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Two probability laws related to Jacobi theta functions

The purpose of this note is to propose two simple random variate generation algorithms for some

probability distributions that arise in the theory of Brownian and Bessel processes. The laws we are

interested in are characterized by their Laplace transforms, and involve nonnegative random variables

denoted here by J and J∗ (J for Jacobi). The properties of these laws are carefully laid out by Biane,

Pitman and Yor (2001). We define

E
{
e−λJ

}
=

√
2λ

sinh
(√

2λ
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{
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=

1
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) .

Using Euler’s formulae

sinh z = z

∞∏

n=1

(
1 +

z2

n2π2

)
, cosh z =

∞∏
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(
1 +

z2

(n− 1/2)2π2

)
,

it is easy to see that J and J∗ are indeed positive random variables, and that they have the following

representation in terms of i.i.d. standard exponential random variables E1, E2, . . .:

J
L
=

2

π2

∞∑

n=1

En
n2

, J∗ L=
2

π2

∞∑

n=1

En
(n− 1/2)2

.

It is known that J∗ is the first passage time of Brownian motion started at the origin for absolute value

1, and J is similarly defined for the Bessel process of dimension 3 (which is the square root of the sum

of the squares of three independent Brownian motions). See, e.g., Yor (1992, 1997). The maximum of

a Brownian meander on [0, 1] is distributed as twice the maximum absolute value of a Brownian bridge

on [0, 1], and is equal in law to π
√
J (Durrett, Iglehart and Miller, 1977; Kennedy, 1976; Biane and Yor,

1987; Borodin and Salminen, 2002).

We use the name Jacobi and the symbol J because the densities of J and J∗ can be expressed

in terms of the Jacobi theta function

θ(x) =
∞∑

n=−∞
exp

(
−n2πx

)
, x > 0.

It has the remarkable property that
√
xθ(x) = θ(1/x), which follows from the Poisson summation formula,

and more particularly from Jacobi’s theta function identity

1√
πx

∞∑
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(
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x

)
=

∞∑

n=−∞
cos (2πny) exp

(
−n2π2x

)
, y ∈ R, x > 0.

The density of J is

f(x) =
d
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∞∑

n=−∞
(−1)n exp
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2π2x

2

)
=
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)
.

The density of J∗ is

f∗(x) = π
∞∑

n=0

(−1)n
(
n+

1

2

)
exp

(
− (n+ 1/2)2π2x

2

)
.
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We note that all moments are finite, and are expressible in terms of the Riemann zeta function. We will

not need them for the discussion that follows.

Random variate generation for J has already been treated in the literature. Indeed, it is easy to

see that (π/2)
√
J has distribution function

F (x) =
∞∑

n=−∞
(−1)ne−2n2x2

,

which is nothing but the law of the Kolmogorov-Smirnov statistic (Kolmogorov, 1933). We call it the

Kolmogorov-Smirnov distribution and denote its random variable by K. The identity K
L
= (π/2)

√
J was

first observed by Watson (1961). Exact random variate generation for the Kolmogorov-Smirnov law was

first proposed by Devroye (1981), who used the so-called alternating series method, which is an extension

of von Neumann’s rejection method. This method is useful whenever densities can be written as infinite

sums,

f(x) =
∞∑

n=0

(−1)nan(x),

where an(x) ≥ 0 and for fixed x, an(x) is eventually decreasing in n. Jacobi functions are prime examples

of such functions.

The second example in the literature is that of the theta distribution function, which is the limit

law of the maximum of a positive Brownian excursion, and thus appears as the limit law of the height

of random conditional Galton-Watson trees (see, e.g., Rényi and Szekeres, 1967, de Bruijn, Knuth and

Rice, 1972, Chung, 1975, Kennedy, 1975, Meir and Moon, 1978, and Flajolet and Odlyzko, 1982). The

distribution function is

G(x) =
∞∑

n=−∞

(
1− 2n2x2

)
e−n

2x2
, x > 0,

and we warn that some authors use a different scaling: if we call a random variable with distribution

function G a theta random variable, and denote it by T , then the maximum of Brownian excursion on

the unit interval is distributed as T/
√

2. (For more on this, see, e.g., Pitman and Yor, 2001.) Let us write

K(1),K(2), . . . for a sequence of i.i.d. copies of a Kolmogorov-Smirnov random variable K. As noted by

Biane, Pitman and Yor (2001), the distribution function of the sum J(1)+J(2) of two independent copies

of J is given by
∞∑

n=−∞

(
1− n2π2x

)
e−n

2π2x/2, x > 0.

Thus, we have the distributional identity

π2

2
(J(1) + J(2))

L
= T 2.

Using J
L
= (4/π2)K2, we deduce

T
L
=
√

2(K(1)2 +K(2)2).

This provides a route to the simulation of T via a generator for K. Devroye (1997) published a more

direct exact algorithm that uses the principle of a converging series representation for the density.
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It is also noteworthy that

J
L
=
J(1) + J(2)

(1 + U)2

where U is uniform [0, 1] and independent of the J(i)’s (Biane, Pitman and Yor (2001, section 3.3)). Thus

we have the further identities

J
L
=

2T 2

π2(1 + U)2
L
=

4K2

π2 .

Finally,

K
L
=

T

(1 + U)
√

2
.

Further properties of K and of maxima of Bessel bridges are given by Pitman and Yor (1999).

This leaves us with the problem of simulating J∗, for which no convenient distributional relations

linking it to K, T or J are available. An exact random variate generator for J ∗ was presented by Burq

and Jones (2008), who used the rejection method (von Neumann, 1951) combined with the alternating

series method. However, a crucial inequality in that paper is only verified numerically, which is especially

problematic for inequalities between functions that touch. For the exact simulation of certain diffusions,

Beskos and Roberts (2005) developed a method based on Brownian motion. For the exact simulation

of stochastic differential equations, Chen (2008) built on their ideas and decomposed Brownian motion

into pieces determined by first passage times of certain levels (which are distributed as J ∗). These

passage times are the cornerstone of Chen’s algorithm, and it is thus important to have the best possible

generators available for these random variables. In this paper, we provide a “natural” way of treating

Jacobi functions, and thus provide a second example that can be used as a template to deal with other

similar distributions in the future.

A third law linking J and J∗. Since

1

cosh z
=

z

sinh z
× tanh z

z
,

we have, upon replacing z by
√

2λ, that

J∗ L= J + J ′,

where J ′ ≥ 0 is independent of J and has Laplace transform

E
{
e−λJ

′}
=

tanh
(√

2λ
)

√
2λ

.

That J ′ is indeed a nonnegative random variable and that this is a valid Laplace transform follows from

Euler’s formulae and the representation

J ′ L=
2

π2

∞∑

n=1

Enξ1/n−1/(4n2)

(n− 1/2)2
,

where ξp is Bernoulli (p) and all random variables in the infinite sum are independent.
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Extensions of J and J∗. Sums of independent copies of J, J∗ and J ′ may also be considered. For

example, for fixed parameter α > 0, the Laplace transforms

(
1

cosh
√

2λ

)α
,

( √
2λ

sinh
√

2λ

)α
,

(
tanh

√
2λ√

2λ

)α
, λ ≥ 0 , (1)

define three different families of distributions—Pitman and Yor (2003) study them in detail and call them

infinitely divisible laws associated with hyperbolic functions. The density of the first one of the three,

obtained by term by term inversion of the series expansion for the Laplace transform, is (see Biane,

Pitman and Yor, 2001)

fα(x) =
2α

Γ(α)

∞∑

n=0

(−1)n
Γ(n+ α)(2n+ α)

Γ(n+ 1)
√

2πx3
exp

(
− (2n+ α)2

2x

)
, x > 0.

The question is whether one can derive an algorithm for generating such random variates Xα that is

uniformly fast uniformly over all values of the parameter α > 0. This will not be attempted in the

present paper. However, it should be obvious that the infinite exponential sum formulas for J and J ∗

can now be written in terms of independent gamma (α) random variables Gα(1), Gα(2), . . .: the first two

random variables in (1) are, respectively, distributed as

2

π2

∞∑

n=1

Gα(n)

n2
and

2

π2

∞∑

n=1

Gα(n)

(n− 1/2)2
.

However, this does not yield an exact finite time algorithm. In view of the tails of f1, the limit law for

Xα/α
2, as α → ∞, is the inverse of the square of a normal (or an extreme stable of parameter 1/2).

Following the ideas of Devroye (1993) for a similar family (see below for more on this), it is probably

best to attack this by considering the characteristic function of Xα/α
2 more directly instead of focusing

on series representations for the density.

A generator for J∗

The starting point is a dual representation for the density f ∗ of J∗, noted by Ciesielski and Taylor

(1962), based upon the properties of the Jacobi function:

f∗(x) =





π
∑∞
n=0(−1)n

(
n+ 1

2

)
exp

(
−(n+ 1/2)2π2x/2

)
(1)

(
2
πx

) 3
2 π
∑∞
n=0(−1)n

(
n+ 1

2

)
exp


−

2
(
n+ 1

2

)2

x


 (2)

(see section 3 of Biane, Pitman and Yor, 2001). We generically write

f∗(x) =
∞∑

n=0

(−1)nan(x),

where the functions an are nonnegative.

Lemma 1. We have a0(x) ≥ a1(x) ≥ a2(x) ≥ · · · if either representation (1) is used and x ≥ (log 3)/π2,

or representation (2) is used and x ≤ 4/ log 3.

—  —



Proof. For (1), we have for n ≥ 0,

an+1(x)

an(x)
=

2n+ 3

2n+ 1
exp

(
−(n+ 1)π2x

)
≤ 3 exp

(
−π2x

)
.

For (2), we have for n ≥ 0,

an+1(x)

an(x)
=

2n+ 3

2n+ 1
exp (−(n+ 1) 4/x) ≤ 3 exp

(
− 4

x

)
.

Denote the partial sums as follows,

An(x) =
n∑

i=0

(−1)iai(x).

Then Lemma 1 implies that for representation (1) and x ≥ (log 3)/π2, or for representation (2) and

x ≤ 4/ log 3,

A0(x) ≥ A2(x) ≥ · · · ≥ f∗(x) ≥ · · · ≥ A3(x) ≥ A1(x).

This suggests that we can use the rejection method based upon the inequality (see Fig. 1)

f∗(x) ≤ g(x)
def
=





π
2 exp

(
−π2x

8

)
, if x ≥ t,

(
2
πx

) 3
2 π

2 exp
(

1
2x

)
, if x ≤ t.

The threshold t = 0.64 is suggested such that the bounding curve is nearly indistinguishable from f ∗,
while being inbetween the range [log 3/π2, 4/ log 3] suggested by Lemma 1 for monotonicity. We define

an(x) as in (1) for x ≥ t, and as in (2) for x ∈ (0, t). The area under the bounding curve has two

components. We define

p =

∫ ∞

t
g(x) dx =

4

π
exp

(
−π

2t

8

)
,

q =

∫ t

0
g(x) dx = 4P{N ≥ 1/

√
t},

where N is standard normal. With our choice of t, we have p = 0.57810262346829443 . . . and q =

0.422599094 . . .. Note in particular that p+ q = 1.0007017178682944 . . ., which means that less than one

out of a thousand random variates result in any rejection! A random variate with density proportional to

g is obtained as follows: with probability p/(p+ q), generate t+ 8E/π2, where E is standard exponential.

With probability q/(p + q), generate 1/N 2, where N is a standard normal conditioned on being in

[1/
√
t,∞). The tail-of-normal random variate N can be obtained by a method given in Devroye (1986,

p. 382): keep generating independent pairs of independent standard exponentials (E,E ′) until E2 ≤
2E′/t. Then return N ← (1 + tE)/

√
t.

With all these routine matters out of the way, we can now summarize the algorithm, using

alternating series to successively reject and accept until, with probability one, a decision is made to either

reject or accept.
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Let t = 0.64, p = 0.57810262346829443, q = 0.422599094

Repeat Generate U, V uniform on [0, 1]

If U < p/(p+ q) then set X ← t+ 8E/π2 with E exponential

else repeatedly generate independent exponentials (E,E ′)
until E2 ≤ 2E′/t, and set X ← t/(1 + tE)2

Set S ← a0(X), Y ← V S, n← 0

Repeat until exit:

n← n+ 1

if n is odd: S ← S − an(X); if Y < S, then return X and halt

if n is even: S ← S + an(X); if Y > S, then exit loop

0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0 3.25 3.5 3.75 4.0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Figure 1. The density f∗ of J∗ is shown with a thick stroke. The
function a0 is shown for representations (1) and (2). For representation
(1), it is exponential, and hugs f∗ tightly to the right of the threshold
point t = 0.64. For representation (2), it is inverse squared normal (like
for an extreme stable law of parameter 1/2), and fits f ∗ precisely to the
left of t, but has a bigger (polynomial, but unused) tail to the right of t.

The expected number of outer iterations before halting is p+ q < 1.000702. For the inner loop,

the expected number of iterations is analyzed as in Devroye (1981). Let X denote a random variate with

density g. Then the number of calculations of an ak(X) function value is at least equal to n + 1 with
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probability an(X)/g(X). Given X , the expected number of such calculations (and thus the expected

work done) is therefore not more than

1 +
∞∑

n=0

an(X)

g(X)
.

Unconditioning, the expected work to process one candidate X is not more than

E

{
1 +

∞∑

n=0

an(X)

g(X)

}
= 1 +

∫
g(x)

∞∑

n=0

an(X)

g(X)
dx = 1 +

∞∑

n=0

∫
an(x) dx

def
= ρ.

By Wald’s identity, the overall expected work (taking the outer loop into account as well) is not more

than 1.000702 times ρ. Since an decreases exponentially, it is rather easy to verify that ρ ∈ (2, 3).

Generalized Jacobi laws.

The laws of J and J∗ can be generalized as follows, using a slightly more convenient scaling. For

parameter α ∈ (0, 1/2], we define nonnegative random variables Jα and J∗α via their Laplace transforms

E
{
e−λJα

}
=

λα

sinh (λα)
, E

{
e−λJ

∗
α
}

=
1

cosh (λα)
.

Note that J = 2J1/2, J∗ = 2J∗1/2.

Observe that

Jα
L
= S2αJ

1
2α
1/2

L
= S2α(J/2)

1
2α ,

where Sα is an extreme (or unilateral) positive stable random variable with Laplace transform

E
{
e−λSα

}
= e−λ

α
, λ ≥ 0.

This can easily be verified from the Laplace transforms:

E



e
−λS2αJ

1
2α
1/2



 = E

{
e
−λ2αJ1/2

}
=

λα

sinh (λα)
.

Similarly,

J∗α
L
= S2αJ

∗
1/2

1
2α
L
= S2α(J∗/2)

1
2α .

The entire family can be exactly simulated using this distributional identity and the algorithms described

above.

Simple exact generators for Sα are easily available (see, e.g., Zolotarev (1986) for a broad study

of stable distributions). A simple random variate generator for Sα has been suggested by Kanter (1975),

who used an integral representation of Zolotarev (1966) (see Zolotarev (1959, 1981, or 1986, p. 74)), which

states that the distribution function of S
α/(1−α)
α is given by

1

π

∫ π

0
e−

A(u)
x du,

where A is Zolotarev’s function:

A(u)
def
=

{
(sin(αu))α(sin((1− α)u))1−α

sinu

} 1
1−α

.
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By taking limits, we note that S1 = 1, so that the family is properly defined for all α ∈ (0, 1]. Zolotarev’s

integral representation implies that

Sα
L
=

(
A(U)

E

) 1−α
α

,

where U is uniform on [0, π] and E is exponential. This is known as Kanter’s method. A year after

Kanter’s paper, a similar generator was proposed by Chambers, Mallows and Stuck (1976), which was

again based on Zolotarev’s integral representation of stable distributions, but applicable to all stable laws.

A different method based on the series expansion of the stable density was developed by Devroye (1986).

Hyperbolic secant, cosecant, and tangent distributions

The hyperbolic secant distribution has density

f(x) =
1

2
sech(πx/2) =

1

2 cosh(πx/2)
=

1

eπx/2 + e−πx/2

(Baten, 1934, and Talacko, 1951). We write H∗ for its random variable, and note that EH∗ = 0,

V{H∗} = 1, and its cumulative distribution function is

F (x) =
1

2
+

1

π
arctan(sech(πx/2)) =

2

π
arctan (exp(πx/2)) .

The inversion method implies that

H∗ L=
2

π
log

(
tan

(
πU

2

))
,

where U is uniform [0, 1]. The characteristic function is

1

cosh(t)
=

2

et + e−t
=

2

e|t| + e−|t|
.

In the first section, we introduced J and J∗; their counterparts here are H and H∗. The random variable

H with the hyperbolic cosecant distribution has characteristic function

t

sinh(t)
=

2t

et − e−t =
2|t|

e|t| − e−|t| .

Its density is π/(2 cosh(xπ/2))2. Integrating this density and applying inversion shows that

H
L
=
S

π
log

(
1 + U

1− U

)
,

where S is a random equiprobable sign and U is uniform [0, 1]. Of particular interest here is that if

N is standard normal and independent of K, then |N |K has distribution function tanhx (Pitman and

Yor, 1999), and is thus distributed as (1/2) log((1 + U)/(1− U)). Therefore, 2NK/π
L
= H . Many more

relationship exist between the random variables introduced in this paper.

Jurek and Yor (2004) provide an in-depth study of the self-decomposability and other properties

of H and H∗. Further information can be found in Pitman and Yor (2003). Jurek and Yor look at a third

random variable H ′ with characteristic function tanh(t)/t, called the hyperbolic tangent distribution.
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Trivially, H∗ L= H + H ′ (multiply the characteristic functions). Furthermore, by Euler’s formulae, if

L1, L2, . . . denote i.i.d. Laplace random variables,

H
L
=

1

π

∞∑

n=1

Ln
n

, H∗ L=
1

π

∞∑

n=1

Ln
n− 1/2

(see, e.g., Laha and Lukacs, 1960). Since a Laplace random variable is the difference of two independent

exponential random variables, the relationship with J and J∗ is intriguing. Nevertheless, it is not clear

how this relationship will aid in developing other or better methods for simulating J or J ∗. We remark

that

H ′ L=
1

π

∞∑

n=1

Lnξ1/n−1/(4n2)

n− 1/2
,

where ξp is Bernoulli (p), and all random variables in the infinite sum are independent.

We call random variablesHα andH∗α (0 ≤ α ≤ 1) stable hyperbolic cosecant and stable hyperbolic

secant if they have characteristic functions

E
{
eitHα

}
=

|t|α
sinh (|t|α)

=
2|t|α

e|t|α − e−|t|α , E
{
eitH

∗
α
}

=
1

cosh (|t|α)
=

2

e|t|α + e−|t|α
.

Note that H∗1
L
= H∗, H1

L
= H . For simulation, the following (trivial) Lemma is useful. Denote by Sα,0

the symmetric stable random variable with characteristic function exp (−|t|α), and let C be a standard

Cauchy random variable,

Lemma 2. Let 0 < α ≤ 1. Then

Hα
L
= Sα,0H

1
α
L
= CSαH

1
α , H∗α

L
= Sα,0H

∗ 1
α L= CSαH

∗ 1
α .

Also,

Hα
L
= S2α,0J1/2

1
2α , H∗α

L
= S2α,0J

∗
1/2

1
2α .

Finally, for α ∈ (0, 1/2],

Hα
L
= CJα

L
= CS2αJ1/2

1
2α , H∗α

L
= CJ∗α

L
= CS2αJ

∗
1/2

1
2α .

Proof. The first part follows by computing the characteristic functions. For example,

E
{
eitSα,0H

∗ 1
α
}

= E
{
e−|t|

αH∗
}

=
1

cosh (|t|α)
.

The second part follows similarly:

E

{
e
itS2α,0J

∗
1/2

1
2α

}
= E

{
e
−|t|2αJ∗1/2

}
=

1

cosh (|t|α)
.

All statements involving C follow from the fact that if X ≥ 0 has Laplace transform L(λ), then CX has

characteristic function L(|t|). In particular, for α ≤ 1/2, S2α,0
L
= CS2α.
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Subordination

Let Xα be the generic notation for the three random variables defined by (1). If N denotes

a standard normal random variable, then it is easy to check that N
√
Xα has characteristic function

E{exp(itN
√
Xα)} given, respectively by

(
1

cosh t

)α
,

(
t

sinh t

)α
,

(
tanh t

t

)α
.

These families, also studied by Pitman and Yor (2003), are related to the ghs (generalized hyperbolic

secant) distribution discussed in the next section—in fact, the first one is ghs. So, while simulating Xα

in general is a challenge, the normal scale mixtures N
√
Xα are more easily dealt with, as we will now

explain.

Further related distributions

The ghs (generalized hyperbolic secant) distribution has characteristic function

ϕ(t) =

(
1

cosh t

)α
= (sech t)α =

(
2

et + e−t

)α
,

where α > 0 is the parameter. It is symmetric about 0, has mean 0 and variance α, is unimodal with mode

at 0, and possesses exponentially decaying tails. For α = 1, we obtain the hyperbolic secant distribution.

For integer α, a ghs random variate G is distributed as

H∗(1) + · · ·+H∗(α) ,

where the H∗(i)’s are i.i.d. copies of H∗ (Harkness and Harkness, 1968). The time taken by the naive

method that exploits this property grows linearly with α. Devroye (1993) derives a rejection method

which takes expected time uniformly bounded over all values of α.

Remark: special cases. For the sake of completeness, we mention three special cases in which explicit

forms of the density fα of a ghs random variate are known (see Harkness and Harkness, 1968):

f2(x) =
x

2 sinh πx
2

=
x

eπx/2 − e−πx/2 ;

f2n+1(x) =
22n−1

(2n)! cosh πx
2

×
n∏

j=1

(
x2

4
+

(
2j − 1

2

)2
)

;

f2n(x) =
4n−1x

2 (2n− 1)! sinh πx
2

×
n−1∏

j=1

(
x2

4
+ j2

)
.
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Remark: an asymmetric generalization. There are several generalizations of the ghs distribution

that introduce asymmetry. The Laha–Lukacs distribution is defined via its characteristic function

ϕ(t) = (cosh t− iµ sinh t)−α ,

where α > 0, µ ∈ R (Laha and Lukacs, 1960). No exact universally fast random variate generators are

known for this family.
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