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Abstract

An algorithm is developed for the exact simulation from distributions that are defined as
fixed-points of maps between spaces of probability measures. The fixed-points of the class of
maps under consideration include examples of limit distributions of random variables studied in
the probabilistic analysis of algorithms. Approximating sequences for the densities of the fixed-
points with explicit error bounds are constructed. The sampling algorithm relies on a modified
rejection method.
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1 Introduction

Let L(X) be the distribution of a random variable X that satisfies a distributional fixed-point
equation of the form

X ∼
K∑
r=1

ArX
(r) + b, (1)

where the symbol ∼ denotes equality in distribution, X(1), . . . , X(K), (A1, . . . , AK , b) are independent
with L(X(r)) = L(X) for all r and given random variables A1, . . . , AK , b, and K ≥ 1 is a fixed integer.
In such a case we call L(X) or X a fixed-point of (1). Under various assumptions on (A1, . . . , AK , b)
and X it is known that such a fixed-point L(X) is unique, see (2) below.

1Research of both authors supported by NSERC grant A3450.
2Research supported by the Deutsche Forschungsgemeinschaft.
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For a subclass of fixed-point equations of the form (1) which is particularly important in theoret-
ical computer science we establish the existence of densities of the fixed-points, give algorithmically
computable approximating sequences for these densities, and establish explicit error bounds for the
approximation. We show that this can, in principle, be turned into an algorithm for the perfect
simulation from the fixed-point distribution when we use the rejection method. The algorithm takes
with probability one a finite time, but is not powerful enough to yield a practical simulation method
in general. Our work should be considered more as a theoretical contribution, establishing the ex-
istence of an exact algorithm that can be designed based on the form of the fixed-point equation
only.

Distributions appearing as fixed-points of equations as (1) appear in many different applied and
pure areas of probability theory. The case K = 1 plays an important role in financial modelling,
insurance mathematics, and hydrology, when the fixed-point equation X ∼ AX+ b may characterize
the stationary distribution of generalized autoregressive processes such as ARMA, ARCH or GARCH,
used in modelling a stationary time series. Usually conditions for the existence of such stationary
distributions are of interest and much effort is made to estimate the tails of these distributions. See
Takás [41], Kesten [24], Vervaat [43], Bougerol and Picard [2], Goldie and Grübel [15], de Bruijn
[7], Goldie and Maller [16], and Embrechts and Goldie [9], Embrechts, Klüpelberg and Mikosch [10,
section 8.4].

Interestingly, the same equations X ∼ AX + b appear as well in theoretical computer science
as the limit distributions of cost measures of one-sided divide and conquer algorithms, e.g., Hoare’s
selection algorithm. Here, the fixed-point property appears in many recursive algorithms. One of
these distributions satisfying X ∼ UX + 1 with U uniform [0, 1] is the Dickman distribution, which
has been studied in number theory, see Mahmoud, Moddarres, and Smythe [28], Grübel na Rösler
[17], and Hwang and Tsai [23].

The case of fixed-point equations (1) with K ≥ 2 usually appears in problems with a branching
nature like branching processes, random fractals, and recursive algorithms. When a recursive algo-
rithm divides the problem into K ≥ 2 parts to recurse on them, the general case of equation (1)
may characterize the limit distribution L(X) of an associate parameter. We give many examples in
this area below, the most important being the limit distribution of the running time of the quicksort
algorithm (see Figure 1 for the corresponding equation).

Approximate generation of X is possible by iterating (1) sufficiently often. It is easy to see that
an infinite number of repetitions leads to an infinite complete K-ary tree, as at each step, each X(r)

on the right-hand-side of (1) must be replaced. Breaking that tree off leads to an approximation.
While this is a valid approach, we are asking the more fundamental question of how to simulate the
fixed-point random variable X exactly.

This problem is virtually unsolved, an exception being Devroye [5], where special types of per-
petuities, namely the case K = 1, b = 1, A1 = Ua with a > 0 and U uniform [0, 1] distributed is
treated. It would be most deserving to have exact generators for more general equations of this form.

To solve our problem, we need to get detailed information on the fixed-point distributions, prefer-
ably an algebraic expression for the density if at least a density exists. Clearly, when the fixed-point
equation characterizes the limit distribution L(X) of some limit law Xn → X, the distribution L(X)
cannot be used for approximating L(Xn) explicitly, as long as the density or distribution function
of X cannot be approximated. We will develop suitable approximations in this paper. It should be
noted that the fixed-point distribution may behave badly. For example, Chen, Goodman, and Zame
[3] exhibited a fixed-point with a density on [0, 1] that is not continuous on a dense subset of [0, 1].

The present paper deals with density approximation and exact simulation from a class of fixed-
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points where a first general restriction is K ≥ 2. We hope to report on progress in the case K = 1
elsewhere. We have to introduce a few restrictions on the class of fixed-point equations in order
to guarantee algorithmic tractability. As shown below, all important known fixed-point equations
arising in the probabilistic analysis of algorithms satisfy these conditions.

quicksort, a sorting algorithm invented by Hoare [18, 21], sorts n numbers using Cn compar-
isons. It is known that ECn ∼ 2n log n (Sedgewick [38, 39]). Hennequin [19, 20] showed that there
is a limit law: (Cn− ECn)/n→ X where → denotes convergence in distribution and X is a positive
random variable. That proof was based on the method of moments. Régnier [33] used a martingale
argument to prove that same limit law. The distribution of X was shown by Rösler [34] to satisfy
the fixed-point equation

X ∼ UX + (1− U)X ′ + 1 + 2 ln(U) + 2(1− U) ln(1− U)

where U is a uniform [0, 1] random variable, X is unique subject to EX2 < ∞, and X and X ′

are i.i.d. This is precisely the format studied in this paper. Fill and Janson [11, 12, 13] studied
the distribution of X in more detail. As announced above, the present paper develops computable
approximations of the density of X, as a special case of a more general series of approximations.

A general theory for equation (1) seems, however, to be far away. The exact simulation from
these distributions is dealt with in only one paper, by Devroye, Fill, and Neininger [6]. In that paper,
an algorithm for the quicksort case is developed that is based on an inequality due to Fill and
Janson [13]. Related distributions include the limit distributions of the number of key exchanges of
quicksort, linear combinations of key exchanges and comparison. Several random trees, such as
the random m-ary search tree, the random median-of-(2k+1) search tree, and the random quadtree,
see for the definitions Mahmoud [27], Sedgewick and Flajolet [40], Knuth [25], and Flajolet, Labelle,
Laforest, and Salvy [14] for probabilistic analysis of quadtrees, have an important parameter, the
total internal path length In (the sum of the distances from the nodes to the root), which satisfies
(In − E In)/n→ X for a different limit law L(X). That was proved via the contraction method by
Rösler [34, 36], Neininger [29], Neininger and Rüschendorf [30], Dobrow and Fill [8] (with the method
of moments), Hwang and Neininger [22]. In all cases, L(X) satisfies the type of fixed-point equation
studied in this paper. For the contraction method, see Rösler [34, 35], Rachev and Rüschendorf [32],
Neininger and Rüschendorf [31] or Rösler and Rüschendorf [37].

Using this method the conditions

ξ :=
K∑
r=1

EA2
r < 1, E b2 <∞, E b = 0 (2)

ensure that (1) has a unique fixed-point X in the space M0,2 of centered probability measures with
finite second moments: see the “Contraction Lemma” in Rösler and Rüschendorf [37, Lemma 1,
Theorem 3]. It is also well known that with the map T associated to (1), for every ν ∈M0,2,

T :M→M, λ 7→ L

(
K∑
r=1

ArZ
(r) + b

)
,

withM the space of univariate probability measures and Z(1), . . . , Z(K), (A1, . . . , AK , b) independent
and L(Z(r)) = λ for all r, we have T (n)(ν) := T ◦ · · · ◦ T (ν) → L(X) in distribution. The second
moments converge as well.
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The exact definition of the equations (1) under consideration here is given in section 2. Roughly,
we assume that the distributions of the coefficients A1, . . . , AK , b are given by a Skorohod represen-
tation, i.e., by measurable functions f1, . . . , fK , h : [0, 1]d → R such that Ar ∼ fr(U), b ∼ h(U) for a
uniform [0, 1]d distributed random vector U . Since it is well-known that any univariate distribution
has a Skorohod representation of the given form this introduces no restrictions on the fixed-point
equations. We do however impose some restrictions on some functional properties of f1, . . . , fK , h.

Consistent with the literature on non-uniform random variate generation, we assume that an
infinite sequence of i.i.d. uniform [0, 1] random variates is available, that real numbers can be stored
with infinite precision, and that standard arithmetic operations dealing with real numbers can be
performed in one unit of time (see, e.g., Devroye [4]). We give a general approach for exact random
variate generation from the fixed-points of equations (1) of the class to be specified, where for concrete
applications certain parameters have to be adjusted and do these adjustments for the examples of
the limit laws of the internal path lengths in random m-ary search trees, random median of (2k+ 1)
search trees, and random quadtrees, the other examples mentioned above being slight modifications.
In fact, the algorithms developed here are solely based on addition, subtraction, multiplication,
division, and comparisons of real numbers. We use a modified rejection method, similar to but
different from that used for related problems in Devroye [5] and Devroye, Fill, and Neininger [6].
Since the density of L(X) cannot be computed exactly from the fixed-point equation, a convergent
sequence of approximations is constructed to decide the outcome of a rejection test. Although our
algorithm may be costly and not feasible for practical purposes, it is the first algorithm for exact
finite time random variate generation for these fixed-point distributions.

The main ingredients of the present approach are firstly a technique based on a method of van
der Corput and developed in Fill and Janson [11] to prove that the fixed-points under consideration
have infinitely differentiable densities where explicit bounds on the densities and their derivatives
are available. From these bounds the dominant, integrable curve needed for the rejection method
are derived. Secondly, we define a sequence of discretized versions Tn of T as follows. Roughly, we
use convergent discretizations A(n)

r of Ar and b(n) of b to define

Tn :M→M, λ 7→ L

(
K∑
r=1

A(n)
r Z(r) + b(n)

)
,

with relations as for T such that we still have the analogous property

µn := Tn ◦ Tn−1 ◦ · · · ◦ T1(ν)→ X,

where the convergence is in distribution and with second moments for all ν ∈M0,2. This convergence
is made quantitative using the minimal L2 metric `2, which is defined by

`2(λ, ν) := inf{‖Z − Y ‖2 : L(Z) = λ,L(Y ) = ν}, λ, ν ∈M2,

whereM2 is the space of probability distributions with finite second moment (see Bickel and Freed-
man [1] for properties of `2). Then, thirdly, using tools of Fill and Janson [13], a rate of convergence
for (µn) in the `2-metric leads to a rate in the Kolmogorov metric and an explicit rate of convergence
of approximations of the density of X, which are defined in terms of the distribution functions of the
µn.

The discrete nature of the Tn enables us to calculate the distributions of µn algorithmically using
only elementary operations when starting with a simple ν, e.g., the Dirac measure in zero. To reduce
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the computational complexity we will in fact not exactly use µn as defined above; for each n ∈ N we
first further discretize µn−1 to 〈µn−1〉 and then iterate µn := Tn(〈µn−1〉), cf. (25),(26).

Another possible approach based on the iteration of T itself and numerical integration to obtain
approximations of the density of X was posed in Fill and Janson [12].

The paper is organized as follows: In section 2 we define the class of equations (1) under consid-
eration and introduce the concrete examples related to quicksort and the internal path lengths of
random search trees. In section 3 we prove that the fixed-points have C∞ densities and give explicit
bounds on the densities and their derivatives. These bound are made explicit for the examples men-
tioned. In section 4 we develop a general rate of convergence for µn → X depending on the accuracy
of the approximation of the discretizations A(n)

r and b(n) leading to an algorithmically computable
sequence of approximations of the density of X needed for the decision of the outcome of the rejection
test. The length of the paper is mostly explained by the need to compute all bounds explicitly. We
will work out these explicit estimates for three examples. In section 5 all parts are put together,
which, from a theoretical point of view, gives an exact simulation algorithm. Some remarks on the
algorithm’s complexity round out the paper.

2 Fixed-point equations and examples

We specify the type of fixed-point equation under consideration and give examples form the proba-
bilistic analysis of algorithms.

2.1 Fixed-points

Throughout this paper we assume that L(X) satisfies

X ∼
K∑
r=1

ArX
(r) + b, (3)

as in (1), where the coefficients A1, . . . , AK are given by measurable functions f1, . . . , fK : [0, 1]d →
[0, 1] such that d ≥ 1,K ≥ 2, and Ar ∼ fr(U) with U uniform [0, 1]d distributed, where we exclude
the case fr = 0 for some r. We assume moreover, that

∑K
r=1 fr = 1. Our approach does not heavily

rely on this condition; it could be replaced by other conditions. The present setting is chosen since
all examples mentioned fit into this scheme. For the representation of b denote

SK−1 :=

{
v ∈ [0, 1]K−1 :

K−1∑
i=1

vi ≤ 1

}
, f := (f1, . . . , fK−1).

Then we assume that we have b ∼ g(f(U)) and E b = 0 with a function g : SK−1 → R being twice
continuously differentiable (in particular bounded) such that its Hessian matrix

Hess(g; v) :=
(

∂2g

∂vi∂vj
(v)
)K−1

i,j=1

is for all v ∈ f([0, 1]d) ⊂ SK−1 (positive or negative) definite, i.e., 〈x,Hess(g; v)x〉 > 0 (or < 0
respectively) for all x ∈ RK−1, where 〈 · , · 〉 denotes the standard inner product on RK−1. Then the
fixed-point equation (3) takes the form

X ∼
K∑
r=1

fr(U)X(r) + g(f(U)), (4)
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with U,X(1), . . . , X(K) independent, U ∼ unif[0, 1]d and X(r) ∼ X for all r.
In this situation the conditions (2) are satisfied. We assume that EX2 < ∞, so that L(X) is

then the unique solution of (4) in M0,2.
The following conditions on f1, . . . , fK , g are assumed:

1. There exist s, p0 > 0 and nonnegative functions D1, D2 such that for all c > 0, p ≥ p0, t ≥ Kc
holds

K∑
j=1

λd

(
K⋂
r=1
r 6=j

{fr ≤ c/t}

)
≤ D1(c)

ts
, (5)

K∑
r=1

∫
1{fr≥c/t}f

−p
r (u) du ≤ D2(p, c)

ts−p
, (6)

where λd denotes the d-dimensional Lebesgue measure.

2. There exists a p1 > p0/K such that for all 0 < p < p1

Mp :=
∫

[0,1]d

K∏
r=1

f−pr (u) du <∞. (7)

3. The cube [0, 1]d can be decomposed (up to sets of Lebesgue measure zero) into measurable sets
(Gn)n∈N, such that for all n ∈ N there exists a component ` = `(n), 1 ≤ ` ≤ d such that the
`-cut Gn,`(ũ) of Gn,

Gn,`(ũ) := {u` ∈ [0, 1] : [u`, ũ] ∈ Gn}, (8)
[u`, ũ] := (ũ1, . . . , ũ`−1, u`, ũ`, . . . , ũd−1), (9)

is an interval and that the maps

u` 7→ fr([u`, ũ])

are affine on Gn,`(ũ) for all r = 1, . . . ,K, at least one of these functions having nonzero
derivative. Then we define

G′n,` := {ũ ∈ [0, 1]d−1 : Gn,`(ũ) 6= ∅}, (10)

and on G′n,` the function

γ(ũ) := inf
u`∈Gn,`(ũ)

∣∣∣∣〈 ∂f

∂u`
([u`, ũ]),Hess(g; f([u`, ũ])))

∂f

∂u`
([u`, ũ]))

〉∣∣∣∣ (11)

and assume
∞∑
n=1

∫
G′n,`

1
γ1/2(ũ)

dũ =: Γ <∞. (12)
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The algorithm for perfect simulation form X is developed for all distributions L(X) that satisfy the
conditions mentioned above.

Observe that the third condition restricts the admissible Skorohod representations. It is possible
to extend our approximations and exact simulation algorithm to selected examples that are not locally
affine on the cuts Gn,`(ũ), e.g., to the perpetuities mentioned in the introduction, where we have
K = 1 and A1 = Ua for a > 0 and a uniform [0, 1] distributed U . Presenting these generalizations
would add little of substance to the paper. Note that one can find Skorohod representations that
satisfy our third conditions even for non-affine functions of a uniform U . For example, for A1 = Ua

with a = 1/d for some d ∈ N we have the distributional identity Ua ∼ max{U1, . . . , Ud}, where the
Ui’s are independent uniform [0, 1] random variables.

Throughout the following notations are used: X is the in M0,2 unique fixed-point of (4). By
φ, µ, F,w its Fourier transform, distribution, distribution function, and density respectively are de-
noted. By Hn we denote the n-th harmonic number Hn =

∑n
i=1 1/i.

2.2 Examples

The examples of limit laws of quicksort cost measures and internal path lengths of random search
trees fit into our setting with

g(v) = κ′ḡ(v) + κ

(
K−1∑
r=1

(vr ln vr) +

(
1−

K−1∑
r=1

vr

)
ln

(
1−

K−1∑
r=1

vr

))
(13)

where κ, κ′ > 0 are normalization constants and ḡ(v) is either 1 or v or v(1 − v) depending on
the application. We treat the cases ḡ(v) = 1 or = v, the third case can be covered with slight
modifications. We have

Hess(g; v)ij = κ

(
1
vK

+ δij
1
vi

)
with vK = 1 −

∑K−1
r=1 vr and δij denoting Kronecker’s symbol. Using the relation

∑K
r=1

∂fr
∂ul

= 0 we
obtain for all 1 ≤ l ≤ d: 〈

∂fr
∂ul

,Hess(g; f(·))∂fr
∂ul

〉
= κ

K∑
r=1

1
fr

(
∂fr
∂ul

)2

.

We proceed by recalling the equations (4) for the limit laws of the internal path lengths of random
m-ary search trees, median of 2k + 1 search trees, and quadtrees and give choices for the quantities
Γ, s, p0, D1, D2, p1,Mp in (5)-(7),(12). For small parameters m, k, d these fixed-point equations, which
define these limit laws, are presented in Figure 1.

2.2.1 m-ary search tree

For this limit distribution derived in [30] we have K = m ≥ 2, d = m − 1, ḡ(v) = 1, κ′ = 1, κ =
(Hm − 1)−1 and

(f1, . . . , fm)(u) = (u(1), u(2) − u(1), . . . , 1− u(m−1)), (14)
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(i) quicksort: Comparisons

X ∼ UX(1) + (1− U)X(2) + E(U),

E(U) = 1 + 2(U ln(U) + (1− U) ln(1− U)).

(ii) ternary search tree

X ∼ U(1)X
(1) + (U(2) − U(1))X(2) + (1− U(2))X(3) + E(U),

E(U) = 1 +
6
5

(
U(1) ln(U(1)) + (U(2) − U(1)) ln(U(2) − U(1))

+ (1− U(2)) ln(1− U(2)

)
.

(iii) median of 3 search tree

X ∼ med(U1, U2, U3)X(1) + (1−med(U1, U2, U3))X(2) + E(U),

E(U) = 1 +
12
7

(
med(U1, U2, U3) ln(med(U1, U2, U3))

+ (1−med(U1, U2, U3)) ln(1−med(U1, U2, U3))
)
.

(iv) 2-dimensional quadtree

X ∼ U1U2X
(1) + U1(1− U2)X(2) + (1− U1)U2X

(3)

+ (1− U1)(1− U2)X(4) + E(U),

E(U) = 1 + U1U2 ln(U1U2) + U1(1− U2) ln(U1(1− U2))

+ (1− U1)U2 ln((1− U1)U2)
+ (1− U1)(1− U2) ln((1− U1)(1− U2)).

Figure 1: Fixed-point equations for limit distributions of (i) the number of comparisons of quicksort

and the internal path lengths of (ii) random ternary search trees, (iii) random median of 3 search
trees and (iv) random 2-dimensional quadtrees. med(U1, U2, U3) and U(1), U(2) denote the median and
the order statistics of U1, U2, U3 and U1, U2 respectively.
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where u(1), . . . , u(m−1) denote the order statistics of the components of u ∈ [0, 1]m−1. The conditions
(5)-(7),(12) are satisfied as follows:
Ad (5): Note that

λd

(
K⋂
r=1
r 6=j

{fr ≤ c/t}

)
≤ λd({fr ≤ c/t})

=
∫ c/y

0
(m− 1)(1− x)m−2dx

=
(

1−
(

1− c

t

)m−1
)

≤ (m− 1)ct−1.

Thus we choose s := 1, D1(c) := m(m− 1)c.
Ad (6): We have ∫

{fr≥c/t}
f−qr (u)du =

∫ 1

c/t
x−p(m− 1)(1− x)m−2dx

≤ (m− 1)
∫ 1

c/t
x−pdx

≤ m− 1
cp−1(p− 1)

1
t1−p

,

for p > 1 which gives

p0 := 1, D2(p, c) :=
m− 1

cp−1(p− 1)
.

Ad (7): Using that the joint distribution of the spacings (U(1), U(2)−U(1), . . . , 1−U(m−1)) is Dirichlet
D(1, . . . , 1) on the Simplex

∑m
i=1 vi = 1 we obtain with the (m− 1)-dimensional Hausdorff measure

H ∫
[0,1]m−1

m∏
i=1

f−pi (u)du = (m− 1)!
∫
∑
vi=1

m∏
i=1

v−pi dH(v)

= (m− 1)!
(Γ(1− p))m

Γ(m(1− p))

∫
∑
vi=1

Γ((m− 1)(1− p))
Γ(1− p)m

m∏
i=1

v−pi dH(v)

= (m− 1)!
(Γ(1− p))m

Γ(m(1− p))
for 0 < p < 1, the last integrand being the density of the Dirichlet D(1− p, . . . , 1 − p) distribution.
We obtain

p1 := 1, Mp := (m− 1)!
(Γ(1− p))m

Γ(m(1− p))
.

Ad (12): With the notation u = [u1, ũ] defined in (9) with ũ ∈ [0, 1]m−2 and ũ(0) := 0, ũ(m−1) := 1
on {ũ(j−1) < u1 < ũ(j)} we have

∂fr
∂u1

=


1 r = j
−1 r = j + 1

0 otherwise
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for j = 1, . . . ,m− 1. This implies

κ
m∑
r=1

1
fr

(
∂fr
∂u1

)2

= κ

m−1∑
j=1

1{ũ(j−1)<u1<ũ(j)}

m∑
r=1

1
fr

(
∂fr
∂u1

)2

= κ
m−1∑
j=1

1{ũ(j−1)<u1<ũ(j)}

(
1

u1 − ũ(j−1)
+

1
ũ(j) − u1

)
.

Note that

inf
ũ(j−1)<u1<ũ(j)

(
1

u1 − ũ(j−1)
+

1
ũ(j) − u1

)
≥ 4
ũ(j) − ũ(j−1)

,

thus, noting that a spacing betweenm−1 independent uniform [0, 1] random variables is beta(1,m−2)
distributed, we have

Γ =
∫

[0,1]m−2

1
γ1/2(ũ)

dũ ≤
m−1∑
j=1

∫
[0,1]m−2

1
2
√
κ

(ũ(j) − ũ(j−1))
1/2dũ

=
m− 1
2
√
κ

∫ 1

0

√
x(1− x)m−3dx

=
(m− 1)(m− 2)

2
√
κ

B(3/2,m− 2)

=
√
π

4
√
κ

Γ(m)
Γ(m− 1/2)

.

2.2.2 Median of 2k + 1 search tree

For this limit distribution derived in [36] we have K = 2, d = 2k + 1, ḡ(v) = 1, κ′ = 1, κ =
(H2k+2 −Hk+1)−1 and (f1, f2)(u) = (med(u), 1−med(u)), where med(u) denotes the median of the
components of u.
Ad (5): Using that the median of 2k+1 independent uniform [0, 1] random variables is beta(k+1, k+1)
distributed we find

λd

⋂
r 6=j
{fr ≤ c/t}

 ≤ λd({fr ≤ c/t})

=
∫ c/y

0

xk(1− x)k

B(k + 1, k + 1)
dx

≤ ck+1

(k + 1)B(k + 1, k + 1)
t−(k+1),

so we can choose

s := k + 1, D1(c) =
2ck+1

(k + 1)B(k + 1, k + 1)
.
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Ad (6): Observe that∫
{fr≥c/t}

f−qr (u)du =
∫ 1

c/t
x−p

xk(1− x)k

B(k + 1, k + 1)
dx

≤ 1
B(k + 1, k + 1)

∫ 1

c/t
xk−pdx

=
1

(k + 1− p)B(k + 1, k + 1)

(
1−

(c
t

)k+1−p
)

≤ ck+1−p

(k + 1− p)B(k + 1, k + 1)
1

tk+1−p ,

for all p > k + 1. Thus we choose

p0 := k + 1, D2(p, c) :=
2ck+1−p

(k + 1− p)B(k + 1, k + 1)
.

Ad (7): Evaluating a beta integral we easily obtain

p1 := k + 1, Mp :=
B(k + 1− p, k + 1− p)

B(k + 1, k + 1)
.

Ad (12): Denote

Gn = {u ∈ [0, 1]2k+1 : un = med(u)}

for n = 1, . . . , 2k + 1. Then with the notation in (8), (10) we obtain on G′n,n

γ(ũ) = inf
un∈Gn,n(ũ)

κ

2∑
r=1

1
fr

(
∂fr
∂un

)2

= inf
un∈Gn,n(ũ)

κ

(
1
un

+
1

1− un

)
≥ 4κ,

which implies

Γ =
2k+1∑
n=1

∫
G′n,n

1
c1/2(ũ)

dũ ≤ 2k + 1
2
√
κ
.

2.2.3 Quadtree

For this limit distribution derived in [30] we have d ≥ 2, the dimension of the quadtree, K = 2d,
ḡ(v) = 1, κ′ = 1, κ = 2/d, and (f1, . . . , f2d)(u) is the vector of the volumes of the quadrants in [0, 1]d

generated by the point u, see [30] for a formal definition.
For (5),(6) first note that the density ϕd and the distribution function Fd of the product of d
independent unif[0, 1] distributed random variables is given by

ϕd(x) =
1

(d− 1)!

(
ln

1
x

)d−1

, Fd(x) =
d∑
j=1

1
(j − 1)!

(
ln

1
x

)j−1

x.

Furthermore we use the inequality

∀ ε > 0∀ d ≥ 1∀x ≥ 1 : (lnx)d ≤ d!
εd
xε. (15)

11



Ad (5): Using the inequality (15) with ε = 1/d we obtain

λd

⋂
r 6=j
{fr ≤ c/t}

 ≤ λd({fr ≤ c/t})

=
d∑
j=1

1
(j − 1)!

(
ln
t

c

)j−1 c

t

≤ c

t

d∑
j=1

1
(j − 1)!

(j − 1)!
(1/d)j−1

(
t

c

)1/d

= c1−1/dd
d − 1
d− 1

t−(1−1/d),

thus we set

s := 1− 1/d, D1(c) = 2d
dd − 1
d− 1

c1−1/d.

Ad (6): Using (15) with ε = 1/d, we observe the following:∫
{fr≥c/t}

f−qr (u)du =
∫ 1

c/t
x−p

1
(d− 1)!

(
ln

1
x

)d−1

dx

≤ 1
(d− 1)1

∫ 1

c/t
x−p

(d− 1)!
(1/d)d−1

(
1
x

)1/d

dx

= dd−1

∫ 1

c/t
x−p−1/ddx

=
dd−1

1− p− 1/d

(
1−

(c
t

)1−p−1/d
)

≤ dd−1 c1−p−1/d

p+ 1/d− 1
1
ts−p

.

We choose

p0 := 1− 1
d
, D2(p, c) = 2ddd−1 c1−p−1/d

p+ 1/d− 1
.

Ad (7): We easily obtain

p1 := 2−(d−1), Mp := (B(1− p2d−1, 1− p2d−1))d.

Ad (12): With some calculations involving the structure of the volumes generated by u, we note the
following:

κ

2d∑
r=1

1
fr

(
∂fr
∂u1

)2

= κ

(
1
u1

+
1

1− u1

)
≥ 8
d
,

which implies Γ ≤
√
d/8.
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2.2.4 Other examples

The limit distribution of the number of key comparisons of quicksort is identical with the limit
distribution of the internal path length of a random binary search tree. This is covered by m-ary
search trees with m = 2 or median of 2k + 1 search trees with k = 0. The internal path length for
random recursive trees (see [8, 26]) is covered with K = 2, d = 1, ḡ(v) = v κ′ = 1, κ = 1, and
(f1, f2)(u) = (u, 1 − u). The choices can be made as the ones for the random binary search tree
since ḡ′′ = 0. Only the different value of κ has to be adjusted. The limit law for the number of key
exchanges of quicksort (see [22, 29]) involves the function ḡ(v) = v(1− v) and can be treated with
appropriate adjustments.

3 Densities and dominating curve

First we show that L(X), given in section 2.1, has an infinite differentiable density w, and that the
density and all its derivatives are bounded. For this we use the approach of Fill and Janson [11]. The
conditions (5)-(7),(12) are tailored to approach this method. Then a dominating integrable curve for
w needed for the rejection method follows without work.

3.1 Properties of the density

Following Fill and Janson [11] we define cp ∈ [0,∞] for p > 0 to be the smallest constants such that

|φ(t)| ≤ cp|t|−p for all t ∈ R.

Note that the sets {c ≥ 0 : |φ(t)| ≤ c|t|−p for all t ∈ R}, p > 0, contain their infima. The aim is show
cp < ∞ for p as large as possible with explicit bounds on cp. If cp < ∞ for all p > 0 it follows by
the Fourier inversion formula that w is infinite differentiable and that all its derivatives are bounded.
The following Theorem implies cp <∞ for all p > 0 in our situation:

Theorem 3.1 We have with p1,Mp as in (7), D1, s, p0, D2 as in (5),(6), Γ as in (12),

c1/2 ≤
√

32 Γ (16)

cKp ≤Mpc
K
p , 0 < p < p1, (17)

cp+s ≤
(
KpcpD1(c1/p

p ) + (K − 1)Kpc2
pD2(p, c1/p

p )
)
∨
(
Kc1/p

p

)−(p+s)
, (18)

for p > p0.

Together with the trivial inequality cp ≤ c
p/q
q for all 0 < p ≤ q we obtain cp < ∞ for all p > 0

by iterated, appropriate application of (16)-(18). First recall the following Lemma due to Fill and
Janson [11]:

Lemma 3.2 Let z : [a, b]→ R be twice continuously differentiable with z
′′ ≥ γ > 0 or z

′′ ≤ −γ < 0
on (a, b). Then ∣∣∣∣∫ b

a
exp(itz(x)) dx

∣∣∣∣ ≤ √32
γ1/2
|t|−1/2, t ∈ R. (19)
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Proof: Combine Lemmas 2.2 and 2.3 in Fill and Janson [11].

Estimates for exponential integrals as in Lemma 3.2 are well-known in analytic number theory. The√
32 may be replaced by 8 (Tenenbaum [42, Lemma 4.4]).

Proof of Theorem 3.1: Ad (16): With W (u) :=
∑K−1

r=1 xrfr(u) + xK(1 −
∑K−1

r=1 fr(u)) + g(f(u))
for x1, . . . , xK ∈ R we obtain by conditioning on the fixed-points,

|φ(t)| ≤
∫
RK

∣∣∣∣∣
∫

[0,1]d
exp(itW (u)) du

∣∣∣∣∣ d(µ⊗ · · · ⊗ µ)(x1, . . . , xK). (20)

It is sufficient to obtain a bound for the inner integral. We have∣∣∣∣∣
∫

[0,1]d
exp(itW (u)) du

∣∣∣∣∣ ≤
∞∑
n=1

∫
G′n,l

∣∣∣∣∣
∫
Gn,l(ũ)

exp(itW (u)) dul

∣∣∣∣∣ dũ. (21)

For the inner integral note that ul 7→ fr([ul, ũ]) are affine for all r = 1, . . . ,K. On Gn,l × {ũ} we
have therefore ∂2f/∂u2

l = 0. This yields with the notation x− := (x1 − xK , . . . , xK−1 − xK)

∂W

∂ul
=

〈
x− − (∇g) ◦ f, ∂f

∂ul

〉
,∣∣∣∣∂2W

∂u2
l

∣∣∣∣ =
∣∣∣∣〈x− − (∇g) ◦ f, ∂

2f

∂u2
l

〉
+
〈
∂f

∂ul
,Hess(g; f)

∂f

∂ul

〉∣∣∣∣
=

∣∣∣∣〈 ∂f∂ul ,Hess(g; f)
∂f

∂ul

〉∣∣∣∣
≥ γ,

with γ defined in (11). Application of Lemma 3.2 implies∣∣∣∣∣
∫
G′n,l(ũ)

exp(itW (u)) dul

∣∣∣∣∣ ≤
√

32
γ1/2
|t|−1/2.

and with the outer integrations and summation in (20), (21), and with (12) it follows that

|φ(t)| ≤
√

32Γ|t|−1/2,

thus c1/2 ≤
√

32Γ.
Ad (17): For 0 < p < p1, using (7), we have

|φ(t)| ≤
∫

[0,1]d

K∏
r=1

|φ(fr(u)t)| du ≤
∫

[0,1]d

K∏
r=1

cp
fpr (u)|t|p

du ≤ cKp Mp|t|−Kp.

Ad (18): We assume cp <∞ for a p > p0 and t > Kc
1/p
p ; in the case 0 < t < Kc

1/p
p we have trivially

|φ(t)| ≤ cp+s|t|−(p+s) since |φ(t)| ≤ 1. For t > Kc
1/p
p we cannot have fr ≤ c1/p

p /t for all r = 1, . . . ,K
since

∑
fr = 1. Thus we have only the two cases “all but one fr are ≤ c

1/p
p /t” and “at least two

fr, fq are > c
1/p
p /t”. This yields

[0, 1]d =

(
K⋃
j=1

K⋂
r=1
r 6=j

{
fr ≤

c
1/p
p

t

})
∪

(
K⋃

r,j=1
r 6=j

{
fr >

c
1/p
p

t
, fj >

c
1/p
p

t

})
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We denote the first of these two sets by B1. The second one we intersect with [0, 1]d = ∪Kq=1{fq ≥
1/K}. It is easily seen that the second set is then a subset of

B2 :=
K⋃

q,r=1
q 6=r

{
fq ≥

1
K
, fr >

c
1/p
p

t

}
,

thus [0, 1]d = B1 ∪B2. Therefore, we have

|φ(t)| ≤
∫

[0,1]d

K∏
r=1

min

{
cp

(fr(u)|t|)p
, 1

}
du ≤

∫
B1

+
∫
B2

=: I + II.

For the estimate of I we note that fj(u) ≥ 1− (K−1)c1/p
p /t on ∩r 6=j{fr ≤ c

1/p
p /t}, so that we obtain

fj(u) ≥ 1/K on this set. With (5), this yields

I ≤
K∑
j=1

∫
∩r 6=j{fr≤c

1/p
p /t}

cp
(fj(u)t)p

du

≤ cpK
pt−p

K∑
j=1

λd

(
K⋂
r=1
r 6=j

{
fr ≤

c
1/p
p

t

})

≤ cpK
pD1(c1/p

p )t−(p+s).

For II we estimate first∫
{fq≥1/K,fr>c

1/p
p /t}

c2
p

(fq(u)fr(u))pt2
du ≤ c2

pK
pt−2p

∫
{fr>c1/pp /t}

f−pr (u) du.

This yields, using (6),

II ≤ (K − 1)c2
pK

pt−2p
K∑
r=1

∫
{fr>c1/pp /t}

f−pr (u) du

≤ (K − 1)c2
pK

2D2(c1/p
p )t−(p+s).

The assertion follows.

3.2 The dominating curve

For a rejection algorithm a dominating, integrable curve q for the density w to be sampled from is
necessary, such that from the distribution with density q/‖q‖1 it is easy to sample. If Lipschitz- and
moment-information on w is available a curve q can be constructed on the basis of Theorem 3.3 and
Theorem 3.5 in Devroye [4, p. 315, p. 320]. For this we denote by K1,K2,K3 > 0 constants with

‖w‖∞ ≤ K1, ‖w′‖∞ ≤ K2, EX4 ≤ K3. (22)

The existence of moments of all orders of X follows since the Laplace transform of X is finite in a
neighborhood of 0, see Rösler [35]. Then a dominating, integrable curve for w is given by

q(x) := min
{
K1,

√
2K2K3x

−2
}
, x ∈ R. (23)
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This follows from the general inequality w(x) ≤ (2K2 min{F (x), 1 − F (x)})1/2, cf. Theorem 3.5 in
Devroye [4], where F is the distribution function of X, and, by Markov’s inequality, min{F (x), 1 −
F (x)} ≤ EX4/x4.

A random variate with density q/‖q‖1 is given by

S
(2K2K3)1/4

K
1/2
1

U1

U2
, (24)

with U1, U2, S being independent, U1, U2 ∼ uniform[0, 1] and S being an equiprobable random sign,
cf. Theorem 3.3 in Devroye [4]. In our situation the following choices for K1,K2,K3 are possible:

Lemma 3.3 Define ξ as in (2) and ξ3 :=
∑K

r=1 EA
3
r, ξ4 :=

∑K
r=1 EA

4
r and the cp as in Lemma

3.1. [For a rough estimate ξ3, ξ4 may be replaced by ξ]. For the density w of X the inequalities in
(22) are satisfied with

K1 :=
pc

1/p
p

π(p− 1)
, p > 1

K2 :=
1
π

(
c1/p
p +

c
2/p
p

p− 2

)
, p > 2

K3 :=
‖g‖4∞
1− ξ4

(
1 +

1
1− ξ

+
1

1− ξ3
+

K

(1− ξ)(1− ξ3)
+
K(K − 1)
(1− ξ)2

)
.

Moreover we have

‖w′′‖∞ ≤ K4 :=
1
π

(
c1/p
p +

c
3/p
p

p− 3

)
, p > 3.

Proof: By the Fourier inversion formula the k-th derivative w(k) satisfies

‖w(k)‖∞ ≤
1

2π

∫ ∞
−∞
|t|k|φ(t)|dt, k ∈ N0.

Splitting the domain of integration into [−c1/p
p , c

1/p
p ] and its complement and using |ϕ(t)| ≤ cp|t|−p

we obtain

‖w(k)‖∞ ≤
1
π

(
c1/p
p +

c
(k+1)/p
p

p− (k + 1)

)
, p > k + 1.

This gives the choices for K1,K2 and the estimate for ‖w′′‖∞.
The moments of X can be calculated or estimated form the fixed-point equation. Using the

independence assumptions and EX = 0 we obtain with |b| ≤ ‖g‖∞ and |Ar| ≤ 1 first EX2 =
EX2

∑K
r=1 EA

2
r + E b2, thus

EX2 ≤ ‖g‖
2
∞

1− ξ
.

Then we have

EX3 = E b3 + EX3
K∑
r=1

EA3
r + EX2

K∑
r=1

E [bA2
r ]

≤ ‖g‖3∞ +K‖g‖∞ EX2 + EX3ξ3,
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thus

EX3 ≤ ‖g‖
3
∞

1− ξ3

(
1 +

K

1− ξ

)
.

Expanding and estimating similarly the fourth moment of X leads to K3.

Better bounds on K1,K2 are possible by refined decomposition of the range of integration and
by better estimates of the cp, see Fill and Janson [11].

In the examples on internal path lengths of m-ary search trees, median of 2k+ 1 search trees and
quadtrees ξ is given in (49), (50), and (51) respectively, ‖g‖∞ is easily estimated since |x ln(x)| ≤ 1/e
for all x ∈ [0, 1].

4 Approximation of the density

As in section 3 the general part valid for all fixed-points as defined in section 2.1 is separated from
the applications.

4.1 The approximating sequence

We assume that discretizations A(n)
r of Ar and b(n) of b are given satisfying conditions noted below.

We define then discrete probability distributions L(Xn) for n ≥ 0 by X0 := 0 and for n ≥ 1 recursively
by

X̃n :=
K∑
r=1

A(n)
r X

(r)
n−1 + b(n), (25)

L(Xn) := L(〈X̃n〉), (26)

where (A(n)
1 , . . . , A

(n)
K , b(n)), X(1)

n−1, . . . , X
(K)
n−1 are independent with X

(r)
n−1 ∼ Xn−1 and 〈·〉 denotes a

further discretization step. We assume that we have the following pointwise accuracies of approxi-
mation:

K∑
r=1

|A(n)
r −Ar| ≤ RΣ(n), (27)

K∑
r=1

|A(n)
r −Ar|2 ≤ R

(2)
Σ (n), (28)

|b(n) − b| ≤ Rb(n), (29)
|X̃n − 〈X̃n〉| ≤ RX(n), (30)∣∣∣∣∣
K∑
r=1

EA(n)
r

∣∣∣∣∣ ≤ 1−R∆(n) (31)

where RΣ, R
(2)
Σ , Rb, RX , R∆ are functions on N. Furthermore we denote by CA, C ′A, ξ(n) ≥ 0 constants

with
K∑
r=1

‖A(n)
r ‖2 ≤ CA,

K∑
r,s=1
r 6=s

E [A(n)
r A(n)

s ] ≤ C ′A, n ≥ 1, (32)
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and

ξ2(n) :=
K∑
r=1

‖A(n)
r ‖22, (33)

where we recall that ‖X‖2 =
√
EX2. Then using E b = 0 and (29) the means of Xn are estimated

by

|EXn| ≤ |E X̃n|+ |E [Xn − X̃n]|

≤

∣∣∣∣∣
K∑
r=1

EA(n)
r EXn−1

∣∣∣∣∣+ |E b(n)|+RX(n)

≤

∣∣∣∣∣
K∑
r=1

EA(n)
r

∣∣∣∣∣|EXn−1|+Rb(n) +RX(n)

≤
n∑
j=1

n−1∏
i=j

(1−R∆(i+ 1))

 (Rb(j) +RX(j)) =: M(n). (34)

We start with the estimate

`2(Xn, X) ≤ `2(Xn, X̃n) + `2(X̃n, X)
≤ RX(n) + `2(X̃n, X).

Using appropriate optimal couplings as it is common in the application of the contraction method,
see, e.g., Rösler [36], we obtain

`22(X̃n, X) ≤

∥∥∥∥∥
K∑
r=1

A(n)
r X

(r)
n−1 + b(n) −

K∑
r=1

ArX
(r) − b

∥∥∥∥∥
2

2

≤ E

K∑
r=1

(
A(n)
r X

(r)
n−1 −ArX

(r)
)2

+ E (b(n) − b)2 (35)

+ 2E
K∑
r=1

(
A(n)
r X

(r)
n−1 −ArX

(r)
)

(b(n) − b)

+ E

K∑
r,s=1
r 6=s

(
A(n)
r X

(r)
n−1 −ArX

(r)
)(

A(n)
s X

(s)
n−1 −AsX

(s)
)

=: I + II + III + IV.

We have II ≤ R2
b(n), and

III = 2E
K∑
r=1

(
A(n)
r X

(r)
n−1 −ArX

(r)
)

(b(n) − b)

= 2E
K∑
r=1

A(n)
r X

(r)
n−1(b(n) − b)

≤ 2
K∑
r=1

‖A(n)
r ‖2‖b(n) − b‖2 EXn−1

≤ 2CARb(n)M(n− 1).
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Analogously

IV = E

K∑
r,s=1
r 6=s

(
A(n)
r X

(r)
n−1 −ArX

(r)
)(

A(n)
s X

(s)
n−1 −AsX

(s)
)

=
K∑

r,s=1
r 6=s

E [A(n)
r A(n)

s ]E [Xn−1]2

≤ C ′AM
2(n− 1).

Finally, by the Cauchy-Schwarz inequality

I = E

K∑
r=1

(
A(n)
r X

(r)
n−1 −ArX

(r)
)2

= E

K∑
r=1

(
A(n)
r (X(r)

n−1 −X
(r))− (A(n)

r −Ar)X(r)
)2

=
K∑
r=1

(
E (A(n)

r )2`22(Xn−1, X) + ‖A(n)
r −Ar‖22 EX2

+ 2E [A(n)
r (A(n)

r −Ar)(X
(r)
n−1 −X

(r))X(r)]

)
≤ ξ2(n)`22(Xn−1, X) +R

(2)
Σ (n)EX2

+ 2
K∑
r=1

‖A(n)
r −Ar‖2‖X(r)‖2‖A(n)

r (X(r)
n−1 −X

(r))‖2

= ξ2(n)`22(Xn−1, X) +R
(2)
Σ (n)‖X‖22 + 2(R(2)

Σ (n))1/2‖X‖2CA`2(Xn−1, X).

We denote the prefactors and a constant used later by

bn := 2CA‖X‖2(R(2)
Σ (n))1/2,

cn := R2
b(n) + 2CARb(n)M(n− 1) + C ′AM

2(n− 1) +R
(2)
Σ (n)‖X‖22,

dn := max
{
bn/ξ, c

1/2
n

}
.

Assume that there exists an ` ∈ N such that for all n ≥ `, ξ(n) ∈ [ξ/2, (1+ξ)/2]. Denote ξ̄ := (1+ξ)/2.
Then we obtain altogether

`2(Xn, X) ≤ RX(n) +
√
ξ2(n)`22(Xn−1, X) + bn`2(Xn−1, X) + cn

≤ RX(n) +
√

(ξ(n)`2(Xn−1, X) + dn)2

= RX(n) + dn + ξ(n)`2(Xn−1, X)

≤ ξ̄n−``2(X`, X) +
n−1−`∑
i=0

ξ̄i(RX(n− i) + dn−i)

≤ ξ̄nξ̄−`(‖X‖2 + ‖X`‖2) +
n−1∑
i=0

ξ̄i(RX(n− i) + dn−i). (36)

19



In order to obtain explicit estimates we have to specify the functions RΣ, R
(2)
Σ , Rb, RX . We assume

that for all n ≥ 1,

R∆(n) ≥ 1
n
, RΣ(n) ≤ CΣ

ln(n)
n

, R
(2)
Σ (n) ≤ C(2)

Σ

ln(n)
n2

, (37)

Rb(n) ≤ Cb
n2
, RX(n) ≤ CX

n2
, |ξ(n)− ξ| ≤

Cξ
n

with constants CΣ, C
(2)
Σ , Cb, CX , Cξ > 0 and the contraction factor ξ given in (2).

In order to make the previous estimates explicit we start with two Lemmas:

Lemma 4.1 For all n ∈ N we have

‖Xn‖∞ ≤ Qn :=

{
(CX + Cb + ‖g‖∞)(n+ CΣ) ln(n+ 1), if 0 < CΣ ≤ 1,

ζ(dCΣe)(CX + Cb + ‖g‖∞)(n+ CΣ)dCΣe, if CΣ > 1,

where ζ(·) denotes the Riemannian ζ-function, ζ(s) :=
∑

n≥1 n
−s.

Proof: By definition of Xn,

‖Xn‖∞ ≤ ‖Xn − X̃n‖∞ + ‖X̃n‖∞

≤ RX(n) +

∥∥∥∥∥
K∑
r=1

A(n)
r X

(r)
n−1 + b(n)

∥∥∥∥∥
∞

≤ RX(n) +Rb(n) + ‖b‖∞ +
K∑
r=1

‖A(n)
r −Ar‖∞‖X

(r)
n−1‖∞ +

∥∥∥∥∥
K∑
r=1

ArX
(r)
n−1

∥∥∥∥∥
∞

≤ CX + Cb + ‖g‖∞ + (1 +RΣ(n))‖X(r)
n−1‖

≤
(
RX(n) +Rb(n) + ‖g‖∞

) n∑
j=1

n−1∏
i=j

(1 +RΣ(i+ 1))

 .

With RΣ(n) ≤ CΣ/n, we obtain

n−1∏
i=j

(1 +RΣ(i+ 1)) ≤ (n+ CΣ)dCΣe

(j + 1)dCΣe
.

Thus,

‖Xn‖∞ ≤
(
CX + Cb + ‖g‖∞

)
(n+ CΣ)dCΣe

n∑
j=1

(j + 1)−dCΣe,

which leads to the assertion.

Lemma 4.2 We have

∀ 0 < ξ̄ < 1, ∀n ≥ 1 :
n−1∑
i=0

ξ̄i

n− i
≤ 1

(1− ξ̄)2

1
n

(38)

∀ 0 < ξ̄ < 1, ∀n ≥ 1 : ξ̄n ≤ 1
e ln(1/ξ̄)

1
n
. (39)
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Proof: For (38) note that 1/(n− i) ≤ (i+ 1)/n for all n ≥ 1 and 0 ≤ i ≤ n− 1. This implies

n−1∑
i=0

ξ̄i

n− i
≤ 1
n

n−1∑
i=0

(i+ 1)ξ̄i ≤ 1
n

∞∑
i=0

(i+ 1)ξ̄i ≤ 1
(1− ξ̄)2

1
n
.

For (39) note that the function x 7→ xξ̄x, x ≥ 0 has its maximum at x = 1/ ln(1/ξ̄) which implies
the assertion.

Lemma 4.3 Let (Xn) be given by (25),(26) with A(n)
r , b(n), 〈X̃n〉 satisfying (27)-(33) with R∆, RΣ,

R
(2)
Σ , Rb, RX satisfying (37). Then, for all n ≥ 3

`2(Xn, X) ≤ C ln(n)
n

,

where C is given by

C :=
‖g‖2∞/(1− ξ) + ‖X`‖∞

e ln(1/ξ̄)ξ̄`
+

C̃

(1− ξ̄)2
,

with C̃, ` defined in (40), (41), ξ̄ := (1 + ξ)/2 and ‖X`‖∞ estimated in Lemma 4.1.

Proof: With (34) and (37) it is

M(n) ≤
n∑
j=1

n−1∏
i=j

i

i+ 1

 (Rb(j) +RX(j))

=
1
n

n∑
j=1

j(Rb(j) +RX(j))

≤ (Cb + CX)
Hn

n

≤ (Cb + CX)
1 + ln(n)

n
, n ≥ 1.

Defining

C̃ := CX + max
{

2CAC
(2)
Σ ‖X‖2/ξ, (40)

(C2
b + C

(2)
Σ ‖X‖

2
2 + 2CACb(Cb + CX) + C ′A(Cb + CX)2)1/2

}
,

we have

RX(n− i) + dn−i ≤ C̃
1 ∨ ln(n− i)

n− i
≤ C̃ 1 ∨ ln(n)

n− i
.

Set

` :=
⌈

2Cξ
ξ ∧ (1− ξ)

⌉
, (41)
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so that ξ(n) ∈ [ξ/2, (1 + ξ)/2] for n ≥ `, and we obtain with (36) and Lemma 4.2,

`2(Xn, X) ≤ ξ̄nξ̄−`(‖X‖2 + ‖X`‖2) + C̃

n−1∑
i=0

ξ̄i
1 ∨ ln(n)
n− i

≤ 1
e ln(1/ξ̄)ξ̄`

(
‖g‖2∞
1− ξ

+ ‖X`‖∞
)

1
n

+
C̃

(1− ξ̄2)
1 ∨ ln(n)

n
,

which implies the assertion

In the following transposition of the `2 rate of convergence for (Xn) into a rate in the Kolmogorov
metric we use an estimate of Lemma 5.1 in Fill and Janson [13]. The Kolmogorov metric is denoted
by

%(λ, ν) := sup
x∈R
|Fλ(x)− Fν(x)|,

where Fλ, Fν denote the distribution functions of λ, ν ∈M.

Lemma 4.4 Let (Xn) and C be as in Lemma 4.3. Then, for all n ≥ 3:

%(Xn, X) ≤ 2(C‖w′‖∞)2/3

(
ln(n)
n

)2/3

.

Proof: For the transposition of the `2 rate in Lemma 4.3 into a rate in the Kolmogorov metric we
note that the bounded derivative of the density f implies that the modulus of continuity ∆X of X
is estimated by ∆X(t) ≤ ‖w′‖∞t for all t > 0. Using the inequality

%(Xn, X) ≤ `22(Xn, X)t−2 + ∆X(t),

valid for all t > 0 this implies

%(Xn, X) ≤ C2 ln2(n)
n2

1
t2

+ ‖w′‖∞t,

for all t > 0. We choose

t = tn =
(
C2 ln2(n)
‖w′‖∞n2

)1/3

which leads to the bound stated.

An approximation of w can now be constructed as in Theorem 6.1 in Fill and Janson [13]. In the
proof we use a Taylor expansion of second order which improves the rate of convergence compared
with the first order expansion used by Fill and Janson.

Theorem 4.5 Let (Xn) and C be given as in Lemma 4.3 and denote by Fn the distribution functions
of Xn. Define

wn(x) :=
Fn(x+ δn/2)− Fn(a− δn/2)

δn
, x ∈ R (42)
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with

δn = L

(
ln(n)
n

)2/9

, (43)

with an L > 0. Then

sup
x∈R
|wn(x)− w(x)| ≤ rn :=

(
4
L

(
C‖w′‖∞

)2/3
+
L2‖w′′‖∞

24

)(
ln(n)
n

)4/9

.

Proof: Let F denote the distribution function of X. By Taylor expansion we have w(y) = w(x) +
w′(x)(y − x) + (w′′(ϑ)/2)(y − x)2 with ϑ between x and y. This yields

|F (x+ δn/2)− F (x− δn/2)− δw(x)|

≤

∣∣∣∣∣
∫ x+δn/2

x−δn/2
w(x) + w′(x)(y − x) + (w′′(ϑ)/2)(y − x)2 − w(x)dy

∣∣∣∣∣
≤ ‖w′′‖∞

2

∫ δn/2

−δn/2
y2dy

≤ 1
24
‖w′′‖∞δ3

n.

Thus with δn and wn as given in the Lemma we obtain

sup
x∈R
|wn(x)− w(x)|

≤ sup
x∈R

{∣∣∣∣∣Fn(x+ δn/2)− Fn(x− δn/2)
δn

− F (x+ δn/2)− F (x− δn/2)
δn

∣∣∣∣∣
+

∣∣∣∣∣F (x+ δn/2)− F (x− δn/2)
δn

− w(x)

∣∣∣∣∣
}

≤ 2
δn
%(Xn, X) + ‖w′′‖∞

δ2
n

24

≤ 2
L

2
(
C‖w′‖∞

)2/3
(

ln(n)
n

)2/3

+
‖w′′‖∞

24
L2

(
ln(n)
n

)4/9

≤
(

4
L

(
C‖w′‖∞

)4/9
+
L2‖w′′‖∞

24

)(
ln(n)
n

)4/9

,

where we used Lemma 4.4.

Estimates for ‖w′‖∞, ‖w′′‖∞ are given in Lemma 3.3.

4.2 Examples

For the examples of the sections 2.2.1-2.2.3 we define appropriate discretizations and show (37). The
algorithmic computation of the distributions of the discretizations is done in the next section.
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To define the discretized versions of Ar = fr(U) and b = g(f(U)) we denote, for U = (U1, . . . , Ud),

[U ]n :=
(
bnU1c
n

, . . . ,
bnUdc
n

)
(44)

and define for r = 1, . . .K − 1

A(n)
r := fr([U ]n), A

(n)
K := 1− 1

n
−
K−1∑
r=1

fr([U ]n). (45)

For the discretization of b define first g̃ as g in (13) with the logarithm ln there replaced by the
function l̆n (x) := ln(x) for x ∈ (0, 1) and l̆n (x) := 0 otherwise. Then it is g̃ = g on SK−1. We define
then

b(n) := g̃(f([U ]s)) (46)

with s = s(n) := n2dln(n)e and the convention dln(n)e := 1 for n = 1. Furthermore we define

〈X̃n〉 :=
bn2X̃nc
n2

. (47)

These choices can be used uniformly for all examples of the sections 2.2.1-2.2.3. For the verification
of (37) we use a technical Lemma which allows us to treat the fact that x 7→ x ln(x) has infinite
derivative at x = 0+.

Lemma 4.6 With ψ(x) := xl̆n (x) for x ∈ R, we have

|ψ(x)− ψ(y)| ≤ |x− y|
(

1 ∨ ln
(

1
|x− y|

))
, x, y ∈ R.

In particular, if |x− y| ≤ c/n with n, c ≥ 1 then

|ψ(x)− ψ(y)| ≤ c 1 ∨ ln(n)
n

.

Proof: For the first assertion distinguish the cases |x−y| < 1/e and ≥ 1/e. The second one follows
directly from the first one.

4.2.1 m-ary search trees

Note that the discretization of U into [U ]n preserves the ranks of the components so that with the
fr given in (14) we obtain

|fr([U ]n)− fr(U)| ≤ 1
n
, r = 1, . . . ,m.

Thus we may choose CΣ := C
(2)
Σ := m. By Lemma 4.6 it is for all r = 1, . . .m,

|A(s)
r l̆n (A(s)

r )−Ar ln(Ar)| ≤
1 ∨ ln(s)

s
≤ 1 ∨ (2 ln(n) + ln(ln(n)))

n2dln(n)e
≤ 3
n2
, (48)
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thus we may choose Cb := 3m. Furthermore we choose CX := 1 and for Cξ note

ξ2 = mEU2
(1) = m

∫ 1

0
x2(m− 1)(1− x)m−2 dx =

2
m+ 1

. (49)

Then,

|ξ(n)− ξ| = |ξ
2(n)− ξ2|
|ξ(n)− ξ|

≤ 1
ξ

m+ 2
n

= Cξ
1
n
,

where Cξ := (m+ 2)
√

(m+ 1)/2. Finally we can simply set CA := m and C ′A := m(m− 1) and (37)
is satisfied.

4.2.2 Median of (2k + 1) search tree

As for m-ary search trees the discretization preserves the ranks of the components and therefore also
the median. This implies

|fr([U ]n)− fr(U)| ≤ 1
n
, r = 1, 2.

We can choose CΣ := 2, C
(2)
Σ := 2 and by Lemma 4.6 similarly to (48) we obtain the choice Cb := 6.

Furthermore CX := 1 and for Cξ note

ξ2 = 2Emed2(U) = 2
∫ 1

0
x2 xk(1− x)k

B(k + 1, k + 1)
dx =

k + 2
2k + 3

. (50)

This yields |ξ(n) − ξ| ≤ 4/(ξn) = Cξ/n with Cξ :=
√

8(2k + 3)/(k + 2). Finally CA := C ′A := 2
completes the choices.

4.2.3 Quadtree

For quadtrees note thtn by induction we have for all a1, . . . , an, b1, . . . , bn ∈ [−1, 1]:∣∣∣∣∣
K∏
i=1

ai −
K∏
i=1

bi

∣∣∣∣∣ ≤
K∑
i=1

|ai − bi|,

thus

|fr([U ]n)− fr(U)| ≤ d

n
, r = 1, . . . , 2d,

the case r = 2d being also trivial. This yields

CΣ = d2d, C
(2)
Σ := d22d,

and by Lemma 4.6 Cb := 3d2d. Furthermore CX = 1 and for Cξ note

ξ2 = 2d E
d∏
i=1

U2
i =

(
2
3

)d
, (51)
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so that

|ξ(n)− ξ| ≤ 2d+ d22d

ξn
=
Cξ
n

with Cξ := (2d+ d22d)(3/2)d/2. Finally CA := 2d, C ′A := 2d(2d − 1) completes the choices.

5 The rejection algorithm

The dominant curve and the associate sample needed for the rejection method were derived in
section 3.2. It remains the problem of approximating the density w in order to decide the outcome
of a rejection test.

Let K2, K4 be upper bounds for ‖w′‖∞, ‖w′′‖∞, e.g., the choices given in Lemma 3.3. Then rn
given in Theorem 4.5 is estimated with the choice

L :=
961/3(CK2)2/9

K
1/3
4

(52)

by

rn ≤ Rn :=
(

16
3

)1/3 (
CK2

)4/9
K

1/3
4

(
ln(n)
n

)4/9

. (53)

Thus

sup
x∈R
|wn(x)− w(x)| ≤ Rn,

with wn given in (42) and L in the definition of δn there given by (52).

5.1 Algorithmic approximation of the density

For the computation of the approximations wn of w we keep and update arrays An defined by

An[k] := P

(
Xn =

k

n

)
, k ∈ Z,

so that An[k] 6= 0 at most for −Qn ≤ k ≤ Qn with Qn given in Lemma 4.1. According to the recur-
sive definition of Xn in (25), (26) and the choice of discretizations in (44)-(47) and with the notation
f

(n)
r := fr for r = 1, . . . ,K − 1 and f

(n)
K := 1− 1/n−

∑K−1
r=1 fr we define first A0[0] := 1,A0[k] := 0

for k 6= 0 (which we call initialize A0) and for the update we assume that An−1 is already given
and An[k] := 0 is initialized for all k ∈ Z. Then we obtain An algorithmically by the procedure

for i1, . . . , id = 0 to n2dln(n)e − 1 do
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for j1 . . . , jK = −Qn−1 to Qn−1 do

u :=
1
n

(⌊
i1

ndln(n)e

⌋
, . . . ,

⌊
id

ndln(n)e

⌋)
v :=

1
n2dln(n)e

(i1, . . . , id)

k :=
1
n2

⌊
n2

(
K∑
r=1

f (n)
r (u)jr + g̃(f (n)(v))

)⌋

An[k] := An[k] +
(
n2dln(n)e

)d K∏
r=1

An−1[jr]

enddo
enddo

We call this procedure update(An−1,An). Then with the array An the discrete approximation wn
of w as in Theorem 4.5 is obtained by

wn(x) :=
1
δn

∑
n(x−δn/2)<k≤n(x+δn/2)

An[k]. (54)

5.2 The algorithm

Therefore, analogously to the algorithm in Devroye, Fill, and Neininger [6] the rejection algorithm
looks as follows with wn as in (54), δn there as in (43) with L as in (52), and Rn as in (53):

repeat
generate indep. U unif[0,1] and X as in (24)
T ← Uq(X)
initialize A0

n← 0
repeat
n← n+ 1
update(An−1,An)
Y ← wn(X)

until n ≥ 3 and |T − Y | ≥ Rn
Accept = [T ≤ Y −Rn]

until Accept
return X

The correctness of the algorithm follows from von Neumann’s rejection method, see [4].

5.3 Complexity

It is well-known that the expected number of (outer) loops of a rejection algorithm is the L1-norm
of the dominating curve, thus in our case this is ‖q‖1 = 4K1/2

1 (2K2K3)1/4.
For the inner loop there is no universally accepted complexity measure. We propose for this to

estimate the number of steps to approximate the density w up to an accuracy of O(1/n). In the case
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0 < CΣ ≤ 1 the update (Aj−1,Aj) costs O((j2 ln(j))d(j ln(j))K) = O(j2d+K(ln(j))d+K) time units
thus the computation of the array Am takes time

O

 m∑
j=1

j2d+K(ln(j))d+K

 = O
(
m2d+K+1(ln(m))d+K

)
.

Since using Am we can, by Lemma 4.5, approximate w up to a precision of O((ln(m)/m)4/9) we set
m = n9/4 ln(n). This substitution implies that an approximation of w of the order O(1/n) costs time

O
(
n(9/4)(2d+K+1)(ln(n))3d+2K+1

)
.

An analogous calculation leads in the case CΣ > 1 to an approximation of the order O(1/n) at the
cost of

O
(
n(9/4)(2d+KdCΣe+1)(ln(n))3d+KdCΣe+1

)
.

For the special case of the limit law of the number of key comparisons of the quicksort algorithm
applied to a set of randomly permuted items we have CΣ = 1, d = 1,K = 2, which gives an
approximation of w at the order O(1/n) at the cost of O(n11.25(ln(n))8). This improves the algorithm
of Devroye, Fill and Neininger [6], where the approximation of w of the order O(1/n) was calculated
at the cost of O(n36). However, the expected time taken by the inner loop in our algorithm is
infinite. We do not know if a finite expected time algorithm exists that is allowed to use only the
basic algebraic operations such as addition, comparison and multiplication. A solid lower bound
theory for simulation algorithms is still lacking.
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