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Abstract

We derive a Berry-Esseen bound, essentially of the order of the square of the standard deviation,
for the number of maxima in random samples from(0, 1)d. The bound is, although not optimal, the
first of its kind for the number of maxima in dimensions higher than two. The proof uses Poisson
processes and Stein’s method. We also propose a new method for computingthe variance and derive
an asymptotic expansion. The methods of proof we propose are of some generality and applicable to
other regions such asd-dimensional simplex.

1 Introduction

Maxima. A pointp in R
d is said todominateanother pointq if the differencep−q has only nonnegative

coordinates. We writeq ≺ p or p ≻ q. The nondominated points in a set of points are calledmaxima.
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2Partially supported by a Research Award of the Alexander vonHumboldt Foundation.
3Partially supported by NSC under the GrantNSC-92-2118-M-001-037.
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The aim of this paper is to(i) derive an asymptotic expansion for the variance of the number of maxima
in random samples independently and identically distributed (iid) in the hypercube(0, 1)d, and(ii) derive
a central limit theorem with convergence rate for the numberof maxima.

The interest of studying dominance and maxima is multifold.First, dominance represents one of
the most natural partial orders for multidimensional points, and has been widely used in many scientific
disciplines; see Bai et al. (1998, 2001), Chen et al. (2003) formore information and a large number of
references. Second, the number of maxima is itself encountered in many applications like analysis of
linear programming and of maxima-finding algorithms; see Blair (1986), Devroye (1986), Golin (1994),
Dyer and Walker (1998), Chen et al. (2003). Finally, not much is known as far as probabilistic properties
of the number of maxima in dimensions higher than two is concerned. Asymptotic estimates for the mean
are usually straightforward, but those for the variance arehighly nontrivial even in the simplest case of
hypercubes; see Bai et al. (1998). Baryshnikov (2000) indicated that the number of maxima in hypercubes
is asymptotically normally distributed but without a complete proof; see also Barbour and Xia (2001).
While the asymptotic normality for the number of maxima in high-dimensional regions is quite expected,
the technicalities required for a rigorous proof may not be easy to accomplish.

Maxima in hypercubes. Let p1, . . . ,pn be a sequence of iid points chosen uniformly at random from
(0, 1)d, d ≥ 2. Denote byKn = Kn,d the number of maxima in{p1, . . . ,pn}.

Distributional properties ofKn were first investigated by Barndorff-Nielsen and Sobel (1966), where
they showed that

E[Kn] =
n

(d − 1)!

∫ 1

0

(1 − x)n−1(− log x)d−1 dx. (1)

From this, one obtains

E[Kn] =
(log n)d−1

(d − 1)!
+ O((log n)d−2), (2)

asn → ∞ andd fixed; the asymptotic approximation (2) was first derived in Kuksa anďSor (1972) for
d = 2, 3, and for generald in Berezovskĭı and Travkin (1975) (with an asymptotic expansion); Ivanin
(1975) consideredE[Kn] under more general model allowing correlations between coordinates.

Similar results were later rederived in Vout (1973), Calpineand Golding (1976), Bentley et al. (1978),
Devroye (1980), O’Neill (1980), Buchta (1989). See also Hwang (2002) for a uniform Poisson-type
estimate forE[Kn] whend varies withn. We also collect about a dozen of different expressions forE[Kn]
in Appendix.

The variance ofKn was first studied by Barndorff-Nielsen and Sobel (1966) ford = 3, and then by
Ivanin (1976), Bai et al. (1998), Devroye (1999) for generald. It satisfies (see Bai et al., 1998)

V[Kn]

(log n)d−1
=

1

(d − 1)!
+ κd + O

(

(log n)−1
)

, (3)

where

κd =
1

(d − 1)!

∑

m≥1

1

m2

∑

1≤j,k≤m

(

m

j

)(

m

k

)

(−1)j+kjk
(

(

j−1 + k−1
)d−1 − j1−d − k1−d

)

,

for d ≥ 2. Recently, Carlsund (2003) provides more terms for (3) for d = 3, the main motivation of
obtaining more terms being that the convergence ofV[Kn,3]/(log n)2 towardsκ3 is numerically very slow.

We give in this paper a simple method for deriving the following general approximation.
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Figure 1: A plot of the values ofκd + 1/(d − 1)! for d from 2 to 11.

Theorem 1. For d ≥ 2, the variance ofKn satisfies

V[Kn]

(log n)d−1
=

∑

0≤j≤d−1

1

(d − 1 − j)!

(

(−1)j

j!
Γ(j)(1) + cdj

)

(log n)−j + O(n−1(log n)d−1), (4)

whereΓ denotes the Gamma function andcdj is defined as the coefficient ofuj in the Taylor expansion of

− 2Γ(2 − u)

(d − 1)!

∫ 1

0

(− log x)d−1

(1 + x)2−u
dx +

∑

1≤k<d

(

d
k

)

Γ(2 − u)

(k − 1)!(d − 1 − k)!

×
∫ 1

0

∫ 1

0

(

(− log x)k−1(− log z)d−1−k

(x + z − xz)2−u
− (− log x)k−1(− log z)d−1−k

(x + z)2−u

)

dx dz. (5)

The first few values ofκd = cd0/(d − 1)! are given below in (14). Numerically, the limiting constant
of V[Kn]/(log n)d−1 first increases and then decreases, with a maximum reached atd = 4; see Figure1.
One can show, using (13) below, thatκd goes to zero factorially fast asd increases.

The error term in (4) is not optimal and can be improved if required, and the same method of proof can
be extended to other regions.

While numerical calculations of the integrals in (5) are very time-consuming, the expansion (4) rep-
resents the first of such approximations for the variance. Itremains open how the integrals in (5) may be
further simplified.

A CLT with a rate for Kn. We next derive a Berry-Esseen bound forKn. The proof given here is not
only self-contained, but also the first complete one; cf. Baryshnikov (2000).

Let Φ(x) denote the distribution function of the standard normal distribution

Φ(x) =
1√
2π

∫ x

−∞

e−t2/2 dt.

Suppose thatY1, Y2, . . . is a sequence of random variables. Write{Yn} ∈ CLT(rn), if

sup
x

∣

∣

∣

∣

∣

P

(

Yn − E[Yn]
√

V[Yn]
< x

)

− Φ(x)

∣

∣

∣

∣

∣

= O (rn) ,

wherern → 0. A sequencern is referred to as aconvergent sequenceif rn → 0.

Theorem 2. The sequence of random variablesKn satisfies

{Kn} ∈ CLT
(

(log n)−(d−1)/4(log log n)d
)

. (6)
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The idea of the proof consists in constructing a sequence of random variablesKWn satisfying the
following two estimates.

Proposition 1. For a convergent sequencern ≥ (log n)−(d−1)/2,

{Kn} ∈ CLT (rn) iff {KWn} ∈ CLT (rn) .

Proposition 2. The sequence of the normalized random variablesK∗
Wn

:= (KWn − E[KWn ])/
√

V[KWn ]
converges to the standard normal distribution with a rate

d1

(

K∗
Wn

, N(0, 1)
)

= O
(

(log log n)2d (log n)−(d−1)/2
)

,

whereN(0, 1) denotes a standard normal random variable and

d1(X,Y ) := sup
h

{

|E[h(X)] − E[h(Y )]| : sup
x

|h(x)| + sup
x

|h′(x)| ≤ 1

}

.

We then show that the the Kolmogorov distance is of the order of
√

d1, and this will complete the proof
of (6).

The main trick used in the paper is the log-transformation first suggested by Baryshnikov (2000). It
allows us to observe that nearly all maxima occur in a thin strip sandwiched between two parallel hyper-
planes. Switching to a Poisson sample size introduces just enough independence to apply Stein’s method.
Similar ideas have been explored by Barbour and Xia (2001).

2 Mean and variance of Kn

Define
Dn = {(x,y) ∈ [0, 1]d × [0, 1]d : x incomparable withy},

where two points are said to beincomparableif none dominates the other. For notational convenience,
Π xi stands for

∏

1≤i≤d xi; similarly, Σ xi =
∑

1≤i≤d xi.
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Mean. The mean ofKn is easily derived and simplified as follows.

E[Kn] = n

∫

[0,1]d
(1 − Π xi)

n−1 dx (7)

= n

∫

[0,1]d
e−nΠ xi dx + T1(n)

=

∫

[0,n1/d]d
e−Π ui du + T1(n) (xi 7→ n−1/dui)

=

∫

[−d−1 log n,∞)d

exp
(

−e−Σ zi − Σ zi

)

dz + T1(n) (zi 7→ − log ui)

=
1

(d − 1)!

∫ ∞

− log n

(log n + x)d−1 exp(−x − e−x) dx + T1(n) (x 7→ Σ zi)

=
1

(d − 1)!

∫ n

0

(log n − log y)d−1e−y dy + T1(n) (y 7→ e−x)

=
(log n)d−1

(d − 1)!

∑

0≤j<d

(

d − 1

j

)

(−1)j

(log n)j

∫ ∞

0

(log y)je−y dy + T1(n) + O
(

e−n(log n)d−1
)

= (log n)d−1
∑

0≤j<d

(−1)jΓ(j)(1)

j!(d − 1 − j)!
(log n)−j + T1(n) + O

(

e−n(log n)d−1
)

; (8)

see also Berezovskiı̆ and Travkin (1975) for more involved expressions for the coefficients, and Appendix
for other expressions for (7).

HereT1(n) accounts for two types of errors introduced:(i) when replacingn − 1 by n, which yields
an error of orderO(n−1(log n)d−1), and(ii) when replacing(1− x)n by e−nx, which produces an error of
the form

εn := n2

∫

[0,1]d
e−nΠ xiΠ x2

i dx,

(by the elementary inequalitye−nx(1 − nx2) ≤ (1 − x)n ≤ e−nx for n ≥ 0 and0 ≤ x ≤ 1); see Lemma 5
in Bai et al. (2001). By the same analysis as above,εn = O(n−1(log n)d−1). Thus the total errors are are
of orderO(n−1(log n)d−1).

Note that the right order of the error in approximatingE(Kn) by the partial sum on the right-hand side
of (8) is indeedO(n−1(log n)d−2). The preceding derivations are written in the given forms sothat the
same procedure can be easily amended for other integrals.

For simplicity, the symbolan ≃ bn denotesan = bn + O(n−1(log n)2d−2).
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Variance. For the second moment, we have

E[K2
n] − E[Kn] = n(n − 1)

∫

Dn

(1 − Π xi − Π yi + Π (xi ∧ yi))
n−2 dx dy

≃ n2

∫

Dn

e−n(Π xi+Π yi−Π (xi∧yi)) dx dy

= n2

∫

Dn

e−n(Π xi+Π yi) dx dy + n2

∫

Dn

e−n(Π xi+Π yi)
(

enΠ (xi∧yi) − 1
)

dx dy

≃ (E[Kn])2 − In0 +
∑

1≤k<d

(

d

k

)

Ink, (9)

where (using the abbreviationsΠ′ xi =
∏k

i=1 xi andΠ′′ xi =
∏d

i=k+1 xi)

Ink := n2

∫

xi>yi, 1≤i≤k
xi<yi, k<i≤d

e−n(Π xi+Π yi)
(

enΠ′ yiΠ
′′ xi − 1

)

dx dy,

In0 = 2n2

∫

[0,1]d×[0,1]d

y≺x

e−n(Π xi+Π yi) dy dx.

The main difference between the current proof and that in Bai et al. (1998) is that we subtract the square
of the mean at this early step, so that the large amount of cancellations caused by subtracting(E[Kn])2 is
easier to manage.

By the changes of variables

xi 7→ ui, yi 7→ uivi for i ≤ k and xi 7→ uivi, yi 7→ ui for i > k,

we have

Ink = n2

∫

[0,1]d×[0,1]d
e−nΠ ui(Π

′ vi+Π′′ vi)
(

enΠ uivi − 1
)

Π ui du dv

In0 = 2n2

∫

[0,1]d×[0,1]d
e−nΠ ui(1+Π vi)Π ui du dv.

By applying the same procedure as forE[Kn], we have

In0 =
2

(d − 1)!

∫ n

0

(log n − log y)d−1y

∫

[0,1]d
e−y(1+Π vi) dv dy

≃ 2
(log n)d−1

(d − 1)!2

∑

0≤j<d

(

d − 1

j

)

1

(log n)j

∫ ∞

0

∫ 1

0

y(− log y)j(− log z)d−1e−y(1+z) dz dy.

Denote by[uj]f(u) the coefficient ofuj in the Taylor expansion off . Then

∫ ∞

0

y(− log y)je−y(1+x) dy = j![uj]
Γ(2 − u)

(1 + x)2−u
,
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and

In0 ≃ 2
(log n)d−1

(d − 1)!

∑

0≤j<d

(log n)−j

(d − 1 − j)!
[uj]Γ(2 − u)

∫ 1

0

(− log x)d−1

(1 + x)2−u
dx. (10)

Note that

j![uj]
Γ(2 − u)

(1 + x)2−u
=

∑

0≤ℓ≤j

(

j

ℓ

)

(−1)j−ℓΓ(j−ℓ)(2)
logℓ(1 + x)

(1 + x)2
.

Similarly, for 1 ≤ k ≤ d − 1, we have

Ink =
1

(d − 1)!

∫ n

0

∫

[0,1]d
(log n − log y)d−1ye−y(Π′ vi+Π′′ vi)

(

eyΠ vi − 1
)

dv dy

≃ (log n)d−1

(d − 1)!

∑

0≤j<d

(

d − 1

j

)

(log n)−j

(k − 1)!(d − 1 − k)!

×
∫ ∞

0

∫ 1

0

∫ 1

0

(− log y)j(− log x)k−1(− log z)d−1−kye−y(x+z) (eyxz − 1) dx dz dy

= (log n)d−1
∑

0≤j<d

(log n)−j

(d − 1 − j)!(k − 1)!(d − 1 − k)!

× [uj]Γ(2 − u)

∫ 1

0

∫ 1

0

(

(− log x)k−1(− log z)d−1−k

(x + z − xz)2−u
− (− log x)k−1(− log z)d−1−k

(x + z)2−u

)

dx dz.

(11)

Thus we obtain (4) for the variance ofKn, and the expression (5) follows from (9), (10) and (11). This
completes the proof of (4).

A quick check. Taked = 2 in (4), we obtain

V[Kn,2] = (1 + c20) log n + γ + c21 + O
(

n−1(log n)2
)

,

where

c20 = 2

∫ 1

0

log x

(1 + x)2
dx + 2

∫ 1

0

∫ 1

0

(

1

(x + z − xz)2
− 1

(x + z)2

)

dx dz,

c21 = 2

∫ 1

0

log x

(1 + x)2
(log(1 + x) − 1 + γ) dx

+ 2

∫ 1

0

∫ 1

0

(

log(x + z − xz) − 1 + γ

(x + z − xz)2
− log(x + z) − 1 + γ

(x + z)2

)

dx dz.

It is then straightforward to check thatc20 = 0 andc21 = −π2/6.

The leading constant κd. By comparing the two equations (3) and (4), we obtain an alternative expres-
sion forκd

κd = − 2

(d − 1)!2

∫ 1

0

(− log x)d−1

(1 + x)2
dx +

1

(d − 1)!

∑

1≤k<d

(

d

k

)

1

(k − 1)!(d − 1 − k)!

×
∫ 1

0

∫ 1

0

(− log x)k−1(− log z)d−1−k

(

1

(x + z − xz)2
− 1

(x + z)2

)

dx dz. (12)
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Yet another expression forκd can be derived from the main theorem in Bai et al. (1998) (µn,d := E[Kn])

κd =
∑

1≤k≤d−2

1

k!(d − 1 − k)!

∑

m≥1

µm,k µm,d−1−k

m2

=
∑

1≤k≤d−2

1

k!(d − 1 − k)!(k − 1)!(d − 2 − k)!

∫ 1

0

∫ 1

0

(− log x)k−1(− log z)d−2−k

x + z − xz
dx dz, (13)

where we use the integral representation (1).
A natural question then is how to prove directly the identityimplied by equating (13) to (12). Note that

numerically the use of (13) is preferable to (12).

The exact values of κd for d ≤ 8. The first fewκd’s can be explicitly expressed in terms of Riemann’s
zeta functionζ(s) as follows.







































κ2 = 0,
κ3 = ζ(2),
κ4 = 2ζ(3),
κ5 = 33

16
ζ(4),

κ6 = 5
4
ζ(5) + 1

6
ζ(2)ζ(3),

κ7 = 1451
1728

ζ(6) + 7
72

ζ(3)2,
κ8 = 1729

5760
ζ(7) + 13

360
ζ(2)ζ(5) + 181

1440
ζ(3)ζ(4).

(14)

The values ofκ2, . . . , κ6 are already given in Bai et al. (1998).
To see how these values are obtained from (12), we start from the integral

− 2

(d − 1)!2

∫ 1

0

(− log x)d−1

(1 + x)2
dx = − 2

(d − 1)!

∑

k≥1

(−1)k−1k1−d

= − 2

(d − 1)!
(1 − 22−d)ζ(d − 1),

for d ≥ 2, where(1 − 22−d)ζ(d − 1) = log 2 for d = 2.
Similarly, the integrals withk = 1 in (12) satisfy

d

(d − 1)!(d − 2)!

∫ 1

0

∫ 1

0

(− log z)d−2

(

1

(x + z − xz)2
− 1

(x + z)2

)

dx dz

=
d

(d − 1)!(d − 2)!

∫ 1

0

(− log z)d−2

1 + z
dz

=
d

(d − 1)!
(1 − 22−d)ζ(d − 1),

and the integrals corresponding tok = d − 1 in κd give the same value.
For the integrals withk = 2 andk = d − 2 in (12), we have

d

2(d − 2)!(d − 3)!

∫ 1

0

∫ 1

0

(− log x)(− log z)d−3

(

1

(x + z − xz)2
− 1

(x + z)2

)

dx dz

=
d

2(d − 2)!
(d − 3 + 22−d)ζ(d − 1);
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and fork = 3 andk = d − 4 (Li 2(z) :=
∑

m≥1 zm/m2)

d

12(d − 3)!(d − 4)!

∫ 1

0

∫ 1

0

(− log x)2(− log z)d−4

(

1

(x + z − xz)2
− 1

(x + z)2

)

dx dz

=
d

12(d − 3)!

((

(d − 2)(d − 3) + 2 − 23−d
)

ζ(d − 1) + 2ζ(2)ζ(d − 3)

−2
∑

m≥1

H
(2)
m

md−3
− 2(d − 3)

∑

m≥1

Hm

md−2

)

(d ≥ 5),

whereH
(2)
m :=

∑

1≤j≤m 1/j andH
(2)
m :=

∑

1≤j≤m 1/j2.
These relations, together with the identities (see Flajolet and Salvy, 1998)

∑

m≥1

Hm

m5
= 7

2
ζ(6) − ζ(2)ζ(4) − 1

2
ζ(3)2,

∑

m≥1

H
(2)
m

m4
= ζ(3)2 − 1

3
ζ(6),

give the values ofκd, 2 ≤ d ≤ 7.
Finally, the value ofκ8 is obtained by a lengthyad hoccalculation via Euler sums (see Flajolet and

Salvy, 1998).

Remark. The same approach is applicable to the number of maximaK̂n in d-simplex{x : xi > 0, x1 +
· · · + xd ≤ 1} for which we have

E[K̂n] ∼ Γ
(

1
d

)

n(d−1)/d,

V[K̂n] ∼ Cdn
(d−1)/d,

where

Cd := Γ
(

1
d

)

− 2Γ
(

1
d

)

∫ 1

0

(1 − x)d−1

(1 + xd)1+1/d
dx

+ 2(d − 1)Γ
(

1
d

)

∑

1≤k<d

(

d

k

)(

d − 2

k − 1

)
∫ 1

0

(1 − x)k−1

∫ 1

0

(1 − xz)d−1−kzk

×
(

1

(1 + zd − xdzd)1+1/d
− 1

(1 + zd)1+1/d

)

dz dx.

3 A Berry-Esseen bound for Kn

The proof of Proposition1 is divided into several steps.

A log-transformation

Assume now thatp1, . . . ,pn are iid points uniformly distributed in the cube(−1, 0)d. A crucial step in our
analysis is to apply the log-transformation first introduced by Baryshnikov (2000):x = (x1, . . . , xd) →
y = (y1, . . . , yd), where

yi = − log(−xi), i = 1, . . . , d,
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from (−1, 0)d to R
d
+ = {x : xi > 0 for all i = 1, . . . , d}. Such a transformation preserves the dominance

relation, and the maximal points are thus unchanged. Denotebyq1, . . . ,qn the images ofp1, . . . ,pn under
such a transformation. Then the components ofq1 are iid with exponential distribution (λ = 1). We define
‖x‖ = x1 + · · · + xd for x ∈ R

d
+. Then‖q1‖ has a gamma distribution with parameter(d, 1), that is, the

density function of‖q1‖ is e−xxd−1/(d − 1)! for x > 0 and zero otherwise.

Approximation of Kn by the number of maxima in a strip

Let Bα = {x : ‖x‖ > α} ∩ R
d
+ andBc

α = {x : ‖x‖ ≤ α} ∩ R
d
+. Take

α = log n − log (4(d − 1) log log n) ,

β = log n + 4(d − 1) log log n.

Let Vn be the event that there is no point of{q1, . . . ,qn} falling in Bβ. Let Kn be the number of
maxima falling inBα when conditioning onVn. We first prove that for a convergent sequencern ≥
(log n)−(d−1)/2,

{Kn} ∈ CLT (rn) iff {Kn} ∈ CLT (rn) . (15)

The following Lemma is needed to prove (15).

Lemma 1. Let Xn, Yn be two sequences of random variables andrn be a convergent sequence. Suppose
that (i) the total variation distanced(Xn, Yn) betweenXn andYn is bounded above byO(rn), (ii)

|E[Xn] − E[Yn]| = O(rn

√

V[Xn]),

and(iii)

|V[Xn] − V[Yn]| = O(rn

√

V[Xn]).

Then{Xn} ∈ CLT(rn) iff {Yn} ∈ CLT(rn).

Let Nn(A) denote the number of points of{q1, . . . ,qn} falling in A andKn(A) denote the number of
maxima of{q1, . . . ,qn} falling in A. Clearly,Kn(A) ≤ Nn(A).

To prove (15), we first decomposeKn into three parts

Kn = Kn(Bα)1Vn + Kn(Bα)1V c
n

+ Kn(Bc
α).

Note that
Kn = Kn(Bα)1Vn conditioned onVn.

To apply Lemma1, we first derive the three estimates:

d(Kn, Kn) ≤ P(Kn(Bα)1V c
n
≥ 1) + P(Kn(Bc

α) ≥ 1) + P(V c
n ),

∣

∣E[Kn] − E[Kn]
∣

∣ ≤
∣

∣

∣

∣

1 − 1

P(Vn)

∣

∣

∣

∣

E[Kn] +
E[Kn(Bα)1V c

n
] + E[Kn(Bc

α)]

P(Vn)
,

∣

∣V[Kn] − V[Kn]
∣

∣ ≤
∣

∣

∣
E[K2

n] − E[K
2

n]
∣

∣

∣
+

∣

∣E[Kn] − E[Kn]
∣

∣

(

E[Kn] + E[Kn]
)

,
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where

∣

∣

∣
E[K2

n] − E[K
2

n]
∣

∣

∣
≤

∣

∣

∣

∣

1 − 1

P(Vn)

∣

∣

∣

∣

E[K2
n]

+
E[K2

n(Bα)1V c
n
] + E[K2

n(Bc
α)] + 2E[K2

n(Bα)]E[K2
n(Bc

α)]

P(Vn)
.

Recall thatE[Kn] ≍ (log n)d−1 andE[K2
n] ≍ (log n)2(d−1); see (2) and (3). By Chebyshev’s inequality

P(V c
n ) ≤ E[Nn(Bβ)].
We claim that

(i) E[Nn(Bβ)] = O((log n)−3(d−1)),

(ii) E[Kn(Bc
α)] = O((log n)−(d−1)),

(iii) E[Kn(Bα)1V c
n
] = O((log n)−(d−1)),

(iv) E[K2
n(Bα)1V c

n
] = O(1), and

(v) E[K2
n(Bc

α)] = O((log n)−2(d−1)).

It follows from these claims that

d(Kn, Kn) = O((log n)−(d−1)),
∣

∣E[Kn] − E[Kn]
∣

∣ = O((log n)−(d−1)),
∣

∣V[Kn] − V[Kn]
∣

∣ = O(1).

Thus the proof of (15) is reduced, by Lemma1, to proving the five claims.

Proof of (i).

E[Nn(Bβ)] = nP (‖q1‖ ≥ β)

= n

∫ ∞

β

xd−1

(d − 1)!
e−x dx

= O
(

nβd−1e−β
)

= O
(

(log n)−3(d−1)
)

.

Proof of (ii). Let Uy = {z : zi > yi, i = 1, . . . , d} be the first quadrant ofy. Then the probability that
q1 falls in Uy is given by

∫ ∞

‖y‖

(x − ‖y‖)d−1

(d − 1)!
e−x dx = e−‖y‖.

11



Thus, givenq1, the conditional probability thatq1 is a maximal point satisfies(1−e−‖q1‖)n−1 ≤ e−(n−1)e−‖q1‖.
Therefore,

E[Kn(Bc
α)] = nP (q1 is a maximal point falling inBc

α)

≤ n

∫ α

0

xd−1

(d − 1)!
e−(n−1)e−x−x dx

≤ n(log n)d−1

(d − 1)!

∫ α

0

e−(n−1)e−x−x dx

≤ n(log n)d−1

(d − 1)!
· e−(n−1)e−α

n − 1

= O
(

(log n)−3(d−1)
)

.

Proof of (iii). Let Ai be the event thatqi lies inBβ. ThenV c
n ⊂ ∪n

i=1Ai. The number of maxima inAi is
less than the number of maxima in{q1, . . . ,qi−1,qi+1, . . . ,qn} + 1. Note thatP(Ai) = P (‖q1‖ ≥ β) =
O

(

n−1(log n)−3(d−1)
)

. Thus

E[Kn1Ai
] ≤ P(Ai)(E[Kn−1] + 1) = O(n−1(log n)−2(d−1)),

and then
E[Kn(Bα)1V c

n
] ≤ E[Kn1V c

n
] = O((log n)−2(d−1)).

Proof of (iv). Similarly,

E[K2
n1Ai

] ≤ P(Ai)(E[K2
n−1] + 2E[Kn−1] + 1) = O(n−1(log n)−(d−1)).

Thus
E[K2

n(Bα)1V c
n
] ≤ E[K2

n1V c
n
] = O((log n)−(d−1)).

Proof of (v). Givenq1,q2, the conditional probability thatq3 falls in Uq1
∪ Uq2

is

P(Uq1
) + P(Uq2

) − P(Uq1
∩ Uq2

) ≥ 1

2

(

e−‖q1‖ + e−‖q2‖
)

;

the conditional probability that bothq1 andq2 are maxima is less than
(

1 − 1

2

(

e−‖q1‖ + e−‖q2‖
)

)n−2

≤ e−
1

2
(n−2)(e−‖q1‖+e−‖q2‖).

We thus have

E[K2
n(Bc

α)] = E

[

∑

1≤i≤n

1qi is maximal and‖qi‖≤α

]2

= E[Kn(Bc
α)] + n(n − 1)P(bothq1 andq2 are maxima falling inBc

α)

≤ E[Kn(Bc
α)] +

n2

[(d − 1)!]2

∫ α

0

∫ α

0

(xy)d−1e−
1

2
(n−2)[e−x+e−y ]−x−y dx

≤ E[Kn(Bc
α)] +

n2(log n)2(d−1)

[(n − 2)(d − 1)!]2
e−(n−2)e−α

= O
(

(log n)−2(d−1)
)

.
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A Poisson process approximation

Construct a Poisson process{Wn} onSn = Bα ∩ Bc
β with intensity function

λn =
ne−‖w‖

P(‖q1‖ ≤ β)
,

Denote byNw the number of points of the Poisson process falling inSn. Also, letKWn denote the number
of maxima of the Poisson process andNn be the number of points that falls inSn when conditioning on
Vn. It is easy to see that the conditional distribution ofKn givenNn = m is identical to the conditional
distribution ofKWn givenNw = m. Thus, the total variation distance betweenKn andKWn satisfies (see
Prohorov, 1953)

sup
A

∣

∣P(Kn ∈ A) − P(KWn ∈ A)
∣

∣

= sup
A

∣

∣

∣

∣

∣

∑

0≤m≤n

P(Nn = m)P(Kn ∈ A|Nn = m) −
∑

m≥0

P(Nw = m)P(KWn ∈ A|Nw = m)

∣

∣

∣

∣

∣

≤
∑

m≥0

∣

∣P(Nn = m) − P(Nw = m)
∣

∣

= O(pn),

(the implied constant can be taken to be2; see Barbour et al., 1992), where

pn := P(q1 ∈ Sn|‖q1‖ ≤ β)

=
1

P(‖q1‖ ≤ β)

∫ β

α

xd−1

(d − 1)!
e−x dx

= O

(

(log n)d−1 log log n

n

)

.

Similarly, we have the two estimates
∣

∣E[Kn] − E[KWn ]
∣

∣ ≤ np2
n,

∣

∣E[Kn(Kn − 1)] − E[KWn(KWn − 1)]
∣

∣ ≤ n(n − 1)p3
n.

The above three estimates imply, by Lemma1, that for a convergent sequencern ≥ (log n)−(d−1)/2

{Kn} ∈ CLT (rn) iff {KWn} ∈ CLT (rn) .

A central limit theorem for KWn

We prove in this section Proposition2 by applying Stein’s method.
Split R

d
+ into cubesGn,m,v of edge-length1/2m, wherem ≥ 0. Let

Zn,m,v := min(1, the number of maxima ofWn falling in the cellGn,m,v) .

Observe that
∑

v Zn,m,v is nondecreasing inm, where the sum runs over all possible indices for cells, and

lim
m→∞

P

(

∑

v

Zn,m,v = KWn

)

= 1,

13



for fixedn. Thus

lim
m→∞

d1

(

K∗
Wn

,

∑

v(Zn,m,v − E[Zn,m,v])

V[
∑

v Zn,m,v]

)

= 0;

the same result also holds under the total variation distance.
For convenience, we writeGv = Gn,m,v andZv = Zn,m,v. In the following proof,n is a large integer

andm is suitably chosen (whose value depends onn). To prove Proposition2, it is sufficient to prove the
same convergence rate for{∑v Zv} (normalized) toN(0, 1) for sufficiently largem, and for that purpose,
we apply Stein’s method (as formulated in Theorem 6.33, Janson et al., 2000), where the Stein remainder
term is expressed in terms of thed1-distance. It suffices to verify that

MnQ
2
n

(V[
∑

v Zv])3/2
= O

(

(log log n)2d (log n)−(d−1)/2
)

,

where

Mn =
∑

v

E[Zv] ≤ E[KWn ] = O
(

(log n)d−1
)

,

Qn = max
j,k

∑

Zv dependent onZj or Zk

E[Zv|Zj, Zk] = O
(

(log log n)d
)

. (16)

For large enoughm, V[
∑

v Zv] ∼ V[KWn ] ≍ (log n)d−1; see (3).

Proof of (16). Let Nv be the number of points ofWn falling in Gv. We choosem so large that
minj,k P(Nj = 0, Nk = 0) ≥ 1/2. Note thatE[Zv|Zj, Zk] = Zv ≤ 1 for v = j or v = k.

We claim that
E[Zv|Zj, Zk] ≤ 2E[Nv], (17)

for all v 6= j, k. As one can see from Figure2, for any givenGk andGj, Zv is dependent onZj or Zk only
when the overlapping region ofGv and the shaded area is nonempty. From this it follows that

∑

Zv dependent onZj or Zk

E[Zv|Zj, Zk] ≤ 2 + 2
∑

Zv dependent onZj or Zk

E[Nv]

= O

(

(β − α)d−1

∫ β

α

ne−t dt

)

= O
(

(log log n)d
)

,

proving (16). Thus the proof of (16) is reduced to that of (17), which is split into three cases conditioning
on the possible values of(Zj, Zk) = (0, 0), (0, 1) or (1, 1).

The first case when bothZj andZk are zeros is estimated as follows.

E[Zv|Zj = 0, Zk = 0] =
P(Zv = 1, Zj = 0, Zk = 0)

P(Zj = 0, Zk = 0)

≤ E[Nv]

P(Nj = 0, Nk = 0)

≤ 2E[Nv].
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For the remaining cases, we observe that

P (Zk = 1|Ni = 0) ≥ P (Zk = 1) for i 6= k, (18)

P (Zj = 1, Zk = 1|Ni = 0) ≥ P (Zj = 1, Zk = 1) for i 6= j, k;

and thus

P (Zk = 1|Ni ≥ 1) ≤ P (Zk = 1) for i 6= k, (19)

P (Zj = 1, Zk = 1|Ni ≥ 1) ≤ P (Zj = 1, Zk = 1) for i 6= j, k. (20)

Consequently, when bothZj andZk are1, we have, by (20),

E[Zv|Zj = 1, Zk = 1] =
P (Zv = 1, Zj = 1, Zk = 1)

P (Zj = 1, Zk = 1)

≤ P (Nv ≥ 1, Zj = 1, Zk = 1)

P (Zj = 1, Zk = 1)

=
P (Zj = 1, Zk = 1|Nv ≥ 1) P (Nv ≥ 1)

P (Zj = 1, Zk = 1)

≤ P (Nv ≥ 1)

≤ E[Nv].

Similarly, from (18) and (19) it follows that

E[Zv|Zj = 0, Zk = 1] =
P (Zv = 1, Zj = 0, Zk = 1)

P (Zj = 0, Zk = 1)

≤ P (Nv ≥ 1, Zk = 1)

P (Nj = 0, Zk = 1)

=
P (Zk = 1|Nv ≥ 1) P (Nv ≥ 1)

P (Zk = 1|Nj = 0) P (Nj = 0)

≤ P (Nv ≥ 1)

P (Nj = 0)

≤ 2E[Nv].

for j 6= k. This completes the proof of (17).

From d1-distance to Kolmogorov distance

With Propositions1 and2 at hand, we need only to apply the following lemma to completethe proof of
Theorem2.

Lemma 2. Assume that the sequence of random variablesYn converges to the standard normal distribution
with a rate

d1(Yn, N(0, 1)) = O(rn),

wherern → 0 andN(0, 1) denotes a standard normal variable. Then

{Yn} ∈ CLT(
√

rn).
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Gk

Gj

Gv

‖x‖ < α Sn

‖x‖ > β

Figure 2:Possible configurations ofGv, Gj, andGk.

Proof. Fix n. Let

hz(y) =







0 if y < z,
(y − z)/2 if z ≤ y ≤ z + 2

√
rn,√

rn if y > z + 2
√

rn.

Thensupy |hz(y)| + supy |h′
z(y)| ≤ √

rn + 1/2. Without loss of generality, assumern ≤ 1/4. Then

√
rn |P (Yn < z) − Φ(z)| =

√
rn |P (Yn ≥ z) − P (N(0, 1) ≥ z)|

≤ sup
z

|E[hz(Yn)] − E[hz(N(0, 1))]|

+
√

rn P(z ≤ N(0, 1) ≤ z + 2
√

rn)

≤ d1(Yn, N(0, 1)) + rn

= O(rn).

Thussupz |P (Yn < z) − Φ(z)| = O(
√

rn).

Remark. By the same method of proof, we can derive a Berry-Esseen bound for the number of maxima
K̂n in d-simplex of the form

{K̂n} ∈ CLT
(

n−(d−1)/(4d)(log n)d + n−1/d(log n)d
)

.
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Appendix. Various expressions for E[Kn,d].

We collect some expressions forµn,d := E(Kn,d) in the case of hypercubes. These expressions obviously
show the diversity of the nature of the enumeration problem;see also Flajolet et al. (1995), Labelle and
Laforest (1995).

Summation formulae.

µn,d =
∑

1≤k≤n

(

n

k

)

(−1)k−1k1−d,

µn,d =
∑

1≤i1≤···≤id−1

1

i1 · · · id−1

,

µn,d =
∑

i1+2i2+···(d−1)id−1=d−1
i1,...,id−1≥0

H i1
n (H

(2)
n )i2 · · · (H(d−1)

n )id−1

i1! · · · id−1!1i1 · · · (d − 1)id−1

,

whereH
(a)
n :=

∑

1≤j≤n 1/ja.

Recurrence relations. Forn ≥ 1 andd ≥ 2

µn,d = µn−1,d +
µn,d−1

n
,

µn,d =
∑

1≤j≤n

µj,d−1

j
,

µn,d =
1

d − 1

∑

1≤j≤d−1

H(d−j)
n µn,j,

with µn,1 ≡ 1 for n ≥ 1.
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Integral representations.

µn,d = n

∫

(0,1)d

(1 − x1x2 · · · xd)
n−1 dx,

µn,d =
n

(d − 1)!

∫ 1

0

(1 − x)n−1(− log x)d−1 dx,

µn,d =
1

2πi

∮

|z|=r<1

z−d
∏

1≤j≤n

1

1 − z/j
dz,

µn,d =
(−1)n

2πi

∫ 1

2
+i∞

1

2
−i∞

n!

sd(s − 1) · · · (s − n)
ds.

Probability expressions.

µn,d = nE
[

(1 − U1U2 · · ·Ud)
n−1

]

,

µn,d = nP(Y2 + · · · + Yn < d),

whereU1, U2, . . . , Ud are iid uniform[0, 1] random variables and theYj ’s are geometric random variables

E[zYj ] =
1 − 1/j

1 − z/j
(2 ≤ j ≤ n);

see Bai et al. (1998).
Also µn,d/n is the probability that the first subtree in a random quadtreeof n nodes is empty; see

Flajolet et al. (1995).

Asymptotic approximations. Let ρ := (d − 1)/ log n.
(i) If 1 ≤ d ≤ log n − M

√
log n, M > 1 being sufficiently large,

µn,d = Γ(1 − ρ)
(log n)d−1

(d − 1)!

(

1 + O

(

d

(log n − d)2

))

,

uniformly in d;
(ii) if d = log n + x

√
log n, wherex = o((log n)1/6), then

µn,d

n
= Φ(x)

(

1 + O

(

1 + |x|3√
log n

))

,

uniformly in x;
(iii) If d ≥ log n + M

√
log n, then

1 − µn,d

n
= O

(

n−ρ log ρ+ρ−1(log n)−1/2
)

,

uniformly in d; see Hwang (2002) and the references therein.
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translation from Russian:Uspehi Matematǐceskih Nauk, 8 (1953), no. 3 (35), 135–142.

[31] C. Vout (1973). Randomly collecting sets of objects or . . .It’s another spear-thrower!Eureka, No.
36, October, 18–20.

20


	Introduction
	Mean and variance of Kn
	A Berry-Esseen bound for Kn

