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Abstract

We derive a Berry-Esseen bound, essentially of the order of theesglithe standard deviation,
for the number of maxima in random samples fréin1)?. The bound is, although not optimal, the
first of its kind for the number of maxima in dimensions higher than two. Thefprses Poisson
processes and Stein’s method. We also propose a new method for contpatiagiance and derive

an asymptotic expansion. The methods of proof we propose are of soramliy and applicable to
other regions such asdimensional simplex.

1 Introduction

Maxima. A pointp in R?is said todominateanother pointy if the differencep — q has only nonnegative
coordinates. We writgg < p or p = q. The nondominated points in a set of points are caftecima
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The aim of this paper is t@) derive an asymptotic expansion for the variance of the nurobmaxima
in random samples independently and identically distebdutid) in the hypercubéo, 1)¢, and(ii) derive
a central limit theorem with convergence rate for the nundbenaxima.

The interest of studying dominance and maxima is multifoklrst, dominance represents one of
the most natural partial orders for multidimensional psir@nd has been widely used in many scientific
disciplines; see Bai et al. (1998, 2001), Chen et al. (2003)rfore information and a large number of
references. Second, the number of maxima is itself encoethi@ many applications like analysis of
linear programming and of maxima-finding algorithms; sedrBIE986), Devroye (1986), Golin (1994),
Dyer and Walker (1998), Chen et al. (2003). Finally, not muckniown as far as probabilistic properties
of the number of maxima in dimensions higher than two is comex Asymptotic estimates for the mean
are usually straightforward, but those for the variancehag@ly nontrivial even in the simplest case of
hypercubes; see Bai et al. (1998). Baryshnikov (2000) indccttat the number of maxima in hypercubes
is asymptotically normally distributed but without a comi@ proof; see also Barbour and Xia (2001).
While the asymptotic normality for the number of maxima inthgjmensional regions is quite expected,
the technicalities required for a rigorous proof may not &gyeo accomplish.

Maxima in hypercubes. Letp,,...,p, be a sequence of iid points chosen uniformly at random from
(0,1)4, d > 2. Denote byK,, = K,, 4 the number of maxima ifip;, ..., p,}-

Distributional properties of{,, were first investigated by Barndorff-Nielsen and Sobel ()96&ere
they showed that

n ' n—1 -1
E[K,| = m/o (1—2z)" Y (=logx)'dz. (1)
From this, one obtains
d—1
Bk, = G + Ologn) ™), @

asn — oo andd fixed; the asymptotic approximatio)(was first derived in Kuksa anglor (1972) for
d = 2,3, and for generall in Berezovski and Travkin (1975) (with an asymptotic expansion); lvanin
(1975) consideretL[ K] under more general model allowing correlations betweendinates.

Similar results were later rederived in Vout (1973), Calpané Golding (1976), Bentley et al. (1978),
Devroye (1980), O’Neill (1980), Buchta (1989). See also Hgvé2002) for a uniform Poisson-type
estimate foff[ K,,] whend varies withn. We also collect about a dozen of different expression&féf, |
in Appendix.

The variance ofi,, was first studied by Barndorff-Nielsen and Sobel (1966)der 3, and then by
Ivanin (1976), Bai et al. (1998), Devroye (1999) for geneldk satisfies (see Bai et al., 1998)

(ljgf)i’]—l - (d—1 i O ((logn)™). 3)

where
. 1 L m m . i+k - 1 —1\d-1 _ -d __ 11-d
“d*(d—l)!znﬁ )3 (])(k)( D’ jk<(j R Tk )
m2>1 1<5,k<m

for d > 2. Recently, Carlsund (2003) provides more terms ®rf¢r d = 3, the main motivation of
obtaining more terms being that the convergenc¥|éf,, 5]/ (log n)* towardsx; is numerically very slow.
We give in this paper a simple method for deriving the follogvgeneral approximation.
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Figure 1: A plot of the values of; + 1/(d — 1)! for d from 2 to 11.

Theorem 1. For d > 2, the variance ofX,, satisfies

VK] - Z ( 1 5 ((_,1)jF(j)(1) —|—cdj) (logn)™ + O(n*(logn)*™), 4)

(logn)t=t | = (d=1-5t\ J!

wherel” denotes the Gamma function azrfy;l is defined as the coefficientof in the Taylor expansion of

2I'(2 — u) (—log x)4~ 2—u)
T =) /0 (1 a)2" X" +1;<d d—1—h)
1,1 " —og 2)d-1-k oo )1 (— oo »)d-1-k
[ (St zx;;?%) Jus

The first few values ok, = c40/(d — 1)! are given below in14). Numerically, the limiting constant
of V[K,]/(logn)¢! first increases and then decreases, with a maximum reachled dt see Figurel.
One can show, usind.B) below, thatx,; goes to zero factorially fast asincreases.

The error term in4) is not optimal and can be improved if required, and the saeibod of proof can
be extended to other regions.

While numerical calculations of the integrals i) @re very time-consuming, the expansidn iep-
resents the first of such approximations for the varianceenitains open how the integrals i) (nay be
further simplified.

A CLT with aratefor K,. We next derive a Berry-Esseen bound f&f. The proof given here is not
only self-contained, but also the first complete one; cf. Banykov (2000).
Let &(x) denote the distribution function of the standard normatitistion

e~ /2 4.

1
Vor /oo
Suppose that}, Ys, ... is a sequence of random variables. W(itg, } € CLT(r,), if

P (LM < :17) — d(x)
VY]

wherer,, — 0. A sequence,, is referred to as aonvergent sequender,, — 0.

®(x)

sup
x

= O(Tn)a

Theorem 2. The sequence of random variablEg satisfies

{K,} € CLT ((logn)~“"V/*(loglog n)?) . (6)
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The idea of the proof consists in constructing a sequencaralam variables<y, satisfying the
following two estimates.

Proposition 1. For a convergent sequeneg > (logn)~@=1/2,
(K,} € CLT (r,) iff {Kw.}€CLT(r).

Proposition 2. The sequence of the normalized random varialblgs = (Kw, — E[Kw,])/v/ V[EKw,]
converges to the standard normal distribution with a rate

i (Ky,, N(0,1)) = O ((log log n)** (log n)_(d_l)/2> 7

whereN (0, 1) denotes a standard normal random variable and
40X,Y) = sup {B0H00] = B sup (o) + sup )] < 1.

We then show that the the Kolmogorov distance is of the orfiefdy, and this will complete the proof
of (6).

The main trick used in the paper is the log-transformaticst 8uggested by Baryshnikov (2000). It
allows us to observe that nearly all maxima occur in a thiip siandwiched between two parallel hyper-
planes. Switching to a Poisson sample size introduces fustgh independence to apply Stein’s method.
Similar ideas have been explored by Barbour and Xia (2001).

2 Mean and variance of K,

Define
D, ={(x,y) € [0,1]* x [0,1]* : x incomparable witty},

where two points are said to ecomparableif none dominates the other. For notational convenience,
ITz; stands fofl [,_,, @:; similarly, Sz, = 37, 7.



Mean. The mean of,, is easily derived and simplified as follows.
E[K,] = n/ (1—Tlz)" " dx 7)
[0,1]¢

:/ e~ dx + Ty (n)
o)

/ e v du + Ti(n) (x;— n_l/dui)
nl/d)d

= / | eXD (—e™™% —Xz) dz+Ti(n) (2 — —logu)

/ (logn + z)" texp(—x —e ) dz + Ti(n) (z+— X z)
*J—logn

_ (ogm)™ 1 o (d_.1> — /Oooaogy)jeydywl(n)w(e"(logn)d1>

(d—1)! oSZa\ T (logn)i

IiT W)
~ (o)™ 3 T E o) 4 i)+ 0 (e log ) ®)
0<j<d

see also Berezovskand Travkin (1975) for more involved expressions for thefficients, and Appendix
for other expressions fof7).

HereT) (n) accounts for two types of errors introduced} when replacing: — 1 by n, which yields
an error of orde(n~'(logn)*"!), and(ii) when replacing1 — z)" by e~"*, which produces an error of
the form

En 1= n2/ e "] 22 dx,
[0,1]

(by the elementary inequality "*(1 — na?) < (1 —z)" < e ™ forn > 0 and0 < z < 1); see Lemma5
in Bai et al. (2001). By the same analysis as abeyer O(n!(logn)?~!). Thus the total errors are are
of orderO(n~!(logn)41).

Note that the right order of the error in approximatiigx’,, ) by the partial sum on the right-hand side
of (8) is indeedO(n~!(logn)?~2). The preceding derivations are written in the given formshed the
same procedure can be easily amended for other integrals.

For simplicity, the symbok,, ~ b, denotesi,, = b,, + O(n(logn)?~2).



Variance. For the second moment, we have

E[K?] — E[K,] = n(n — 1) / (1= Ta; — Tys + T (25 A y))"2 dx dy

n

~ nz/ e~z + Ty —TI (ziA\y;)) dx dy

= nQ/ e zitlyi) 4y dy + n2/ e~z +1ly;) (e”H (xiryi) _ 1) dx dy

~ (B[K,))? = To+ Y (Z) Lok, 9)

where (using the abbreviatiohz; = [}, =; andIl” z; = [, ., =)

Ly, = n’ / eIty <6”H/ vill i _ 1) dx dy,

x; >y, 1<i<k
<y, k<i<d

Lo = 2n? / e ety gy dx.
[0,1]¢x[0,1]¢
y<x
The main difference between the current proof and that in Bali €1998) is that we subtract the square
of the mean at this early step, so that the large amount ofdlations caused by subtractii§[X,])? is

easier to manage.
By the changes of variables

T — uy, Y — ww; fori <kooand ;o — wv;, oy — uy fori >k,

we have
Ly =0’ / et v (enflwvs — 1) [T, dudv
[0,1]4x[0,1]4

Lo = 2n2/ e Mw(HTU) T ) Qu dv.
[0,1]¢x[0,1]4

By applying the same procedure as ®ji,|, we have

2 n . o(14TIv,
Lo = m/ (logn — log y)“ ly/[ L€ v dy dy
*Jo 0,1
(logn)¢1 d—1 1 /°° /1 : i1 —
~o 0 S —logy)i(—1 v(1+2) (2 dy.
e > i aogny ) ), y(—logy)’(—log2)*" e zdy

0<j<d
Denote by{u’] f(u) the coefficient ofu’ in the Taylor expansion of. Then

['(2—u)

- —1 Jemv(+2) o = ] —2 2
/Oy( ogy)’e y J[u](Hx)Q_u,



and

7 ) 1 1 d—1
Lo =~ z(l‘zlg " (logn) (W0 (2 — ) / (“logz)™ (10)
(@-1) Z=, [d=1-)) 0o (1+2)
Note that , )
oo 12— u) J —e(j—) oy 108 (1 +
Ml = ¥ () oo ea L,
(1+ )2 oo \L (I+x)
Similarly, for1 < k < d — 1, we have
Lk = o // (logn — log y) ¥ tye v vitl"vi) (eyH”i —1) dvdy
(d - 1 ' [0 1]d
_ (logn)™* (d — 1) (logn)™7
(d—1)! oy j ) (k=D d—-1-k)!
oo rl pl
X / // (—logy)’ (—log z)F~1(—log 2) 1 Fye ¥@+2) (¢¥o2 — 1) dzdz dy
0 JoJO
- (logn)™
= (logn)™* Y .
052 (d—=1=)k—=1ld—-1-Fk)!
o d—1—k o k=1 d—1—k
< [T — u) // logx 1(—log 2) _ (=logz)"(—log 2) de ds.
(x + 2z — xz)?>™ (x + z)2v
(11)
Thus we obtain4) for the variance of,,, and the expressiorb) follows from (9), (10) and (L1). This
completes the proof o#j. O

A quick check. Taked = 2in (4), we obtain
VK2 = (14 cy)logn+ v+ co1 + O (n’l(log n)2) ,

' logx trt 1 1
=2 d 2 — dxd
20 /0 (1+x)? T /0/0 ((x+z—xz)2 (£L‘+Z)2> ras

1
1
21:2/ %x)(log(l—l—x)—l—i-'y) dz

+2// (logx+z—xz)—1+7 log(x+z)—)1+7) Qo ds.

r+z—x2)? (x+ 2)?
It is then straightforward to check thaty = 0 andcy; = —72/6.

where

Theleading constant ;. By comparing the two equation8)(and @), we obtain an alternative expres-

sion forky
B 2 ' (—loga)?~ 1 1
“d__(d—n!?/0 (1+2)2 —1' Z () k—Dld—1-k)

1,1 ~ L 1 1
X /0/0 (—log z)" 1 (—log )41 * ((m e E Rl s Z>2) dzdz. (12)
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Yet another expression fay, can be derived from the main theorem in Bai et al. (1988),(:= E[K,])

Z Hm.k Um,d—1—k
kElNd—1— )

m?2
1<k<d—-2

d—2—k

(—log ) 1(—log z)? 2~
- ) I )(k—l R // drdz,  (13)

T z— Iz
1<k<d-2 +

where we use the integral representatibn (

A natural question then is how to prove directly the identitplied by equating13) to (12). Note that
numerically the use oflQ3) is preferable toX2).

The exact valuesof x4 for d < 8. The first fewk,’s can be explicitly expressed in terms of Riemann’s
zeta function/(s) as follows.

( ke = 0,
R3 = C(Q)»
Rg = 2C(3)>
rs = 16 C(4), (14)
re = 3C(5) +6C(2)C(3),
Ky = %C( )+ 7C(3)?,
[ fs = 5750 C(7) + 556 C(2)C(5) + 1435 C(3)C(4).

The values ok, . . ., kg are already given in Bai et al. (1998).
To see how these values are obtained frag),(we start from the integral

2 /1 (—logz)™! da Je1gi=d
(d—1)12 J, (1+x)? N 1)!

k>1

— - (1= 2 - 1),

for d > 2, where(1 — 2274)((d — 1) = log 2 for d = 2.
Similarly, the integrals withk = 1 in (12) satisfy

(d— 1)\ d 2)! // ~log2)’ 2((x+z1—x2)2_(x—iz)2> drdz

_ (—log 2)*~
(d—1)!(d—2)./0 1+ 2

and the integrals correspondingkce= d — 1 in x, give the same value.
For the integrals withk = 2 andk = d — 2 in (12), we have

2(d = 2)! d 3)! // ~logz)(~log 2)"" (($+21—xz)2_(xj2)2> dod
d—3+2"7)((d - 1);

dz

<d—2><



and fork = 3 andk = d — 4 (Lia(2) := >, 5, 2™/m?)

12(d— 3()1!@ — 1 /01/01(— log )*(—log ) ((m - 21_ G +1 z)2> dz dz
d

= g3y (0= D(@=3)+2-27) (@~ 1)+ 202)¢(d -3

HY H,,
_zzmd_3—2(d—3)zmd_2> (d >5),

m>1 m>1

whereH? := D i<jcm L/3 andH? = D i<ijem /5%
These relations, together with the identities (see Flape Salvy, 1998)

(2)
ST = 26(6) - ) — BB Y T = (3~ 3(6),

m>1 m>1

give the values of;, 2 < d < 7.
Finally, the value ofkg is obtained by a lengthgd hoccalculation via Euler sums (see Flajolet and
Salvy, 1998).

Remark. The same approach is applicable to the number of ma¥iman d-simplex{x : z; > 0,2, +
-+« + x4 < 1} for which we have

E[K,] ~ T (%) ntd=0/4,
V[K,] ~ Cyntd=1/1,
where

Od;:r(g)—zr(i)/o %dx

+2(d-1)r (%) Y (Z) (Z i f) /01(1 —x)k! /01(1 — xz) kR

1<k<d

1 1
X ((1 + 2d — gdzd)1+1/d o (1 +2d)1+1/d) dzdz.

3 A Berry-Esseen bound for K,

The proof of Proposition is divided into several steps.

A log-transformation

Assume now thap,, . . ., p,, are iid points uniformly distributed in the culoe 1,0)4. A crucial step in our
analysis is to apply the log-transformation first introdlity Baryshnikov (2000)x = (z1,...,24) —
y = (y17 s 7yd)’ where

y; = —log(—x;), i=1,...,d,



from (—1,0)"toR% = {x : z; > Oforalli = 1,...,d}. Such a transformation preserves the dominance
relation, and the maximal points are thus unchanged. Déxyaje, . . . , q,, the images op, .. ., p,, under
such a transformation. Then the componenig,adre iid with exponential distributiom\(= 1). We define

||| = 1 + -+ + x4 for x € RL. Then||q;|| has a gamma distribution with parametér1), that is, the
density function of|q, || is e~*2¢"1/(d — 1)! for z > 0 and zero otherwise.

Approximation of K,, by the number of maximain astrip
Let B, = {x: |x|| > o} NRL andB; = {x : ||x|| < o} NR%. Take

a =logn — log (4(d — 1) loglogn),
B =logn +4(d — 1) loglogn.
Let V,, be the event that there is no point fd, ..., q,} falling in Bs. Let K, be the number of
maxima falling in B, when conditioning onV,,. We first prove that for a convergent sequenge>

(logn)~(@=1/2,
(K.} € CLT (r) iff {K.} € CLT (). (15)

The following Lemma is needed to proves).

Lemma l. LetX,,, Y, be two sequences of random variables apdbe a convergent sequence. Suppose
that (7) the total variation distancé(X,, Y,,) betweenX,, andY,, is bounded above by(r,), (i)

[E[Xn] = E[Y,]] = O(ra v/ V[Xa]),
and (ii7)
[VIXa] = VIYa]| = O(r v/ VX))
Then{X,} € CLT(r,) iff {Y,,} € CLT(r,).
Let V,,(A) denote the number of points ¢, . . ., q,} falling in A and K, (A) denote the number of

maxima of{qy, ..., q,} falling in A. Clearly,K,,(A) < N,(A).
To prove (L5), we first decomposé&’,, into three parts

K, = K,(Ba)ly, + Kn(Ba)lvﬁ + K, (B%).
Note that
K, = K,(B,)1y, conditioned orV/,.

To apply Lemmal, we first derive the three estimates:

d(KmKn) < P(Kn(Ba)l\/,f > 1) +P(K (BC) ) ( C)

MMHE[(>§$>[(>L

K| (B[R] + E[K,))

|E[K,] — E[K,]| < ‘1 -

—~

P(V)
[VIK.] - VIK]| < [BIK?) - B[R
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where

E[K,]

P(Va)
E[K7(Ba)lvg] + E[KG(B5)] + 2E[K7(Ba)JE[K7(B7)]
P(V,) '

Recall thatE[K,,] < (logn)? ! andE[K?] =< (logn)?@~1); see @) and @). By Chebyshev’s inequality
P(Vy) < E[Nn(Bg)].
We claim that

() E[Na(Bs)] = O((logn)~**=1),
(i) E[K.(B5)] = O((logn)~*~Y),
(iii) E[K,(Ba)lvg] = O((logn)=(*-1),
(iv) E[K2(Ba)1lyg] = O(1), and

(v) E[KR(B5)] = O((logn)~>*1).

It follows from these claims that

Thus the proof of15) is reduced, by Lemma, to proving the five claims.

Proof of (i).

Proof of (ii). LetUy, ={z: 2 > y;,i=1,...,d} be the first quadrant of. Then the probability that

q falls in Uy is given by
x ('CE — HyH)dil e Tdr = 6—||y||
Iyl (d=1)! I

11



Thus, giveny,, the conditional probability that; is a maximal point satisfigg —e~la1l)n—1 < g=(n-Delal,
Therefore,

E[K,(B)] = nPP(q; is a maximal point falling inB,)

a $d_1 i
< TL/ 6—(n—1)e’l—x dx
0

(d—1)!
(IOg”)d_l o~ (n=De~"—z q,.
=@ / !
n(logn)® ' e~ (n=1)e e
- (d-1) n—1

= O ((logn)~**1) .

Proof of (iii). Let A, be the event thaq; lies in Bg. ThenV,¢ C U, A;. The number of maxima id; is
less than the number of maxima{n,...,q;-1,Qit1,...,qd,} + 1. Note thatP(4;) = P (||ai1]| > B) =
O (n~'(logn)~=*=Y). Thus

E[K,14,] < P(A)(E[K, 1] + 1) = O(n ' (logn) 2@ 1),
and then
E[K,(Ba)lve] < E[K,1yc] = O((logn)~2471).
Proof of (iv). Similarly,
E[K21a,] < P(A)(E[K:_ ]+ 2E[K, 1] + 1) = O(n~ " (logn)~“~Y).
Thus
E[K3(Ba)lve] < E[K?1y,] = O((logn) V).

Proof of (v). Givenq, q,, the conditional probability thags falls in Uy, U Uy, is
1
P(Uq,) +P(Ug,) — P(Uay N Ugy) 2 5 (71901 4 e7loel)

the conditional probability that botly, andq, are maxima is less than
1 " —1(n—2)(e—llarllye-llazll
1= = (e~ llall o p=llaell < - 3= (e larllpemliazl)
( 3 (€ e ) =

We thus have

2
E[K2(BC> = Z 1(1L is maximal andqz||<0‘]

1<i<n

= E[K,(BS)] + n(n — 1)P(bothq; andq, are maxima falling inB;,)

< E[K.(B;)] (e / / wy)d e 2 (e e ey g

(IOgTL (d-1) —(n—2)e™ @

[(n = 2)(d = 1)!]?
= O ((log n)’Q(d’l)) :

< E[K.(Bg)] +

12



A Poisson process approximation

Construct a Poisson procef®, } on S,, = B, N Bg with intensity function

)\n _ nefHW” 7
P(lla:ll < 5)

Denote byN,, the number of points of the Poisson process falling,inAlso, let Ky, denote the number
of maxima of the Poisson process ag be the number of points that falls ), when conditioning on
V,. Itis easy to see that the conditional distributionfof given N,, = m is identical to the conditional
distribution of Ky, given N,, = m. Thus, the total variation distance betwe€p and Ky, satisfies (see
Prohorov, 1953)

sup !]P’(Fn € A)—P(Ky, € A)|
A

=sup| ¥ PN, =m)P(K, € A[N, =m)- Y P(N, P(Kyw, € AN, =m)
A Jo<mzn m>0
< Z |P(N,, =m) —P(N,, =m)|
m>0
= O(pn)a

(the implied constant can be taken toheee Barbour et al., 1992), where

Pn = P(qy € Splllai] < 6)

1 B pd-1
= e “dx
P(llas]| < B) /a (d—1)!
_0 ((logn)dlloglogn>

n

Similarly, we have the two estimates
E[K,

wa| <n
|E[K, (K, —1)] - E[KW" KW" — 1)) <nn—-1)p
The above three estimates imply, by Leminghat for a convergent sequengg> (logn)~(4—1/2

{K,} € CLT (r,) iff {Kw,} € CLT(r,).

A central limit theorem for Ky,

We prove in this section Propositi@by applying Stein’s method.
Split Ri into cubess,, ,,, , Of edge-length /2™, wherem > 0. Let

Znmv = Mmin(1, the number of maxima oW, falling in the cellG,, ,,, ,,) .

Observe thap , Z, .., is nondecreasing im, where the sum runs over all possible indices for cells, and

lim P (Z T = Kwn> =1,

13



for fixed n. Thus

lim d1

m—00

(K;;V 7 ZU(Z”LJTLU B E[Zn,m,vb) _ O;

g VI Znmo)
the same result also holds under the total variation distanc

For convenience, we writ€¢', = G,, ,,, andZ, = Z, ... In the following proof,n is a large integer
andm is suitably chosen (whose value depends:pnTo prove Propositiof, it is sufficient to prove the
same convergence rate 0y Z,} (normalized) taV (0, 1) for sufficiently largem, and for that purpose,
we apply Stein’s method (as formulated in Theorem 6.33,alaesal., 2000), where the Stein remainder
term is expressed in terms of tHe-distance. It suffices to verify that

M, Q> —(d—
ﬁ =0 ((log log n)** (log n) ™ 1)/2) ,

where

M, =) E[Z] < E[Kw,] = O ((logn)*"),

Qn = max > E|Z,|Z;, Z] = O ((loglogn)“) . (16)

k
/ Z,, dependent or; or Zj,

For large enougtm, VY, Z,] ~ V[Kw,] < (logn)*"!; see B).

Proof of (16). Let N, be the number of points oW, falling in G,. We choosemn so large that
min;; P(N; = 0, N, = 0) > 1/2. Note thatE[Z,|Z;, Z;] = Z, < 1forv = jorv = k.
We claim that
E[Z,|Z;, Zi] < 2E[N,], a7

forall v # j, k. As one can see from Figu& for any givenG;, andGj, Z, is dependent oi; or Z;, only
when the overlapping region 6f, and the shaded area is nonempty. From this it follows that

> E(Z,|Z;, Z]) < 2+2 > E[N,]

Z, dependent otr; or Zj, Z, dependent or; or Z;,

=0 ((ﬁ —a)*! /j ne™ dt)

= O ((loglogn)?),

proving (L6). Thus the proof of16) is reduced to that ofl(7), which is split into three cases conditioning
on the possible values ¢%;, Z;) = (0,0), (0,1) or (1, 1).
The first case when bothi; andZ;, are zeros is estimated as follows.

P(Z,=1,Z; =0,Z;, =0)
P(Z;=0,Z, =0)
E[N,]
~ P(N; =0, N, =0)
< 2E[N,].

14



For the remaining cases, we observe that

P(Zy=1|N;=0) >P(Z, =1) fori # k, (18)
P(Z;=1,Zy = 1|N; = 0) > P(Z; = 1,2, = 1) fori # j k;
and thus
P(Z,=1N; > 1) <P(Z,=1) fori # k, (19)
P(Z;=1,Z, =1|N; > 1) <P(Z; =1,Z, =1) fori # j, k. (20)

Consequently, when both; andZ;, arel, we have, by Z0),

P(Z,=1,Z;=1,Z, = 1)
P(Z;=1,2,=1)
- P(N,>1,Z;=1,2,=1)
- P(Zj=1,2.=1)
P(Z; =1,Zy = 1|N, > 1) P(N, > 1)
P(Z;j=1,Zy=1)
<P(N, >1)
< E[N,].

E(Z,Z; =1,Z, = 1] =

Similarly, from (18) and (9) it follows that

E[Z,|Z; = 0,2, = 1] = P(ZI;(ZJ’:Za S,ZZ;;) 2
< P(N, > 1,7, =1)
“P(N;=0,Z,=1)
 P(Z=1|N, > 1)P(N, > 1)
" P(Z,=1|N; =0)P(N; = 0)
_P(N, 2 1)
= P(N, =0)
< 2E[N,]

for j # k. This completes the proof o1.7).

From d,-distance to Kolmogorov distance

With Propositionsl and2 at hand, we need only to apply the following lemma to compileéeproof of
Theorem2.

Lemma2. Assume that the sequence of random variablesonverges to the standard normal distribution

with a rate
d1(Y,,N(0,1)) = O(r,),

wherer,, — 0 and N (0, 1) denotes a standard normal variable. Then

{Y,.} € CLT(\/ry).

15



[l > 5

[ < o Sn

Figure 2:Possible configurations &f,, G, andGj,.

Proof. Fix n. Let

0 ify < z,
ho(y) =9 (W—2)/2 fz2<y<z+2r,
N ify>2z+2r,.

Thensup, |h.(y)| + sup, |h.(y)| < /rn + 1/2. Without loss of generality, assumg < 1/4. Then

Vin [P (Yo < 2) = @) = /1o [P (Yo > 2) =P (N(0, 1) > 2)|
< sup [E[h. (Ya)] — E[2-(N(0, 1))]]

+ o P(z < N(0,1) < 24 24/1,)
< dy(Yy, N(0,1)) +
=O0(ry).
Thussup, |P (Y, < 2) — ®(2)| = O(\/n). O

Remark. By the same method of proof, we can derive a Berry-Esseen baurttef number of maxima
K, in d-simplex of the form

{K,} € CLT (n_(d_l)/(4d)(log n)? 4+ n~Y4(log n)?).
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Appendix. Various expressionsfor E[K, 4.

We collect some expressions fof ; := E(K, 4) in the case of hypercubes. These expressions obviously
show the diversity of the nature of the enumeration problsee also Flajolet et al. (1995), Labelle and
Laforest (1995).

Summation for mulae.

ma= 3 () -0

1<k<n

Hn.d = Z %7

Z « e Z _
1<ii<<igy b4l

e
il dg g1 (d — 1)t ’

Hn.d =

i1+2’i2+--~(d—1)i4_1:d—1
1150008g—120

whereH " := Di<jen 1/5%

Recurrencereations. Forn > 1 andd > 2

Hn,d—1
Hnd = HUn—1d + n

Mjd—1
Hn,d = Z ]—‘7
1<5<n Y
1 »
fnd = 75— > B D,

1<j<d-1

with yi,, 1 = 1 forn > 1.
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Integral representations.

0,1)d
n ! 1 d-1
o - /0 (1 —z)" " (—logx)* " dz,
1 1
Hnd = 5 Z_d . dZ7

1, -
—1) 5+100 !
Hn,d = ( ) /2 d & ds.
’ 21 Jiie $U(s—=1)--(s—n)

Probability expressions.

,un’d = n]E [(1 — U1U2 e Ud)n_l] s

whereU,, Us, . . ., U, are iid uniform[0, 1] random variables and thé’s are geometric random variables
1-1/3
B - - <<y
1—2z/j

see Bai et al. (1998).
Also u, 4/n is the probability that the first subtree in a random quadbofee nodes is empty; see
Flajolet et al. (1995).

Asymptotic approximations. Letp:= (d —1)/logn.
(1) If 1 < d <logn — M+/logn, M > 1 being sufficiently large,

(logn)®! d
—T(1-p)—2"2_ (1 e
uniformly in d;

(44) if d = logn + xv/logn, wherez = o((logn)'/®), then
Hn,d 1+ ‘:L"?’
~ =0 14+0
n (z) ( i (\/logn ’
uniformly in x;

(230) If d > logn + M+/logn, then

1— Hn.d -0 (n—plogp+p—1(1ogn)—l/2) 7
n

uniformly in d; see Hwang (2002) and the references therein.
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