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Introduction

Consider the complete infinite binary tree B in which we associate with each node u ∈ B the bit

string b1, . . . , bk that describes the path from the root to u. The lenghth of this path, or the distance to

the root, is denoted by δ(u). The number of zeros (left edges) is denoted by L(u), and the number of

ones by R(u) (note that δ(u) = R(u) + L(u)). Define the function

µ(u) = npR(u)(1− p)L(u).

Note that this is nothing but n times the probability of reaching u if we flip independent biased coins,

and travel from the root down, going left with probability 1− p and right with probability p. This simple

labeled binary tree will be essential in understanding our analysis of LC tries.

Tries are efficient data structures that were initially developed and analyzed by Fredkin (1960)

and Knuth (1973), and intended to store n strings X1, . . . , Xn. The binary expansion of Xi gives rise to an

infinite binary string (Xi1, Xi2, . . .) which in turn defines an infinite path in a binary tree in the following

manner: from the root, follow the Xi1-st child, then its Xi2-nd child, and so forth. The collection of

nodes and edges visited by the union of the n paths is the infinite trie Tn,∞. It is of course embedded in

our complete infinite binary tree B. In this paper, we will assume throughout that X1, . . . , Xn are i.i.d.

(independent and identically distributed), and that (Xi1, Xi2, . . .) are independent Bernoulli (p) random

bits, a “1” occurring with probability p ∈ (0, 1/2]. The probability that the path for X1 visits u is

pR(u)(1− p)L(u).

The expected number of paths that visit u is µ(u). The actual number of paths that visit u is a binomial

(n, µ(u)/n) random variable, which we shall denote by N(u).

The trie Tn is the subtree of Tn,∞ that consists of all nodes u with N(u) > 0 and N(v) > 1,

where v is the parent of u. It is easy to verify that if the input strings are all different, this tree is finite

and has n leaves. Also, for u ∈ Tn, N(u) is the number of leaves in the subtree rooted at u. Let us

introduce the random variables Z(u), where Z(u) is the largest integer such that the complete tree of

height Z(u) and rooted at u is embedded in Tn. This means that all 2Z(u) nodes at distance Z(u) from

u exist in Tn, but not all 2Z(u)+1 nodes at distance Z(u) + 1.

The LC trie is a further compactification of Tn, in which the following operation is repeated

recursively from the root down: denote the 2Z(r) depth Z(r) descendants of the root r of the trie Tn by

ui, and let the subtrees of the ui’s be T ′i , 1 ≤ i ≤ 2Z(r). In the LC trie, create a root node that corresponds

to r, and give this root 2Z(r) children, each corresponding to a ui. Apply the level compression process

recursively to each T ′i . The resulting (usually non-binary) tree is called the LC trie. Note that in LC tries,

the number of children of each node is a power of 2. For compact and simple array implementations, we

refer to the work of Andersson and Nilsson. The idea of level compression was proposed by Andersson

and Nilsson (1993). LC tries are first defined there, and an early average case analysis may be found

in that paper and in Andersson and Nilsson (1994). LC tries were suggested by Andersson and Nilsson

(1995) for string searching, as improvements of suffix trees. Nilsson and Karlsson (1998, 1999) noted their

usefulness for fast address look-up for internet routers and IP address look-up. Experimental comparisons

can be found in Iivonen, Nilsson and Tikkanen (1999) and Nilsson and Tikkanen (1998).
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Figure 1. A standard binary trie and the corresponding LC trie.

The quantities of interest to us in a trie or LC trie are Dn, the depth of the n-th string (which

is thus also the depth of a typical string, as all tries considered here are permutation-invariant), and Hn,

the height of the LC trie.

Andersson and Nilsson (1993) showed that for p 6= 1/2, p ∈ (0, 1), E{Dn} = Θ(log logn). Devroye

(2001) showed that for p = 1/2, Dn ∼ log∗ n in probability, and provides various tail bounds. We note

below that for asymmetric tries (p 6= 1/2), Dn is of the order of log logn in probability. This is due to

the fact that in the symmetric case, Z(r) is close to log2 n − O(log logn), and thus, the 2Z(r) subtrees

of the root after compaction are of order logn. After k iterations of compaction, the subtrees drop to

about the k-times iterated logarithm of n. In the asymmetric case, Z(r) is of the order of a constant

times logn, with the 2Z(r) subtrees having varying sizes. Those that matter, i.e., those that have the

bulk of the strings visiting them, are of size about nβ for some β ∈ (0, 1) depending upon p only. After

k iterations, the typical subtree sizes drop to about nβ
k

, and this is of constant order when k is roughly

log logn. The idea, then, is to get a good grip on the exponent β.

It is helpful to introduce the Rényi entropy Hα of order α (see Szpankowski (2001, p. 157)):

Hα =
log (pα + (1− p)α)

1− α
where Hα decreases in α. Important values are

H−∞ = − log(min(p, 1− p));
H0 = log 2;

H1 = H = −p log p− (1− p) log(1− p)(the Shannon entropy);

H2 = − log
(
p2 + (1− p)2

)
;
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H∞ = − log(max(p, 1− p)).
In this paper, we obtain the following law of large numbers:

Theorem 1. For a random LC trie with p ∈ (0, 1), p 6= 1/2,

Dn −
log logn

log
(

1− H
H−∞

)−1 = O(log log logn)

in probability.

The height of the random LC trie was analyzed by Devroye (2002) for p = 1/2:

Hn
log2 n

→ 1

in probability. This result will be extended here to the asymmetric Bernoulli model. We note that the

height is much larger than the depth because of a simple probabilistic phenomenon, the likelihood of a

long common prefix among two strings. In fact, it is very likely that there are two strings that agree in

their (2 logn)/H2 first bits. Half of these bits get level compressed to about O(log logn), but the second

half “sticks out”, and is not compressed at all, leading to a height of roughly (logn)/H2.

Theorem 2. For a random LC trie with p ∈ (0, 1),

Hn −
logn

H2
= O(log log n)

in probability.

The main parameters for random tries. The asymptotic behavior of tries under the uniform

model is well-known. The height is studied by Régnier (1981), Mendelson (1982), Flajolet and Steyaert

(1982), Flajolet (1983), Devroye (1984), Pittel (1985, 1986), and Szpankowski (1988, 1991). For the

depth of a node, see, e.g., Pittel (1986), Jacquet and Régnier (1986), Flajolet and Sedgewick (1986),

Kirschenhofer and Prodinger (1986), and Szpankowski (1988). For example, it is known that

Hn ∼
2 logn

H2
in probability.

This is asymtotically exactly twice the value for the random LC trie, regardless of p. The limit law of

Hn was obtained in Devroye (1984). For other models, we refer to Devroye (1982, 1984), Régnier (1988),

Szpankowski (1988, 2001) and Pittel (1985).
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LC tries: analysis of the depth

Assume without loss of generality that 0 < p < 1/2. We obtain upper and lower bounds for Dn

separately. In fact, it is convenient to work with Dn+1, as Xn+1 is independent of Tn. The proof in this

section evolves around the following idea: associate with each node u in the infinite trie the expected

number µ(u) of strings that are expected to visit it. Truncating this tree to all u with µ(u) ≥ c logn yields

a deterministic binary subtree. LC compression applied to this tree yields a tree in which the path of

Xn+1 is easy to trace, and in which all compression levels are explicitly known, as µ(u) ≥ c logn implies

that N(u) > 0 with overwhelming probability. With this argument, the lower bound is somewhat easier

to deal with than the upper bound.

Lemma 1. There exists a constant M > 0 such that

lim
n→∞ P




Dn+1 <

log logn− log log logn−M

log

(
1

1− H
log(1/p)

)





= 0.

Proof. Let u0, u1, . . . be the nodes on the path of Xn+1 in the original trie. We will require the

quantities N(ui), µ(ui), R(ui), L(ui) and Z(ui). The index i refers throughout this proof to the path

distance: i = δ(ui). By the law of large numbers, we have R(ui)/i→ p in probability and L(ui)/i→ 1−p
in probability. By Hoeffding’s inequality (Hoeffding, 1963), for a sequence of positive numbers ai tending

to 0 with i, and for 0 < ε < 1, using the event

A =
∞⋂

i=1

[∣∣∣∣
R(ui)

i
− p
∣∣∣∣ ≤ ai

]
,

we have

P {Ac} ≤
∞∑

i=1

2e−2ia2
i ≤ ε

if we take ai =
√

log(2i(i+ 1)/ε)/2i. Thus, on A, we have for all i, if θ denotes an arbitrary number with

absolute value less than or equal to 2 log(1/p),

logµ(ui) = logn+R(ui) log p+ L(ui) log(1− p)
= logn+ i[(R(ui)/i) log p+ (L(ui)/i) log(1− p)]
= logn+ i[p log p+ (1− p) log(1− p)] + θai

= logn− iH+ θai .

Consider integers a, t > 0 and observe that if v is the rightmost descendant of u, a levels below

u, then, for any u,

P {Z(u) ≥ a+ t|N(u)} ≤ P
{
N(v) ≥ 2t|N(u)

}
≤ P

{
binomial(N(u), pa) ≥ 2t|N(u)

}
.
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Thus, for any u on the path for Xn+1, at distance i = δ(u) from the root, N(u) is clearly binomially

distributed for any u, and this remains true if we condition on A, as Xn+1 is independent of X1, . . . , Xn.

Therefore,

P {Z(u) ≥ a+ t|A} ≤ P {N(u) ≥ 2µ(u)|A}+ P
{
N(v) ≥ 2t|N(u) < 2µ(u), A

}

≤ P {binomial(n, µ(u)/n) ≥ 2µ(u)|A}+ P
{

binomial(b2µ(u)c, pa) ≥ 2t|A
}

≤ E{e−Cµ(u)|A}+ E
{(b2µ(u)c

2t

)
(pa)2t

∣∣∣A
}

≤ e−Cne−iHe−|θ|ai + E

{
(2µ(u)pa)2t

(2t)!

∣∣∣∣A
}

≤ e−C′′ne−iH + E





(
2ne−iHe|θ|a1pa

)2t

(2t)!

∣∣∣∣∣A





≤ e−C′′ne−iH + E





(
neC

′−iHpa
)2t

(2t)!

∣∣∣∣∣A





where C > 0 is a universal constant (Hoeffding, 1963), C ′ = log 2+2a1 log(1/p), and C ′′ = Ce−2 log(1/p)a1 .

We define

a(u) =




log
(
neC

′−iH
)

log(1/p)




to get the bound

P {Z(u) ≥ a(u) + t|A} ≤ e−C′′ne−iH +
1

(2t)!
.

With

a′(u) =
logn− iH+ C ′

log(1/p)
,

we have

P
{
Z(u) ≥ a′(u) + t+ 1|A

}
≤ e−C′′ne−iH +

1

(2t)!
.

And from this, with c > 1, and

B =
⋂

0≤i≤ log n−c log logn
H

[
Z(ui) ≤ a′(ui) + t+ 1

]
,

we note that

P {Bc|A} ≤

⌊
log n−c log logn

H
⌋

∑

i=0

e−C
′′ne−iH +

1

(2t)!
≤
(

1 +
logn

H

)
e−C

′′(log n)c +
1 + logn

H
(2t)!

.
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Figure 2. The depths of the nodes on the path of Xn+1 at which

compaction takes place are denoted by d0 = 0 < d1 < d2 < · · ·.
Denote the depths of the nodes on the path of Xn+1 at which compaction takes place by d0 =

0 < d1 < d2 < · · ·. We stress that these are depths in the original trie, measured as path distances from

the root. We have

dj+1 = dj + Z(udj )

for all j. Assume that both events A and B occur. Then, for j such that dj < (logn− c log logn)/H,

Z(udj ) <
logn− djH+ C ′

log(1/p)
+ t+ 1,

and thus,

dj+1 ≤ dj
(

1− H
log(1/p)

)
+

logn

log(1/p)
+ t′,

where t′ = C′
log(1/p)

+ t+ 1. It is easy to prove then by induction on j that

dj ≤
[

logn

log(1/p)
+ t′

]
×

1−
(

1− H
log(1/p)

)j

H/ log(1/p)
≤ logn

H +
t′ log(1/p)

H −
logn

(
1− H

log(1/p)

)j

H .

We choose ξ such that dξ ≤ (logn− c log logn)/H (the range for which the above induction argument is

valid) and B∗ = [N(udξ ) ≥ 2] occurs with high probability. The inequality on dξ holds if we have

t′ log(1/p)− logn

(
1− H

log(1/p)

)ξ
≤ −c log logn,
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which is satisfied if

ξ =


log logn− log(c log logn+ t′ log(1/p))

log

(
1

1− H
log(1/p)

)


.

In that case, we can conclude that Dn+1 ≥ ξ. We see that on A and B, with C ′′′ = exp(−2 log(1/p)a1),

µ(udξ ) ≥ C ′′′ne−dξH

≥ C ′′′e−t′ log(1/p)n(1−H/ log(1/p))ξ

≥ C ′′′ec log log n

= C ′′′(log n)c.

Thus, udξ , for n large enough, falls in the tree Sn defined in Lemma 5 below, and thus, by that Lemma,

lim
n→∞P{N(udξ ) < 2} = 0.

Summarizing, we have

P{Dn+1 < ξ} ≤ P{Ac}+ P{Bc|A}+ P{(B∗)c|A,B}

≤ ε+

(
1 +

log n

H

)
e−C

′′(logn)c +
1 + log n

H
(2t)!

+ o(1)

= ε+ o(1)

provided that c > 1 and (2t)!/ logn → ∞. A simple choice like t ∼ log logn will do. This implies that

t′ = O(log logn), and thus, as ε was arbitrary, we showed that there exists a constant M > 0 such that

lim
n→∞P




Dn+1 <

log logn− log log logn−M

log

(
1

1− H
log(1/p)

)





= 0.

For the upper bound, we argue in two steps.

Lemma 2. If a > 0, b ≥ 1 and the integer n are fixed, then

n∑

i=0

e−a/b
i ≤ e−a/b

n

1− e−a(b−1)/bn
.

Proof. Rewrite the sum as

e−a/b
n

n∑

i=0

e−a(bi−1)/bn ≤ e−a/bn
n∑

i=0

e−ai(b−1)/bn

from which the inequality follows immediately.

In the first step, we establish an upper bound of O(log logn).
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Lemma 3. There exists a constant K > 0 such that

lim
n→∞P {Dn+1 ≥ K log logn} = 0.

Proof. We use the notation of the proof of Lemma 1. Consider integers a, t > 0 and observe that if vj ,

1 ≤ j ≤ 2a+1 are the descendants of u, a+ 1 levels below u, then, for any u,

P {Z(u) ≤ a|N(u)} ≤
2a+1∑

j=1

P
{
N(vj) = 0|N(u)

}

≤
a+1∑

k=0

(
a+ 1

k

)
P
{

binomial(N(u), pk(1− p)a+1−k) = 0|N(u)
}

=
a+1∑

k=0

(
a+ 1

k

)
(1− pk(1− p)a+1−k)N(u)

≤ 2a+1e−N(u)pa+1
.

Thus, for any u on the path for Xn+1, at distance i = δ(u) from the root,

P {Z(u) ≤ a|A} ≤ P {N(u) ≤ µ(u)/2|A}+ E
{
ea+1−N(u)pa+1 |N(u) > µ(u)/2, A

}

≤ P {binomial(n, µ(u)/n) ≤ µ(u)/2|A}+ E
{
ea+1−µ(u)pa+1/2|A

}

≤ E{e−Cµ(u)|A}+ E
{
ea+1−µ(u)pa+1/2|A

}

≤ e−Cne−iHe−|θ|ai + ea+1−ne−iHe−|θ|aipa+1/2

≤ e−C′′ne−iH + ea+1−C′′′ne−iHpa+1/2

where C > 0 is a universal constant (different from that in Lemma 2), and C ′′ and C ′′′ are defined above.

Define

a(u) =

⌊
log n− iH− 2 log logn

log(1/p)

⌋
,

and note that

P {Z(u) ≤ a(u)|A} ≤ e−C′′ne−iH + e
2+ logn

log(1/p)
−C′′′(p2/2)(logn)2

.

Finally, set

B =
⋂

0≤i≤ log n−3 log logn
H

[Z(ui) > a(ui)] ,

and observe that for n ≥ 3

P {Bc|A} ≤
(

2 +
log n

H

)
×
(
e−C

′′(logn)3 + e
2+ logn

log(1/p)
−C′′′(p2/2)(logn)2

)
→ 0.

Denote the depths of the nodes on the path of Xn+1 at which compaction takes place by d0 =

0 < d1 < d2 < · · ·. We have

dj+1 = dj + Z(udj )

for all j. Assume that both events A and B occur. Then, for j such that dj < (logn− 3 log logn)/H,

Z(udj ) ≥
logn− djH− 2 log logn

log(1/p)
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and thus,

dj+1 ≥ dj
(

1− H
log(1/p)

)
+

logn− 2 log logn

log(1/p)
,

It is easy to prove then by induction on j that

dj ≥
[

logn− 2 log logn

log(1/p)

]
× 1− (1−H/ log(1/p))j

H/ log(1/p)
≥ logn− 2 log logn

H −
logn

(
1− H

log(1/p)

)j

H .

Define the semi-depth D∗n+1 of Xn+1 as the largest integer j such that

dj <
logn− 3 log logn

H .

Note that necessarily, replacing j by D∗n+1 above, if A and B happen,

logn− 3 log logn ≥ logn− 2 log logn− logn

(
1− H

log(1/p)

)D∗n+1

and thus,

D∗n+1 ≤
log logn− log log logn

log

(
1

1− H
log(1/p)

) .

If A occurs, then

µ

(
ud1+D∗n+1

)
≤ ne

−dD∗n+1
H

C ′′′
≤ (logn)3

C ′′′
.

Thus, conditional on A ∧ B, N

(
ud1+D∗n+1

)
is stochastically less than a binomial (n, (logn)3/(C ′′′n))

random variable, which we call R. [We say that X is stochastically greater than Y if for all x, P{X ≥ x} ≥
P{Y ≥ x}.] Observe that Dn+1 − (1 + D∗n+1) is bounded from above by a random variable distributed

as DR+1, because subtrees of tries behave as tries. Note that DR+1 ≤ HR, where Hn denotes the height

of the uncompacted trie with n nodes. From the results cited in the introduction, and the weak law of

large numbers for the binomial, we have

P



DR+1 >

7 log logn

log
(

1
p2+(1−p)2

)





≤ P{Ac}+ P
{

binomial

(
n,

(logn)3

C ′′′n

)
>

2

C ′′′
(log n)3

}
+ P



H(2/C′′′)(logn)3 >

7 log logn

log
(

1
p2+(1−p)2

)





= ε+ o(1).

Thus,

P




Dn+1 >

log logn− log log logn

log

(
1

1− H
log(1/p)

) + 1 +
7 log logn

log
(

1
p2+(1−p)2

)





≤ P{Ac}+ P{Bc|A}+ o(1) ≤ ε+ o(1).
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Thus, as ε was arbitrary, we showed that there exists a constant K > 0 such that

lim
n→∞P {Dn+1 ≥ K log logn} = 0.

Finally, we obtain a more refined upper bound.

Lemma 4. There exists a constant M > 0 such that

lim
n→∞P




Dn+1 ≥

log logn+M log log logn

log

(
1

1− H
log(1/p)

)





= 0.

Proof. We use the notation of the proof of Lemma 3, and the following corollary of it:

P
{
DR+1 ≥ K log log

(
2(logn)3

C ′′′

) ∣∣∣A
}
≤ o(1) + P

{
D 2(logn)3

C′′′ +1
≥ K log log

(
2(logn)3

C ′′′

)}
= o(1).

From the distributional inequality

Dn+1 − (1 +D∗n+1) ≤ DR+1,

we conclude the following:

P




Dn+1 >

log logn− log log logn

log

(
1

1− H
log(1/p)

) + 1 +K log log

(
2(logn)3

C ′′′

)




≤ P{Ac}+ P{Bc|A}+ P
{
DR+1 ≥ K log log

(
2(logn)3

C ′′′

) ∣∣A
}
≤ ε+ o(1).

This completes the proof of Lemma 4.

The height of the asymmetric LC trie

Consider the deterministic binary tree Sn consisting of all nodes u with µ(u) ≥ c logn. We show

that very likely Tn contains Sn.

Lemma 5. Fix c > 1. Then

P{Sn ⊂ Tn} ≥ 1− 2n(1 + c logn)

(c logn)(n/e)c
→ 1

as n→∞. In fact,

lim
n→∞ P{min

u∈Sn
N(u) < 2} = 0.

11



Proof. Observe that N(u) is binomial (n, µ(u)/n) and is thus stochastically larger than a binomial

(n, c logn/n) random variable for all u ∈ Sn. For any such u, we have

P{N(u) < 2} ≤ P{binomial(n, c logn/n) < 2}
= (1− c logn/n)n + n(c logn/n)(1− c logn/n)n−1

≤ (1 + c logn)(1− c logn/n)n−1

≤ (1 + c logn)e−
c(n−1) logn

n

≤ (1 + c logn)

(n/e)c
.

Now note that |Sn| ≤ 2n/(c logn) and conclude by the union bound.

Lemma 6. Assume p < 1/2 and [Sn ⊂ Tn]. Let λ(u) denote the LC trie depth of a node u ∈ Sn that is

present in the LC trie after compaction (recalling that the LC trie has fewer nodes than Tn). Then

λ(u) ≤
⌈

1

log(1/(1− p))

⌉
+

⌈
log logn

log(1/β)

⌉
,

where

β = 1− log(1/(1− p))
log(1/p)

.

Proof. Note that Z(u) defined on Sn is necessarily smaller than Z(u) for Tn, so to prove Lemma 6, it

suffices to consider Sn. Note that a node u ∈ Sn has Z(u) = d if the nearest descendant outside Sn is at

distance d+ 1. Thus, we must have

µ(u)pd ≥ c logn, µ(u)pd+1 < c logn.

Therefore,

Z(u) + 1 ≥
log
(
µ(u)
c log n

)

log(1/p)
.

Consider any sequence of nodes in Sn with u0 the root, and ui+1 a Z(ui)-level descendant of ui. Then

µ(ui+1) ≤ µ(ui)(1− p)Z(ui) ≤ µ(ui)(1− p)
log

(
µ(ui)
c logn

)

log(1/p)
−1 ≤ α(µ(ui))

β

where α = (c logn)1−β/(1− p), and we note that β ∈ (0, 1). By repeating this, we have

µ(ui) ≤ nβ
i
α1+β+···+βi−1 ≤ α1/(1−β)nβ

i
=

c logn× nβi

(1− p)1/(1−β)
.

For

i =

⌈
log logn

log(1/β)

⌉
,

the upper bound is not more than ce logn. Let k be the smallest integer such that e(1 − p)k < 1. All

k-level descendants of such ui (in the original trie) have µ-value less than (1 − p)kce logn < c logn and

fall thus outside Sn. The Lemma has been proved.

Theorem 2 is implied by Lemmas 7 and 8 below.
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Lemma 7. Let ωn ↑ ∞ arbitrarily slowly. Then

lim
n→∞P



Hn <

logn− ωn
log
(

1
p2+(1−p)2

)



 = 0.

Proof. Assume without loss of generality that p ≤ 1/2. Let U be the collection of all nodes u with

µ(u) ∈ [1, 1/p] such that no child v of u has µ(v) ∈ [1, 1/p]. Let N be the number of nodes u ∈ U

with N(u) = 2. Note that no two nodes in U are ancestors of each other, so that clearly, |U | ≥ np.

Furthermore, the vector V
def
= (N(u) : u ∈ U) is multinomially distributed with probabilities all between

1/n and 1/(np). Therefore, each individual N(u) is asymtotically stochastically bounded by a Poisson

(1) random variable from below and a Poisson (1/p) random varable from above. It is easy to show

that there exists a constant c > 0 such that P{N ≥ cn} → 1. If we condition on the vector V , then

the subtrees rooted at u ∈ U are independent. Consider a particular subtree with N(u) = 2. Let W (u)

denote the number of consecutive bits, starting at u, in which the two strings in the subtree of u agree.

Observe that

P{W (u) ≥ L} = (p2 + (1− p)2)L.

Therefore,

P{Hn < L} ≤ P
{
∩u∈U :N(u)=2[W (u) < L]

}

= E





∏

u∈U :N(u)=2

P{W (u) < L|N(u) = 2}





= E





∏

u∈U :N(u)=2

(
1− (p2 + (1− p)2)L

)




= E
{(

1− (p2 + (1− p)2)L
)N}

≤ E
{
e−N(p2+(1−p)2)L

}

≤ P{N < cn}+ e−cn(p2+(1−p)2)L

→ 0

if we set L = (logn− ωn)/ log(1/(p2 + (1− p)2)), where ωn →∞ arbitrarily slowly.

Lemma 8. Let ωn ↑ ∞ arbitrarily slowly. Then

lim
n→∞ P



Hn >

log n+ 2 log logn+ ωn

log
(

1
p2+(1−p)2

)



 = 0.

Proof. Assume without loss of generality that p ≤ 1/2. Let U be he collection of all nodes u with

µ(u) ∈ [2 logn, (2/p) logn] such that no child v of u has µ(v) ∈ [2 logn, (2/p) logn]. Note that no two nodes

in U are ancestors of each other, so that clearly, |U | ≤ n. Furthermore, the vector V
def
= (N(u) : u ∈ U)

is multinomially distributed with probabilities all between (2/n) logn and (2/(np)) logn. If we condition
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on the vector V , then the subtrees rooted at u ∈ U are independent. Consider a particular subtree rooted

a u. Let H(u) denote the height of the subtree (with LC compaction) rooted at u. Observe that

P{H(u) ≥ L|N(u)} ≤
(
N(u)

2

)
(p2 + (1− p)2)L.

Therefore, if D(u) denotes the LC-depth of node u, using Hn ≤ maxu∈U (D(u) +H(u)), for C > 0,

P{Hn ≥ L+ C log logn} ≤ P {∪u∈U [H(u) ≥ L]}+ P
{

max
u∈U

D(u) ≥ C log logn

}

≤ nmax
u∈U

E{(N(u))2}(p2 + (1− p)2)L + P
{

max
u∈U

D(u) ≥ C log logn

}

≤ n logn

p

(
1 +

logn

p

)
(p2 + (1− p)2)L + P

{
max
u∈U

D(u) ≥ C log logn

}
.

The first term tends to 0 with n if we choose L = (logn+ 2 log logn+ ωn)/ log(1/(p2 + (1− p)2)), where

ωn → ∞ arbirarily slowly. If U ⊂ Sn ⊂ Tn, then maxu∈U D(u) ≤ C log logn for some constant C, by

Lemma 6. Thus, the last term in the upper bound is further bounded by

P{Sn 6⊂ Tn}
Taking c = 3/2 in the definition of Sn insures that U ⊂ Sn and that P{Sn 6⊂ Tn} → 0 (Lemma 5).
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