1994.

[57] S.T. Rachev and L. Rüschendorf. Probability metrics and recursive algorithms. Ad-
vances in Applied Probability, 27:770–799, 1995.

[58] R. Rockafellar. Convex Analysis. Princeton University Press, Princeton, NJ, 1970.

[59] U. Rösler. A fixed point theorem for distributions. Stochastic Processes and their
Applications, 37:195–214, 1992.

[60] U. Rösler and L. Rüschendorf. The contraction method for recursive algorithms. Al-
gorithmica, 29:3–33, 2001.

[61] H. Samet. Applications of Spatial Data Structures: Computer Graphics, Image Pro-
cessing, and GIS. Addison-Wesley, Reading, MA, 1990.

[62] H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley, Read-
ing, MA, 1990.

[63] R. Sedgewick and P. Flajolet. An Introduction to the Analysis of Algorithm. Addison-
Wesley, Reading, MA, 1996.

[64] R. T. Smythe and H. M. Mahmoud. A survey of recursive trees. Theoretical Probability
and Mathematical Statistics, 51:1–27, 1995.

[65] W. Szpankowski. Average Case Analysis of Algorithms on Sequences. Wiley, New York,
2001.

[66] M. Van Emden. Increasing the efficiency of quicksort. Communications of the ACM,
13:563–567, 1970.

A Galton–Watson processes and beyond

We bound the extinction probabilities of some Galton–Watson processes.

Theorem 12. Let d ≥ 1 be a fixed integer. Consider a sequence of Galton–Watson
processes with progeny distributions Z(x) on {0, 1, . . . , d}, EZ(x) = µx, and extinc-
tion probabilities qx, x ∈ R. Assume that there exists x0 and δ > 0 such that
infx≥x0 EZ(x) ≥ 1 + δ. If P

{
Z(x) = 0

}
→ 0, as x→∞, then qx → 0.

41

The proof of Theorem 12 is based on the following Lemma providing an explicit
bound on the extinction probability.

Lemma 12. Let d ≥ 1 be a fixed integer. Consider a Galton–Watson process with
progeny distribution Z on {0, 1, . . . , d} and extinction probability q. Let µ = EZ > 1
and pi = P {Z = i}, 0 ≤ i ≤ d. Then

q ≤ 2p0

p0 + µ−1
2

if
2p0

p0 + µ−1
2

< 1− µ−
1
d−1 .

Proof. The proof is based on an analysis of the probability generating function
f(s) =

∑
i≥1 pis

i. We know that q satisfies f(q) = q. Observe that

µ = p1 +
∑
i≥2

ipi ≥ p1 + 2
∑
i≥2

pi.

Note that p0 + p1 < 1. Define the auxiliary generating function

g(s) =
f(s)− p0 − p1s

1− p0 − p1
,

and note that g(s) ≤ s2 for all s ∈ [0, 1], and g(0) = 0. Now,

g(q) =
f(q)− p0 − p1q

1− p0 − p1
=

q(1− p1)− p0

1− p0 − p1
≤ q2.

We rewrite the above equation in order to obtain

q ≤ q2 · 1− p1 − p0

1− p1
+

p0

1− p1
≤ q2 +

p0

p0 +
∑

i>1 pi
≤ q2 +

p0

p0 + µ−p1
2

.

Finally, we see that

q ≤ q2 + α where α =
p0

p0 + µ−1
2

.

If 4α ≥ 1, then clearly q ≤ 1 ≤ 4α. Otherwise, 4α < 1 and this implies either

q ≤ 1−
√

1− 4α
2

or q ≥ 1 +
√

1− 4α
2

.

For all x ∈ [0, 1], we have
√

1− x ≥ 1 − x and thus, we can conclude that, when
4α < 1, either

q ≤ 2α or q ≥ 1− 2α. (20)

We now assume that q 6= 0, for otherwise, the result trivially holds. Note that, in
this case, since q = f(q), q ≤

∑d
i=1 ipiq

i−1. By monotonicity, for the solution r of
1 =

∑d
i=1 ipir

i−1, we have q ≤ r. Observe also that
∑d

i=1 ipi = µ, which we have
assumed greater than 1. As a consequence, r ≤ 1 and

1 =
d∑
i=1

ipir
i−1 ≥ rd−1

d∑
i=1

ipi = µrd−1,

so q ≤ r ≤ µ−
1
d−1 . Recalling (20), if 1 − 2α > µ−

1
d−1 , then we must have q ≤ 2α.

This proves the lemma.

42

We are now ready to prove Theorem 12 which is, in fact, an easy corollary of
Lemma 12.

Proof of Theorem 12. If P
{
Z(x) = 0

}
= 0, the result is clear. Assuming P

{
Z(x) = 0

}
>

0, recall Lemma 12. We have, for x ≥ x0,

1− µ
− 1
d−1)

x ≥ 1− (1 + δ)−
1
d−1

def= ξ > 0.

As a consequence, since p0 = P
{
Z(x) = 0

}
→ 0, for x large enough,

2p0

p2 + µx−1
2

=
2p0

p0 + δ/2
≤ 4p0

δ
< ξ.

Therefore, for x→∞, we have qx = O(p0) = o(1), which completes the proof.

In the course of the proofs, we will need the following technical lemma. One
should see it as a tool to deal with branching processes for which the progeny
distribution may depend on the node. It asserts that if there is a deterministic lower
bound for the reproduction distribution function, then one can find a subprocess
that is a proper Galton–Watson process, that is, for which every node has the same
progeny distribution.

Lemma 13. Let Z be a random variable and let N ≥ 0 be a random integer such
that

inf
n

P {Z ≥ k | N = n} ≥ tk,

where tk ↓ 0 as k → ∞. Then there exists a random variable Y with Y ≤ Z such
that P {Y ≥ k} = tk for all k.

Proof. For all k,

P {Z ≥ k} =
∑
n≥0

P {Z ≥ k,N = n}

=
∑
n≥0

P {N = n} ·P {Z ≥ k | N = n}

≥ tk

= P {W ≥ k} ,

where W is chosen such that P {W ≥ k} = tk for all k. Then, Z � W and, by
the inverse transform, there exists a coupled pair (Y,Z), Y distributed as W , with
Y ≤ Z.

43

B Large deviations and Cramér functions

B.1 Proof of Theorem 4

The proof follows roughly the lines of that presented by [24]. Let γ > 0. Observe
first that, since {−∞} × [0,∞] ∪ [−∞,+∞)× {∞} 6∈ Γ, we have, for all M ,

P

{
1
n

n∑
i=1

(Zi, Ei) ∈ Γ, AM

}
= P

{
1
n

n∑
i=1

(Zi, Ei) ∈ Γ, AM , Fn

}
. (21)

Reducing Γ to a compact set. The first step consist in bounding (21) to a
similar probability involving a compact set. Since 0 ∈ DoΛ, there exists λ and µ > 0
and A > 0 such that Λ(λ, µ) < A. For any r > 0, we have

P

{
n∑
i=1

λZi + µEi > rn,AM , Fn

}
≤ E

[
1[AM , Fn] · exp

(
n∑
i=1

λZi + µEi

)]
e−rn.

Applying assumption (4) for this λ and µ, for all M ≥ M1 large enough, since
Λ(λ, µ) ≤ A,

P

{
n∑
i=1

λZi + µEi > rn,AM , Fn

}
≤ e(A+δ−r)n.

Therefore, for r = A+ δ + 1/γ, writing C = {(x, y) : λx+ µy ≤ r}, and Γ′ = Γ ∩ C
we see that, for M ≥M1,

P

{
n∑
i=1

(Zi, Ei) ∈ Γ, AM , Fn

}
≤ P

{
n∑
i=1

(Zi, Ei) ∈ Γ′, AM , Fn

}

+P

{
n∑
i=1

(Zi, Ei) ∈ Cc, AM , Fn

}
,

and hence, for M ≥M1,

P

{
n∑
i=1

(Zi, Ei) ∈ Γ, AM , Fn

}
= P

{
n∑
i=1

(Zi, Ei) ∈ Γ′, AM , Fn

}
+ e−n/γ . (22)

Covering Γ′ with small sets. We now proceed by covering Γ′ with a finite set
of balls. For any ω = (xω, yω) ∈ R2, there exists (λω, µω) such that

λωxω + µωyω − Λ(λω, µω) > min
{

1
γ

+
2γ
3
,Λ?(xω, yω)− γ

3

}
.

For all ω ∈ R2, there exists an open ball Bω such that for all (x, y) ∈ Bω, |λω(x −
xω) + µω(y − yω)| ≤ γ/3. Hence we have

inf
(x,y)∈Bω

{λωx+ µωy} ≥ Λ(λω, µω)− γ

3
+ min

{
1
γ

+
2γ
3
,Λ?(xω, yω)− γ

3

}
. (23)

44

The set {Bω, ω ∈ R2} covers R2 but is uncountable. However Γ′ is contained in a
compact set, and it can be covered by {Bω, ω ∈ C}, where C is finite. Thus, by the
union bound,

P

{
n∑
i=1

(Zi, Ei) ∈ nΓ′, AM , Fn

}
≤ P

{
1
n

n∑
i=1

(Zi, Ei) ∈
⋃
ω∈C
Bω, AM , Fn

}

≤
∑
ω∈C

P

{
1
n

n∑
i=1

(Zi, Ei) ∈ Bω, AM , Fn

}
.

Consider one term in the sum above. Note that
n∑
i=1

(Zi, Ei) ∈ Bω ⇒
n∑
i=1

λωZi + µωEi ≥ inf
(x,y)∈Bω

{λωx+ µωy}.

Then, using assumption (4) with λω and µω and δ = γ/3, there exists M2 = M2(ω)
such that for all M ≥M2,

P

{
n∑
i=1

(Zi, Ei) ∈ Bω, AM

}
≤ exp

(
nΛ(λω, µω) + n

γ

3
− n inf

(x,y)∈Bω
{λωx+ µωy}

)
.

Then, recalling the bound (23), we obtain for all M ≥M2(ω),

P

{
n∑
i=1

(Zi, Ei) ∈ Bω, AM

}
≤ exp

(
n

2γ
3
− n ·min

{
1
γ

+
2γ
3
,Λ?(xω, yω)− γ

3

})
.

Finally, plugging the bound above in (22), and observing that inf{Λ?(x, y) : (x, y) ∈
Γ} = I(α, ρ), for all M ≥ max{M1,M2(ω) : ω ∈ C}

P

{
1
n

n∑
i=1

(Zi, Ei) ∈ Γ, AM

}
≤ (1 + |C|) · exp

(
−n ·min

{
1
γ
, I(α, ρ)− γ

})
.

Taking logarithms completes the proof.

B.2 Properties of Λ, Λ? and I

The functions Λ, Λ? and I are well understood [24]. They are the corner stone of the
characterization of first order asymptotic properties of the height of random trees.
Consider a mapping f : R2 → (−∞,∞]. Let Df be its domain: Df = {(α, ρ) :
f(α, ρ) <∞}, and let Dof be the interior of Df .

The mapping f is said to be convex if, for all x1, x2 ∈ R2, and θ ∈ [0, 1],
we have f(θx1 + (1 − θ)x2) ≤ θf(x1) + (1 − θ)f(x2), where it is understood that
if the left-hand side is ∞, then either f(x1) = ∞ or f(x2) = ∞. If the level
sets Ψf (`) = {x : f(x) ≤ `} are closed for all ` ∈ R, we say that f is lower

45

semicontinuous, and call f a rate function. The mapping f is a said to be a good
rate function if its level sets are compact.

The function Λ(·, ·). The cumulant generating function is the link between the
random variables and the rate functions, and its properties imply those of Λ? and
I.

Lemma 14. The function Λ(·, ·)
(a) takes values in (−∞,∞] if p = P {Z > −∞, E <∞} > 0;
(b) is convex on R2, and continuous in DoΛ.

Proof. (a) By definition, ∀λ, µ ∈ R, we have

Λ(λ, µ) = log p+ log E
[
eλZ+µE

∣∣∣ Z > −∞, E <∞
]
.

Both Z and E are real on {Z > ∞, E < ∞}, and hence E
[
eλZ+µE

]
> 0. Since

p > 0, this yields Λ(λ, µ) > −∞.
(b) The convexity follows from Hölder’s inequality. The continuity in DoΛ is a
straightforward consequence of the convexity. For details see [24].

The function Λ?(·, ·). The level sets of Λ? are of particular interest, and we
write Ψ = ΨΛ? . Indeed, as we will see later, the heights will be characterized using
optimizations of some objective functions on the level sets of Λ?.

0 1 2 3 4 5 6

0

1

2

3

4

-1

-2

-3

-4

0 1 2 3 4 5 6

0

1

2

3

4

-1

-2

-3

-4

ρ

α

Figure 10. An increasing family of
level sets Ψ(`) for the function Λ?

corresponding to the study of k-d
trees (Section 5.4)

Lemma 15. The function Λ?(·, ·) is
(a) convex on R2 ;
(b) continuous on DoΛ?;
(c) a good rate function if 0 ∈ DoΛ.

46

Proof. (a) The convexity of Λ? is a direct consequence of its definition: for t1, t2, λ ∈
R2 and θ ∈ [0, 1], using · to denote the standard inner product,

Λ?(θt1 + (1− θ)t2) = sup
λ∈R2

{λ · (θt1 + (1− θ)t2)− Λ(λ)}

≤ sup
λ∈R2

{θλ · t1 − θΛ(λ)}+ sup
λ∈R2

{(1− θ)λ · t2 − (1− θ)Λ(λ)}

= θΛ?(t1) + (1− θ)Λ?(t2).

(b) Since Λ? is convex, it is continuous on DoΛ? .
(c) Let ` ≥ 0. For r ≥ 0, let Cr = {(x, y) ∈ R2 :

√
x2 + y2 ≥ r}. Since 0 ∈ DoΛ,

there exists a ball B, centered at the origin with radius δ > 0, and A <∞ such that
for all (λ, µ) ∈ B, Λ(λ, µ) ≤ A. For any r ≥ 0 and (α, ρ) ∈ Cr,

Λ?(α, ρ) = sup
λ,µ
{λα+ µρ− Λ(λ, µ)} ≥ sup

(λ,µ)∈B
{λα+ µρ− Λ(λ, µ)} ≥ δ · r −A.

As a consequence, for R large enough, CR does not intersect Ψ(`), proving that Ψ(`)
is bounded.

We now show that Ψ(`) is closed (Λ? is lower semicontinuous). It suffices to
prove that Ψ(`) contains all its accumulation points: for any (α, ρ) ∈ R2 such that
there exists (αn, ρn) ∈ Ψ(`) with (αn, ρn) → (α, ρ), we should have (α, ρ) ∈ Ψ(`).
For any λ, µ ∈ R,

lim inf
n→∞

Λ?(αn, ρn) ≥ lim inf
n→∞

{λαn + µρn − Λ(λ, µ)} = λα+ µρ− Λ(λ, µ).

As a result,

lim inf
n→∞

Λ?(αn, ρn) ≥ sup
λ,µ
{λα+ µρ− Λ(λ, µ)} = Λ?(α, ρ).

Hence, Λ?(α, ρ) ≤ ` and (α, ρ) ∈ Ψ(`), which proves that Ψ(`) is closed.

The function I(·, ·). The function that appears in the Cramér and Gärtner–Ellis
theorems is I(·, ·).

Lemma 16. For α, ρ ∈ R2, let I(α, ρ) def= inf{Λ?(x, y) : x > α, y < ρ}. Then
(a) (α, ρ) 7→ I(α, ρ) is non-decreasing in α, and non-increasing in ρ;
(b) for (α, ρ) ∈ DoΛ?, I(α, ρ) = inf{Λ?(x, y) : x ≥ α, y ≤ ρ}.

Proof. (a) This is clear from the definition as an infimum.
(b) Clearly inf{Λ?(x, y) : x ≥ α, y ≤ ρ} ≤ I(α, ρ). So we prove that I(α, ρ) ≤
inf{Λ?(x, y) : x ≥ α, y ≤ ρ}. Consider a sequence (xn, yn) ∈ DΛ? such that

lim
n→∞

Λ?(xn, yn) = inf{Λ?(x, y) : x ≥ α, y ≤ ρ}.

We build an auxiliary sequence (x′n, y
′
n), n ≥ 1. Let k ≥ 1. If xk 6= α and yk 6= ρ,

then (x′k, y
′
k) = (xk, yk). Assume now that xk = α or yk = ρ. Then we construct

47

a new point (x′k, y
′
k) such that Λ?(x′k, y

′
k) < Λ?(xk, yk) + 1/k where x′k > α and

y′k < ρ. This construction is done in the following way. Assume at first that for
small enough ε > 0 there exists a ball Bε centered at (xk, yk) with radius ε contained
within DoΛ? . In this case, by the continuity of Λ?, we find a point (x′k, y

′
k) ∈ Bε with

xk > α, yk < ρ such that Λ?(x′k, y
′
k) < Λ?(xk, yk) + 1/k. In the second case, no

such ball exists for any ε, which means in particular (xk, yk) lies on the boundary of
DΛ? . Consider the region Rε = Bε ∩DoΛ? ∩ {(α,∞)× (−∞, ρ)}. Since (α, ρ) ∈ DoΛ? ,
an open convex set, this region is non-empty. Let β = infε↓0 sup{Λ?(x, y) : (x, y) ∈
Rε\(xk, yk)}. Assume for a contradiction that β > Λ?(xk, yk). Then there exist (x, y)
such that the line joining (x, y) to (xk, yk) lies below Λ?, contradicting the convexity
of Λ?. Hence β ≥ Λ?(xk, yk) and, for ε small enough, there exist (x′k, y

′
k) in Rε such

that Λ?(x′k, y
′
k) ≤ Λ?(xk, yk). Therefore, using the auxiliary sequence, we see that

inf{Λ?(x, y) : x > α, y < ρ} ≤ limn→∞ Λ?(x′n, y
′
n) = inf{Λ?(x, y) : x ≥ α, y ≤ ρ}.

This finishes the proof.

48

