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DETECTION OF ABNORMAL BEHAVIOR VIA NONPARAMETRIC,
ESTIMATION OF THE SUPPORT*

LUC DEVROYEt AND GARY L. WISE$

Abstract. In this paper two problems are considered, both involving the nonparametric estimation of the
support of a random vector from a sequence of independent identically distributed observations. In the first
problem, after observing n independent random vectors with a common unknown distribution µ, we are given
one new measurement and we wish to know whether or not it belongs to the support of µ . In the second
problem, after observing the n independent random vectors with a common unknown distribution µ, we then
observe n additional independent random vectors with a common unknown distribution v. In this case we
wish to know whether or not the support of v is completely contained within the support of µ . Decision
schemes are presented and then convergence properties are established .

1. Introduction. A problem of increasing significance to -engineers concerns the
detection of abnormal or faulty behavior of a system, plant, or machine . We assume that
we have observed the system in normal operation and that we have taken measure-
ments of the normal behavior . A measurement is assumed to be an ~d -valued random
vector. All random vectors in this paper are defined on a probability space (fl, , P) .
The randomness may be due to measurement noise, parasitic effects, or random inputs .
Thus the measurements are given by X1 ,X2, . . . , X,, a sequence of ~d-valued random
vectors which we assume are independent with a common unknown probability
measure µ defined on the Borel sets of ~d.

Classically, the assumption is made that one has access at the present time to m
independent observations X i, X2, . . . , Xm with common probability measure v, and
the system is said to behave differently, or abnormally, if v ~ µ . To detect such a change
in distribution, several tests have been proposed (Kolmogorov [5], Smirnov [8], Cramer
[1], von Mises [9], Lehmann [6], Renyi [7], and Wald and Wolfowitz [10]) . For a survey
of tests of this type, we refer to the book of Hajek and Sidak [3, pp . 90-94] and the early
survey article of Darling [2] .

The first problem we treat in this paper is concerned with taking one new
observation. For economic reasons, lack of time, or practical limitations, only one new
observationX can be made and there is no hope to recover or approximate v as with the
large sample X i, X2, . . . XFt1 . Regardless of v, we say that the system behaves abnor-
mally if X S, the support of µ . In several practical applications, the complement S C of S
can be considered as a danger area because under normal behavior (with probability
measure µ) the probability that some of the Xi take values in SC is zero . We thus have
reduced the problem to one of estimating the support S from X1 , X2 , . . . , X, . This
problem is considered in the next section . Then in § 3 we introduce a counterexample to
illustrate the necessity .of certain conditions imposed in § 2 .

The second problem that we consider is concerned with taking n new measure-
ments which are independent with common unknown probability measure v . In this
case we assume that the system might have changed, but we are concerned with whether
or not the system might exhibit abnormal behavior . We assume that the system still
functions normally if the support of v is contained within S. This problem is treated in
§4 .
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2. Detection based on a single new observation . We assume that we have Qne new
observation X, and we want to know whether or not X belongs to S, the support of µ .
Therefore, we will estimate S from X1, X2, • • • , Xn , and base our decision upon this
estimate. The obvious estimate is

(1)

where pn is a number depending only upon n and A (x, a) is the closed sphere centered
at x with radius a'_ 0 given by

A (x, a) _ {y : y E
~d

and lix -- Y ll ` a},
where ii • ii denotes the L p (p ? 1) norm on ~d. The decision rule is simple :

Decide X S ifX Sn .

Decide X E S ifX E S, .

The probability of making an error, given X1 , X2 , • • • , Xn, is

Ln = P{X E SL1Sn (X1, X2, . . . , Xn}

= v(SLISn ) .

The detection procedure is said to be consistent if Ln A 0 in probability . It is
called strongly consistent if Ln - 0 with probability one (wp 1). In this section we give
two theorems; the first establishes consistency, and the second establishes strong
consistency.

THEOREM 1 . Let µ be any probability measure on the Bore! sets of ~d, let v be any
probability measure on the Bore! sets of ~d whose restriction to S is absolutely continuous
with respect to µ, and let the positive numbers Pn satisfy

n
( 2)

	

Pn 0

and

(3)

n
Then L n -~ 0 in probability.

Proof. Let M and a be positive numbers and let

Bn = [-M, M]d fl {x : µ (A(x, Pn))' apn} •

Let E and S be arbitrary positive numbers . Noting that

we have that

(4) P Ln?3E
1
v S(1B~ +P

	

v(dx)?E +P

	

v(dx)?e .{

	

}

	

(

	

n)
E

	

sn(ls~

	

Bn(lsn(1s

Now note that

1 v S(1B)~ ~1v{([-M,M]
d

} + 1

	

v(dx(

	

n

	

)
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8

	

E

	

E S (1Cn
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n
Sn = U A (X, Pn ),

i=1

n
npn-~0° .

Ln =

	

v(dx)+

	

v(dx),
sn ns c
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where

If M is sufficiently large, we have that
Cn ={x :lu(A(x, pn))<apn} .

1 v(S(1B)~ <S+1

	

v(dx) .
E

	

n
6 E Snc

Now we show that as n -* 00, the set Cn has µ-measure smaller than an arbitrary positive
number y if a is sufficiently small . Notice that, for K sufficiently large, we have that

µ (Cn) <= µ (Cn fl[-K, K]d) +y .
2

Let n' be such that for all n > n', p, 1 ; and assume that n > n' . Now find N points
x 1 , x2, , xN in [-K, K]d such that for every x in [-K, K]d, lix -x1 for some i .
Then we have that

Cn
<N

	

dx+yµ(dx)=

	

µ( )
-1 CnnA(x„1)

	

2

<Na+y
2

y

for a sufficiently small . Since v restricticted to S is absolutely continuous with respect to
µ, we know that we can pick y so small that µ (Cn ) < y implies that (1 /E) v (SC,) < 6/6 ;
and thus the first term in (4) can be made arbitrarily small if n > n' .

By the Lebesgue dominated convergence theorem, we have that

v(Tn fS')-+0 asp,,-*0,
where

T,,= U A (x, pn ),
xES

because S, the support of µ, is a closed set . (Recall that the support of µ is the set of all x
such that µ (A (x, e))> 0 for all e >0 ; equivalently, it is the smallest closed set with
µ-measure one.) Since X, E Swp 1, we have that

J

	

v(dx)

	

v(dx)=v(T,flSc)>0,
S,,(1S~

	

TflSC

and thus the second term in (4) goes to zero as n - 00 .
Next, we need only show that

PvBS~S~E<S( n n )

	

} 3

for n sufficiently large . By Markov's inequality, and writing I to denote the indicator



function, we have
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P{v(BS~S) 'e ~ 1E{v(BnS~Sn n

	

}-

	

n )}
E

n
=-E I {Bn ns}P I I (IIXt -X II > pn)I Xe

	

i=1

= 1E{I{B

	

- (~~A(X, ))] nnns} ~11'^'

	

pn

	

}
S

E[I{Bnns} exp (- nap)]e

1 exp -an d
(

	

pn)
S

n
-~ 0 . QED.

The strength of Theorem 1 is that it holds for all probability measures µ and a large
class of probability measures v. For instance, the condition of the theorem holds if both
µ and v are absolutely continuous with respect to Lebesgue measure .

Now we present a theorem which establishes the strong consistency of the
detection procedure .

THEOREM Z. Let µ be any probability measure on the Bore! sets of I1 d , let v be any
probability measure on the Bore! sets of ~d whose restriction to S is absolutely continuous
with respect to µ, and let the positive number n satisfy

n
pn -0

and
00

(5)

	

exp (-anpn) < oo for all a > 0 .
n=1

n
Then L-40 wp 1 .

Proof. Using the notation in the proof of Theorem 1, notice that

P UL >_ 3e ~ 1 v S ~ B~ +P U v Sn ~ S~ ' e( n

	

)

	

(

	

n)

	

~ (

	

)

	

]n?k

	

a

	

n?k

+P U [v(B n nsnsn)~e] .
n?k

The first term in the above upper bound is smaller than 8/3 as shown before . The second
term is upper bounded by

P U [v(Tn fl S~)? e] .n~k
Let

nk = min {r : r ? k and pr ? pn for all n ? k} .

~ 1E{Ins exp [-n(A(X,p,))]}
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Then we have that
k

P U [v(Tn (1 SC)? E] ~P{v(Tnk (1 S C )'_ E}~0,
n?k

by an argument as in the proof to Theorem 1 . Finally, by (5) and an inequality
developed in the proof to Theorem 1, we have that

P U [v(Bn n s n sn) >- E] <_ ~ P{v(Bn n s n Sn) ? E}
n~k

	

n~k

1

	

k
-exp (-anpn)---0 .

n?k E

Theorem 2 follows by the arbitrariness of e . Q.E.D .
Notice that condition (5) is satisfied if

d
	 nPn - oo .

log n

The converse of this statement is not always true ; however, the monotonicity of pn is
sufficient for the converse .

3. A counterexample. In the preceding section, the area controlled by the spheres
A(X1, p,) is, roughly speaking, proportional to npn. Condition (5) is natural because it
allows this area to grow in case S has a very large (or infinite) Lebesgue measure . What
puts a restriction on the detector is the condition that the restriction of v to S is
absolutely continuous with respect to µ . We now show that given any sequence {pn }
satisfying (2) there exist µ and v such that the procedure is not consistent . Thus adding
any condition on {pn } besides (2) will not enable us to remove the condition on µ and v.

Let pn -~ 0 and let f be a density function on Di d such that

n
n

	

f(x) dx - 0,
A(9,p n )
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where 0 denotes the origin . Let µ have density f and let v be atomic at the origin .
Clearly,

P{Ln =1} >_
(A(e.pn)) C

	 n	

SA(O,P,)f(x)

	 dx n
= exp

	

1 .
1- fA(e,pn) f(x) dx

To construct such a function f, let pn =1/n + supk >_ n pk, and let
00

i=1

where

A(e .pn)

pi - pi+1

2

,
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y i is a point in I~d whose first coordinate is p, + (p, - pi+1)/2 and all other coordinates are
zero and

-1

dx
_ 1

	

1
a

`
L

i 2 (i +1)
2

	

D,

Clearly, f is a density and

1

	

1

	

1 n
n

	

f(x)dx~n

	

2_ i+1 2- n -0A(e,p n )

	

t ni

	

(+1)

4. A detection problem. Assume that we now have two sequences,
X1 , X2, , Xn and Y1 , Yn , of independent Dr-valued random vectors. TheXi

have probability measure µ and the Y1 have probability measure v, both unknown. For
the sake of simplicity, we have assumed that the sequences are of equal length . The XI

again correspond to normal behavior, and we say that the Yt are abnormally distributed
if with positive probability Y 1 takes values outside S, the support of µ ; that is, if
v (S') > 0. Notice that this problem is quite different from the one of the detection of a
change in distribution function (the problem of detecting whether v = µ or not) . We
propose the following detection procedure. Let us construct Sn as in (1) from the X 1 .
Define

Zi = I{Y S,},

	

iin,< <
and let

n
Nn = ) ZI

i=1

be the number of Y1 falling outside Sn . We decide that v (Sc) = 0 if Nn < kn and that
v(S C) > 0 is Nn ? kn, where {kn } is a sequence of integers satisfying

n
kn ~ao

and
k n n

n

Formally, we put

Dn =1 ifNn ?kn,

Dn = 0 1f Nn < kn .

The criteria of the goodness of the detection procedure now are

L n = P{Dn =1} under the hypothesis that v(SC) = 0

and
I,ns = P{Dn = 0} under the hypothesis that v (S c ) = 6> 0 .

In the remainder of this section we introduce conditions insuring that Ln and £n,3 tend
to zero as n grows large .
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n

	

A

THEOREM 3 . If Ln -~ 0 in probability, then L n,5 -~ 0 .
Proof. Notice that

E{NnlX1,x2,. . ,Xn}

	

c=

	

v(dx) = v(Sc )+v(Sn f S)-v(Sn fl S c )
n

	

Js~
n

>_s - v(Sn f IS c )

>g-Ln .

Let n' be such that for all n > n', k n/ n <6/3, and consider n > n' . Then we have that

P{Dn = 0} = P{Nn <k}}

=E P
Nn -E{NnlXi,

X2, . .
. , Xn}

n

kn - E{NnlX1,X2, . . .,Xn}
<

	

IX1, X2, . . . , Xn
n

<

	

>

	

-nIX1,, •, Xn}<-S
-P{Ln -S/3}+E P

NnE{N	X2	. .

n 3

Notice that, conditioned on X1 , X2, • • • , Xn, the Z~ are independent identically dis-
tributed {0,1}-valued random variables . Using the inequality of Hoeffding [4], we get
that

2 n
P{D= 0}P{Ln? S/3}+ exp-2n 8 ]_-o . Q.E.D .n

	

3

COROLLARY. Assume that (2) and (3) hold and that µ and v are probability
measures on the Borel sets of ~d such that the restriction of v to S is absolutely continuous

with respect to µ. If p (5 C ) = 6>0, then Ln,3
-

0 .
n

THEOREM 4. I f kn -~ 00, Supnpn < 00,

2dnpn
	-

	

koo and
n

>_ b > 0
log n

	

npn

	

'

if v has compact support completely contained in S, the support of µ, and if there exists a
finite constant K with

(6)

	

v(A(x,a))~Kµ(A(x,a)) forallxES and a>0,,

n
then Ln -> 0 .

Proof. PickM so that v([-M, M]d) = 1 and define the sets Bn and Cn by

Bn = [-M, M]d (l {x : µ (A (x, pn))' (~Pn2d },

Cn = [-M, M]d fl {x : µ(A(x, pn)) < ~Pnd },

where f3 is a positive constant .
Let x 1 ,

	

, xmn be picked such that for all x in the support of v, lix - xll p,/ 2 for
some i. Let y be a constant depending upon p, M, and d, such that mn = [1+ (y/pn )]d

X1, X2, . . . Xn



Then we have that

(7)
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U(SBn) U(Cn )

m n
<

	

n_

	

v(cA(x t , 1n
2i=1

mn
< K ~ µ CnA xi, Pn .

i=1

	

2

Since x E CA (x, p/2) implies that CA(x,, p/2) c A (x, p a ), it follows by the definition
of Cn that (7) is further upper bounded by

d
1 + y K$pnd

pn

which by choice of

	 b
/3<

3K2d-1 d

	

d
(-y +supn P )

is smaller than bpn/3 . Now,

E{NnIX1, . .
.	 ,X} - v(SS)

n

C Y (SB n) + U (SnSBn ),

and

P{Dn =1} = P{Nn ' kn }

<
E P

•Nn E{Nn1X1, . . . , Xn},
! _p(sB c )_p(s csB)Jxl . . . xn=

	

=

	

nnn ,

	

,n
n

	

n

C
E P

Nn _E{Nn ~Xl, . . . , Xn}> kn _ 2b d
=

	

--

	

pnlXl , . . .,Xn
n

	

n 3

c

	

~ bPn+P v(SnSBn)
- 35

<

	

Nn -E{NnIXl ~ . . . ~ Xn } > by n
~E P

	

n

	

~ 3

3 2d

+ b d ~exp (-" f3np n )
Pn

d 2
< ex -2n bP n + 3 ex - n 2d

p

	

3

	

b d p( aPn)
Pn

Here we used Hoeflding's inequality [4] and an inequality from the proof of Theorem 1 .
The first term on the right hand side of the above bound obviously goes to zero as n -~ 00 .

To see that the second term does also, let

2d
np n

log n = g(n),

Xi,' •,Xn
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and notice that

1
ex - n2d exp log n

21o

	

'3g(n) np (	Pn ) =	ga
d

	

112

	

Q.E .D .)to(g(ngn)pn

COROLLARY. Let kn = bnpn for some b >0, let pn -0, and let npnd/1og n oo. If
N n

condition (6) holds and if v has compact support completely contained in S, then L n - 0 .
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