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Abstract

For the random binary search tree with n nodes inserted the number of
ancestors of the elements with ranks k and `, 1 ≤ k < ` ≤ n, as well as the path
distance between these elements in the tree are considered. For both quantities
central limit theorems for appropriately rescaled versions are derived. For the
path distance the condition ` − k → ∞ as n → ∞ is required. We obtain
tail bounds and the order of higher moments for the path distance. The path
distance measures the complexity of finger search in the tree.
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1 Introduction and results

In this paper we analyze the asymptotic behavior of the path distance between
nodes in random binary search trees. The path distance between two nodes is the
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number of nodes on the shortest path connecting them in the tree. This quantity
is motivated by the cost of a finger search in the tree. The finger search operation
in a search tree takes as input a pointer to a node u, the current node, and either
the key value of another node v or an incremental rank value ∆. The objective
is to find v quickly. In the latter case, the rank of v differs from the rank of u
by ∆. Finger search trees are search trees in which the finger operation takes
time O(1 + ln ∆). Various strategies are known for this. For example, Brown and
Tarjan (1980) recommend (2,4) or red-black trees with level linking. Huddleston and
Mehlhorn (1982) show how to update these trees efficiently in an amortized sense.
On pointer-based machines, Brodal (1998) shows how to implement insertion in
constant worst-case time in an adaptation of these trees.

In a random binary search tree or a treap, suitably augmented, but without level
linking, we note that both kinds of finger search operations take time proportional
to the path distance between the nodes. The augmentation consists of maintaining
with each node either the minimum and maximum keys in the subtree, or the size
of the subtree. These parameters are easy to update. Furthermore, when searching
for v, starting from u, one first proceeds by following parent pointers towards the
root until the least common ancestor of u and v is found. At that point, one can
find v by the standard search operation.

If the nodes are level-linked, then it is also possible to identify an ancestor of v
that is either the least common ancestor of u and v, or a descendant of that least
common ancestor, simply by checking the key values of the appropriate level neigh-
bors of the ancestors of u when traveling towards the root. In this implementation,
the complexity of the finger search operation is the path distance between u and v

or less. Other possible augmentations for treaps are presented by Seidel and Aragon
(1996).

We give an approach of the distributional analysis of the path distance between
nodes in a random binary search tree whose keys have ranks that differ by ∆. The
connection used between records and random permutations for the study of random
binary search trees was developed in Devroye (1988) and, when it applies, leads to
short and intuitive proofs. While the expectation of the path distance of two nodes
that hold keys with ranks differing by ∆ is always O(ln ∆) as ∆→∞, for a refined
distributional analysis the location of the ranks matters, since in particular the
leading constant in the expansion of the expectation of the path distance depends
upon the location of the ranks. This affects the proper scaling of the quantities to
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obtain distributional convergence, see Theorem 1.3 below.
For simplicity we assume that the random binary search tree is build up from

the keys 1, . . . , n identifying the key of rank j with the key j. See, e.g., Mahmoud
(1992) for the definition of random binary search trees. For 1 ≤ k ≤ ` ≤ n we
denote by Ak` the number of ancestors of the nodes holding the keys k and ` in
the tree when n numbers are inserted. Note that Akk is the depth of the node with
rank k in the tree, 1 ≤ k ≤ n. By Pk` the path distance between the keys k and
` is denoted, that is, the number of nodes on the path (strictly) between k and `,
1 ≤ k < ` ≤ n.

We denote by N (0, 1) the standard normal distribution and by L−→ convergence
in distribution. For sequences (an), (bn) asymptotical equivalence, an/bn → 1 as
n→∞, is denoted by an ∼ bn. We have the following asymptotic behavior.

Theorem 1.1 For all 1 ≤ k < ` ≤ n, where k, ` may depend on n, we have, as
n→∞,

EAk` = ln(k(`− k)2(n− `+ 1)) +O(1),
Ak` − ln(k(`− k)2(n− `+ 1))√

ln(k(`− k)2(n− `+ 1))
L−→ N (0, 1).

Theorem 1.2 For all 1 ≤ k ≤ n, where k may depend on n, we have, as n→∞,

Akk − ln(k(n− k + 1))√
ln(k(n− k + 1))

L−→ N (0, 1).

Theorem 1.3 For all 1 ≤ k < ` ≤ n with k, ` depending on n such that ∆ :=
`−k+ 1→∞ as n→∞ and an := (k∧∆)∆2((n− `+ 1)∧∆) we have, as n→∞,

Pk` − ln an√
ln an

L−→ N (0, 1).

Theorem 1.4 Let Pn denote the path distance between a pair of nodes chosen uni-
formly at random from all possible pairs of different nodes in the tree. Then we
have, as n→∞,

Pn − 4 lnn√
4 lnn

L−→ N (0, 1).

Theorem 1.5 There exists a constant C > 0 such that for all ε > 0 and all 1 ≤
k < ` ≤ n with ∆ := `− k+ 1 ≥ ∆0 we have with an := (k∧∆)∆2((n− `+ 1)∧∆):

P(Pk` > (1 + ε) ln an) ≤ C∆−ε
2/(2+3ε).
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Here, for all δ > 0, we can choose ∆0 ≥ 1 uniformly for all ε ∈ [δ,∞).
Moreover, if ∆→∞ as n→∞, we have, for all p ≥ 1,

EP pk` ∼ lnp an.

Note that exact expressions for EAkk and EPk` in terms of harmonic numbers
are given in Seidel and Aragon (1996) and, for EAk`, in Prodinger (1995). The
limit law in Theorem 1.4, together with additional results for the model of uniformly
chosen pairs of nodes, have been derived in Mahmoud and Neininger (2003) and
Panholzer and Prodinger (2003+), an exact expression for EPn has first been given
in Flajolet, Ottmann, and Wood (1985). Finally, we note that the limit law for
the depth of a typical node inserted in a random binary search tree was obtained
by Mahmoud and Pittel (1984), Louchard (1987), and Devroye (1988). It can be
obtained from Theorem 1.2 by replacing k by a uniform{1, . . . , n} random variable.

2 Representation via Records

In a permutation (x1, . . . , xn) of distinct numbers we define the local ranks
R1, . . . , Rn, where Rj denotes the rank of xj in {x1, . . . , xj}. If Rj = j or Rj = 1
we say that xj is an up-record or down-record in x1, . . . , xn respectively. It is well
known that if the permutation is a random permutation, i.e., all n! permutations
are equally likely, Rj is uniformly distributed on {1, . . . , j} for all j = 1, . . . , n and
that R1, . . . , Rn are independent.

We give a representation of the number Ak` of ancestors of keys k and ` in
terms of local ranks and records, so that based on the independence properties we
can apply the classical central limit theorem in the version of Lindeberg-Feller.

Let us build up the random binary search tree from the numbers 1, . . . , n as
follows: We draw independent unif[0, 1] random variables T1, . . . , Tn, where unif[0, 1]
denotes the uniform distribution on the interval [0, 1]. These we use as time stamps
as Tj is associated with j and denotes the time at which number j is inserted into the
tree. Inserting now the numbers in order according to their time stamps, starting
with the earliest, yields a random binary search tree for the keys 1, . . . , n.

A basic property of the binary search tree is that j is an ancestor of k in the
tree if and only if it is inserted before k and also before all numbers s between j

and k. Now we fix 1 ≤ k < ` ≤ n and count the ancestors Ak` of the elements k
and ` in the tree. If, for i < k, element i is ancestor of ` then it is as well ancestor
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of k and hence it contributes to Ak` if and only if

Ti = min{Ti, Ti+1, . . . , Tk}, i < k.

Analogously, for i > `, we get a contribution of number i to Ak` if and only if
Ti = min{T`, T`+1, . . . , Ti}, and in the case k < i < ` if Ti = min{Tk, Tk+1, . . . , Ti}
or Ti = min{Ti, Ti+1, . . . , T`}. Passing to indicator functions we rewrite these events
as

1{Ti=min{Ti,Ti+1,...,Tk}} = 1{Ti=min{Ti,...,Tk−1}} − 1{Tk<Ti, Ti=min{Ti,...,Tk−1}}

=: 1Bi − 1Ci , i < k,

1{Ti=min{T`,...,Ti}} = 1{Ti=min{T`+1,...,Ti}} − 1{T`<Ti, Ti=min{T`+1,...,Ti}}

=: 1Bi − 1Ci , i > `,

and

1Bi := 1{Ti=min{Tk,Tk+1,...,Ti}}∪{Ti=min{Ti,Ti+1,...,T`}}, k ≤ i ≤ `.

Note that above 1Bi ,1Ci are differently defined for the three ranges of the index i.
Altogether we obtain the representation

Ak` =
n∑
i=1

1Bi −
k−1∑
i=1

1Ci −
n∑

i=`+1

1Ci − 2, (1)

where we subtract 2 referring to the convention that k and ` are not counted as
ancestors of themselves. The main contribution comes from the sum over the 1Bi ,
as the sums over the 1Ci will be asymptotically negligible.

To get the connection with records we introduce three auxiliary random binary
search trees as follows. The binary search tree T< is build up from the elements
1, . . . , k − 1, inserted according to their time stamps T1, . . . , Tk−1. Analogously T>
is build up from the elements `+ 1, . . . , n, inserted according to their time stamps
T`, . . . , Tn and T is build up from the elements k, . . . , `, inserted according to their
time stamps Tk, . . . , T`. Now, for i < k, the event Bi is equivalent for i to be an
ancestor of k − 1 in T<. Since k − 1 is the largest element in T<, this implies that
i is an up-record at the time of insertion into T<. Analogously, for i > `, the event
Bi is equivalent for i to constitute a down-record at time of its insertion into T>.
For k ≤ i ≤ `, event Bi is equivalent to i being up or down-record at its time of
insertion into T .
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We denote by Rj the local rank of the (in time) jth element inserted into T<
at the time of its insertion, 1 ≤ j < k, and by R′j , R

′′
j analogously the local

ranks of the jth elements inserted into T , T> for 1 ≤ j ≤ ` − k + 1 and 1 ≤
j ≤ n − ` respectively. Note that R1, . . . , Rk−1, R

′
1, . . . , R

′
`−k+1, R

′′
1 , . . . , R

′′
n−` are

independent and Rj , R
′
j , R

′′
j are uniform{1, . . . , j} distributed for j = 1, . . . , k − 1

and j = 1, . . . , `− k + 1 and j = 1, . . . , n− ` respectively. We have

n∑
i=1

1Bi =
k−1∑
j=1

1{Rj=j} +
`−k+1∑
j=1

1{R′j∈{1,j}} +
n−∑̀
j=1

1{R′′j =1}. (2)

For the representation of Pk` we denote

TA := min{Tk, . . . , T`}.

For 1 ≤ i ≤ n, element i belongs to the path between k and ` if and only if it is
ancestor of k or ` and Ti ≥ TA. Hence with Di := {Ti ≥ TA} we have

Pk` =
n∑
i=1

1Bi∩Di −
k−1∑
i=1

1Ci∩Di −
n∑

i=`+1

1Ci∩Di − 2. (3)

The main contribution will come from the sum over the 1Bi∩Di . For the correspond-
ing representation with records we introduce

N1 := |{1 ≤ j < k : Tj < TA}|, N2 := |{` < j ≤ n : Tj < TA}|,

and obtain
n∑
i=1

1Bi∩Di =
k−1∑

j=N1+1

1{Rj=j} +
`−k+1∑
j=1

1{R′j∈{1,j}} +
n−∑̀

j=N2+1

1{R′′j =1}

=: PI + PII + PIII . (4)

3 Proofs

Throughout this section we denote by Hn :=
∑n

i=1 1/i = lnn + O(1) the nth
harmonic number for n ≥ 1 and H0 := 0.

Proof of Theorem 1.1: We derive EAk` using the representations (1) and (2).
From the distribution of the local ranks Rj , R′j , and R′′j we obtain

E

n∑
i=1

1Bi = Hk−1 + 2H`−k+1 − 1 +Hn−` = ln(k(`− k)2(n− `+ 1)) +O(1).
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The remaining summands in (1) we denote by Υ :=
∑k−1

i=1 1Ci +
∑n

i=`+1 1Ci + 2.
For 1 ≤ i < k we have

E1Ci = P

(
Tk < Ti, Ti = min{Ti, . . . , Tk−1}

)
≤ P

(
Tk, Ti are the smallest elements among Ti, . . . , Tk

)
=

(
k − i+ 1

2

)−1

≤ 2
(k − i)2

.

This implies E
∑k−1

i=1 1Ci = O(1). Analogously we conclude to find EΥ = O(1),
hence we obtain EAk` = ln(k(`− k)2(n− `+ 1)) +O(1).

For the central limit law we write

Ak` − ln(k(`− k)2(n− `+ 1))√
ln(k(`− k)2(n− `+ 1))

=
∑n

i=1 1Bi − ln(k(`− k)2(n− `+ 1))√
ln(k(`− k)2(n− `+ 1))

− Υ√
ln(k(`− k)2(n− `+ 1))

.

For all choices of 1 ≤ k < ` ≤ n we have ln(k(`−k)2(n−`+1))→∞ as n→∞, and,
from (2) it follows that the Lindeberg-Feller condition (see Chow and Teicher (1978,
p. 291)) is satisfied for

∑n
i=1 1Bi , thus the first fraction on the right hand side of the

latter display tends in distribution to the standard normal distribution. Again since
ln(k(`− k)2(n− `+ 1))→∞ and E |Υ| = O(1) we obtain from Markov’s inequality
that Υ/ ln(k(`−k)2(n−`+1))→ 0 in probability as n→∞. The assertion follows.

Proof of Theorem 1.2: Note that for Akk we have the same representation as
for Ak` given, for the case k < `, in (1), where we have to replace the −2 there by
−1 due to the fact that we now have 1Bk = 1. Hence the same arguments as in the
proof of Theorem 1.1 apply.

Proof of Theorem 1.3: We have Pk` = PI + PII + PIII − Υ′, with Υ′ :=∑k−1
i=1 1Ci∩Di +

∑n
i=`+1 1Ci∩Di + 2 and an := (k ∧ ∆)∆2((n − ` + 1) ∧ ∆) → ∞

as n→∞. From E |Υ′| = O(1) we obtain from Markov’s inequality Υ′/
√

ln an → 0
in probability. Thus it is sufficient to show

PI + PII + PIII − ln an√
ln an

L−→ N (0, 1). (5)

Since we want to apply the central limit theorem to the sum of indicators in (4) we
will condition on the random indices N1 and N2. Note that we may assume k →∞
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and n− `+ 1→∞ as n→∞ since otherwise PI and PIII remain bounded and do
not contribute respectively.

First we consider the case k/∆ > ln k and (n− `+ 1)/∆ > ln(n− `+ 1) for all
sufficiently large n. We define, for ε > 0,

Bε := {N1 ∈ [α1, β1]} ∩ {N2 ∈ [α2, β2]},

with

α1 =
ε

2
k

∆
, β1 =

2
ε

k

∆
, α2 =

ε

2
n− `+ 1

∆
, β2 =

2
ε

n− `+ 1
∆

.

Note that the values of N1 and N2 depend on Tk, . . . , T`. However, condi-
tioned on N1 and N2 the permutations induced by T1, . . . , Tk−1, by Tk, . . . , T`,
and by T`+1, . . . , Tn are independent and uniformly distributed. In particu-
lar, conditioning on N1, N2 preserves the independence and the distributions of
R1, . . . , Rk−1, R

′
1, . . . , R

′
∆, R

′′
1 , . . . , Rn−`.

On Bε we have the bounds P−k` ≤ Pk` ≤ P
+
k` with

P−k` =
k−1∑

j=dβ1e+1

1{Rj=j} +
∆∑
j=1

1{R′j∈{1,j}} +
n−∑̀

j=dβ2e+1

1{R′′j =1},

P+
k` =

k−1∑
j=bα1c

1{Rj=j} +
∆∑
j=1

1{R′j∈{1,j}} +
n−∑̀

j=bα2c

1{R′′j =1}.

Now, we have

EP−k` = ln k − lndβ1e+ 2 ln ∆

+ ln(n− `+ 1)− lndβ2e+O(1)

= ln an +O
(

1 + ln
1
ε

)
, (6)

where, for the last equality, we distinguish the cases k/∆ ≤ 2/ε, k/∆ > 2/ε as
well as (n − ` + 1)/∆ ≤ 2/ε and (n − ` + 1)/∆ > 2/ε. Analogously we obtain
Var(P−k`) = EP−k` +O(1 + ln(1/ε)). Since ε > 0 is fixed and an →∞ as n→∞ we
obtain from the central limit theorem in the version of Lindeberg-Feller that

P−k` − ln an√
ln an

L−→ N (0, 1), n→∞. (7)
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Similarly we obtain (P+
k` − ln an)/

√
ln an → N (0, 1) in distribution as n → ∞. We

have, for x ∈ R,

P

(Pk` − ln an√
ln an

≤ x
)
≤ P(Bc

ε) + P
(Pk` − ln an√

ln an
≤ x

∣∣∣Bε)
≤ P(Bc

ε) + P
(P−k` − ln an√

ln an
≤ x

)
.

Hence denoting by Φ the distribution function of the standard normal distribution
and ψ(ε) := lim supn→∞ P(Bc

ε) we obtain

lim sup
n→∞

P

(Pk` − ln an√
ln an

≤ x
)
≤ Φ(x) + ψ(ε),

and analogously

lim inf
n→∞

P

(Pk` − ln an√
ln an

≤ x
)
≥ lim inf

n→∞
P(Bε)P

(P+
k` − ln an√

ln an
≤ x

)
= (1− ψ(ε))Φ(x).

Hence the central limit law is established once we have shown that ψ(ε) → 0 as
ε ↓ 0. For this it is sufficient to show that [lim supn→∞ P(Ni /∈ [αi, βi])]→ 0 as ε ↓ 0
for i = 1, 2. By symmetry we only need to show the case i = 1.

We denote by Bn,u a binomial B(n, u) distributed random variable, n ≥ 0, u ∈
[0, 1]. Since N1 has the mixed B(k− 1, TA) distribution with TA = min{Tk, . . . , T`}
we obtain with Chebyshev’s inequality, for k ≥ 4 and ∆ sufficiently large such that
ε/∆ ≤ 1,

P

(
N1 <

εk

2∆

)
≤ P

(
TA <

ε

∆

)
+ P

(
Bk−1,ε/∆ ≤

εk

2∆

)
≤ 2ε+ P

(∣∣∣Bk−1,ε/∆ −
ε(k − 1)

∆

∣∣∣ ≥ εk

4∆

)
≤ 2ε+

16
ε(k/∆)

≤ 2ε+
16
ε ln k

→ 2ε,

as n→∞. Similarly we obtain for sufficiently large ∆,

P

(
N1 >

2k
ε∆

)
≤ P

(
TA >

1
ε∆

)
+ P

(
Bk−1,1/(ε∆) ≥

2k
ε∆

)
≤ 2e−1/ε +

ε

ln k
→ 2e−1/ε,
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as n → ∞. Hence we obtain [lim supn→∞ P(N1 /∈ [α1, β1])] ≤ 2(ε + e−1/ε) → 0 as
ε ↓ 0.

In the second case we assume that k/∆ ≤ ln k and (n− `+ 1)/∆ > ln(n− `+ 1)
for all n sufficiently large. Now we replace αi, βi by

α′1 = 0, β′1 = ln2 k, α′2 = α2, β′2 = β2,

and define Bε, P
−
k`, P

+
k` as in the first case but with the αi, βi replaces by α′i, β

′
i,

i = 1, 2. The argument is now applied as in the first case. The only difference to
be shown is that we have lim supn→∞ P(N1 /∈ [α′1, β

′
1]) = 0: We have

P(N1 /∈ [α′1, β
′
1]) = P(N1 > ln2 k) ≤ EN1

ln2 k
=

(k − 1)/∆
ln2 k

≤ 1
ln k
→ 0,

as n→∞.
The case k/∆ > ln k and (n−`+1)/∆ ≤ ln(n−`+1) is covered by the previous

case by symmetry. In the remaining case k/∆ ≤ ln k and (n−`+1)/∆ ≤ ln(n−`+1)
we replace αi, βi by

α′′1 = α′1, β′′1 = β′1, α′′2 = 0, β′′2 = ln(n− `+ 1)2,

and define Bε, P−k`, P
+
k` as in the first case but with the αi, βi replaced by α′′i , β

′′
i ,

i = 1, 2. The argument is again applied as in the first case and lim supn→∞ P(Ni /∈
[α′′i , β

′′
i ]) = 0 follows for i = 1, 2 as in the second case.

This finishes the proof of the limit law since for a given sequence (k, `) =
(k(n), `(n)) with `(n) − k(n) → ∞ we decompose into four subsequences accord-
ing to whether k/∆ ≤ ln k or k/∆ > ln k and (n − ` + 1)/∆ ≤ ln(n − ` + 1) or
(n − ` + 1)/∆ > ln(n − ` + 1). Each of the subsequences satisfies, by the previous
arguments, the limit law (5), hence the whole sequence satisfies the limit law.

Proof of Theorem 1.4: We denote by (K,L) the ranks of the pair of nodes
chosen uniformly at random from all possible pairs of distinct nodes in the tree,
where we may assume that K < L. We define the set

B :=
{
K <

n

lnn

}
∪
{
n− L < n

lnn

}
∪
{
L−K <

n

lnn

}
and note that P(B) → 0 as n → ∞. On Bc we will condition on (K,L) = (k, `).
For these (k, `) we have ln(k(` − k + 1)2(n − ` + 1)) = 4 lnn + O(ln lnn). Hence
application of Theorem 1.3 yields (Pk` − 4 lnn)/

√
4 lnn → N (0, 1) in distribution.
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Denoting by Φ the distribution function of N (0, 1) and by σ the distribution of
(K,L) we obtain, for all x ∈ R,∣∣∣∣P(Pn − 4 lnn√

4 lnn
≤ x

)
− Φ(x)

∣∣∣∣
≤ P(B) +

∫ ∣∣∣∣P(Pk` − 4 lnn√
4 lnn

≤ x
)
− Φ(x)

∣∣∣∣ dσ(k, `)

→ 0,

by dominated convergence. The assertion follows.

To prepare for the proof of Theorem 1.5 we provide the following tail estimate:

Lemma 3.1 Let Yj, 1 ≤ j ≤ n be independent and Yj be Bernoulli B(pj) distributed
for 0 ≤ pj ≤ 1, and µ =

∑n
j=1 pj. Then we have, for all ε > 0,

P

(
n∑
j=1

Yj ≥ µ+ ε

)
≤ exp

(
− ε2

2µ+ ε

)
.

Proof: The proof relies on Chernoff’s bounding technique. The details follow the
proof of Theorem L1 in Devroye (1988).

Corollary 3.2 Let Xj , X
′
j be Bernoulli B(1/j) distributed, j ≥ 1, Z1 = 1 and Zj

be B(2/j) distributed, j ≥ 2, such that all random variables are independent. Then
for all 1 ≤ q ≤ s,∆ ≥ 1, 1 ≤ r ≤ t we have with α := s∆2t/(qr),

P

(
s∑
j=q

Xj +
∆∑
j=1

Zj +
t∑

j=r

X ′j − lnα ≥ ε

)
≤ exp

(
− (ε− 7)2

ε+ 6 + 2 lnα

)
.

Proof: We apply Lemma 3.1 and note that from ln(n + 1) ≤ Hn ≤ 1 + lnn for
n ≥ 1, we obtain

ln(α)− 7 ≤ Hs −Hq−1 + 2H∆ − 1 +Ht −Hr−1 ≤ ln(α) + 3.

The assertion follows.

Proof of Theorem 1.5: First we prove the tail bound, where we distinguish
several cases for the ranges of k and n− `+ 1. We abbreviate an as in Theorem 1.5.
Let ε be arbitrarily given.
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For k ≥ ∆1+ε, n − ` + 1 ≥ ∆1+ε we have with the representations (3) and (4),
and Xj , X ′j , and Zj as in Corollary 3.2

P(Pk` > (1 + ε) ln an)

≤ P(PI + PII + PIII > (1 + ε) ln an)

≤ P

({
N1 <

k − 1
∆1+ε

}
∪

{
N2 <

n− `
∆1+ε

})
(8)

+ P

(
k−1∑

j=b(k−1)/∆1+εc+1

Xj +
∆∑
j=1

Zj +
n−∑̀

j=b(n−`)/∆1+εc+1

X ′j > (1 + ε) ln an

)
.

Using that N1 is B(k − 1, TA) distributed and TA = min{Tk, . . . , T`} we obtain

P

(
N1 <

k − 1
∆1+ε

)
≤ P

(
TA < ∆−(1+ε/2)

)
+ P

(
Bk−1,1/∆1+ε/2 <

k − 1
∆1+ε

)
. (9)

The first summand in (9) is bounded by

P

(
TA < ∆−(1+ε/2)

)
= 1− (1−∆−(1+ε/2))∆ ≤ ∆−ε/2.

For the second summand in (9) we use Okamoto’s inequality (Okamoto, 1958),
which states that P(Bn,u ≤ ny) ≤ exp(−n(u− y)2/(2u(1− u))) for all y ≤ u ≤ 1/2.
For y := ∆−(1+ε) and u := ∆−(1+ε/2) we obtain, for ∆ sufficiently large,

P

(
Bk−1,1/∆1+ε/2 <

k − 1
∆1+ε

)
≤ exp

(
− (k − 1)

(
∆−(1+ε/2) −∆−(1+ε)

)2
2∆−(1+ε/2)

)

≤ exp

(
− k − 1

8∆1+ε/2

)

≤ exp

(
− k + 1

∆1+ε

∆ε/2

24

)

≤ exp

(
− ∆ε/2

24

)
≤ 24∆−ε/2,

where we used that (k+ 1)/∆1+ε ≥ 1. Note that for this estimate ∆ can be chosen
uniformly large for all ε ∈ [δ,∞), δ > 0. By symmetry we obtain the same bound
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for P(N2 < (n− `)/∆1+ε). The second summand in (8) we estimate with Corollary
3.2 for ∆ sufficiently large:

P

(
k−1∑

j=b(k−1)/∆1+εc+1

Xj +
∆∑
j=1

Zj +
n−∑̀

j=b(n−`)/∆1+εb+1

X ′j > (1 + ε) ln an

)

≤ P

(
k−1∑

j=b(k−1)/∆1+εc+1

Xj +
∆∑
j=1

Zj +
n−∑̀

j=b(n−`)/∆1+εc+1

X ′j − ln ∆4+2ε > 2ε ln ∆

)

≤ exp

(
− (2ε ln ∆− 7)2

2 ln ∆4+2ε + 6 + 2ε ln ∆

)

≤ exp

(
28ε

8 + 6ε
− 4ε2

9 + 6ε
ln ∆

)
≤ e5∆−ε

2/(3+2ε). (10)

Collecting the estimates we obtain P(Pk` ≥ (1 + ε) ln an) ≤ 200∆−ε
2/(3+2ε).

For the case ∆ ≤ k ≤ ∆1+ε and n− `+ 1 ≥ ∆1+ε we estimate

P(Pk` > (1 + ε) ln an)

≤ P

(
N2 <

n− `
∆1+ε

)

+ P

( b∆1+εc∑
j=1

Xj +
∆∑
j=1

Zj +
n−∑̀

j=b(n−`)/∆1+εc+1

X ′j > (1 + ε) ln an

)
,

and both summands can be estimated as in the previous case.
The same estimates apply to the cases k ≥ ∆1+ε and ∆ ≤ n− `+ 1 ≤ ∆1+ε as

well as ∆ ≤ k ≤ ∆1+ε and ∆ ≤ n − ` + 1 ≤ ∆1+ε. The remaining cases are where
either k < ∆ or n− `+ 1 < ∆. If k < ∆ and n− `+ 1 ≥ ∆1+ε then

P(Pk` > (1 + ε) ln an)

≤ P

(
N2 <

n− `
∆1+ε

)

+ P

(
k−1∑
j=1

Xj +
∆∑
j=1

Zj +
n−∑̀

j=b(n−`)/∆1+εc+1

X ′j > (1 + ε) ln an

)
,

where the first summand is bounded as before and the second one has the upper
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bound

P

(
k−1∑
j=1

Xj +
∆∑
j=1

Zj +
n−∑̀

j=b(n−`)/∆1+εc+1

X ′j − ln(k∆3+ε) > 2ε ln ∆

)

≤ exp

(
− (2ε ln ∆− 7)2

2 ln(k∆3+ε) + 6 + 2ε ln ∆

)
,

which leads to the bound given in (10) since k∆3+ε ≤ ∆4+2ε. For the case k ≤ ∆
and ∆ ≤ n− `+ 1 ≤ ∆1+ε we estimate

P(Pk` > (1 + ε) ln an) ≤ P

(
k−1∑
j=1

Xj +
∆∑
j=1

Zj +
b∆1+εc∑
j=1

X ′j > (1 + ε) ln an

)
,

and, for the case k ≤ ∆ and n− `+ 1 ≤ ∆,

P(Pk` > (1 + ε) ln an) ≤ P

(
k−1∑
j=1

Xj +
∆∑
j=1

Zj +
n−∑̀
j=1

X ′j > (1 + ε) ln an

)
,

and estimate as before. The remaining cases with n − ` + 1 ≤ ∆ are covered by
symmetry.

To show the second claim of the Theorem, EP pk` ∼ lnp an, we fix p ≥ 1 and
δ ∈ (0, 1). Then, by the first part, there is a C > 0 with P(Pk` ≥ (1 + ε) ln an) ≤
C∆−ε

2/(3+2ε) for all ∆ sufficiently large and all ε ≥ δ. We obtain

EP pk` = E

[
P pk`
(
1{Pk`≤(1+δ) ln an} + 1{Pk`>(1+δ) ln an}

)]
≤ (1 + δ)p lnp an +

∫ ∞
(1+δ)p lnp an

P(P pk` ≥ t) dt

≤ (1 + δ)p lnp an + C

∫ ∞
(1+δ)p lnp an

exp

(
− ε2

3 + 2ε
ln ∆

)
dt,

with ε = ε(t) = (t1/p/ ln an)− 1.
Note that for any convex function f : [t0,∞) → R, t0 ∈ R, differentiable in t0

with f ′(t0) > 0, we have∫ ∞
t0

exp(−f(t)) dt ≤ exp(−f(t0))
f ′(t0)

.

This follows estimating f(t) ≥ f(t0) + f ′(t0)(t− t0) for all t ≥ t0 and evaluating the
resulting integral.
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Now, the function f(t) = (ε2/(3 + 2ε)) ln ∆ with ε = ε(t) given above and
t0 = (1 + δ)p lnp an has the latter form. Hence an explicite calculation yields∫ ∞

(1+δ)p lnp an

exp

(
− ε2

3 + 2ε
ln ∆

)
dt ≤ exp(−f(t0))

f ′(t0)

=
p(1 + δ)p−1 lnp an

(6δ + 2δ2) ln ∆
∆−δ

2/(3+2δ)

= O

(
lnp−1 ∆

∆δ2/(3+2δ)

)
,

which gives a vanishing contribution as ∆→∞.
Hence we obtain

lim sup
n→∞

EP pk`
lnp an

≤ (1 + δ)p

for all δ > 0, hence lim supn→∞ EP
p
k`/ lnp an ≤ 1.

For the lower bound we choose c ∈ R. Then for all n sufficiently large such that
an > exp(c2) we have

EP pk`
lnp an

≥ 1
lnp an

E

[
1{(Pk`−ln an)/

√
ln an≥c}P

p
k`

]
≥

(
1 +

c√
ln an

)p
P

(
Pk` − ln an√

ln an
≥ c

)
→ 1− Φ(c),

as n → ∞, by Theorem 1.3, where Φ denotes the distribution function of the
standard normal distribution. With c→ −∞ we obtain lim infn→∞ EP

p
k`/ lnp an ≥

1.
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[6] Huddleston, S. and Mehlhorn, K. (1982) A new data structure for representing
sorted lists. Acta Inform. 17, 157–184.

[7] Louchard, G. (1987) Exact and asymptotic distributions in digital and binary
search trees. RAIRO Inform. Théor. Appl. 21, 479–495.
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