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Abstract: In data analytic applications of density estimation one is usually interested in estimating 
the density over its support. However, common estimators such as the basic kernel estimator use a 
single smoothing parameter over the whole of the support. While this will be adequate for some 
densities there will be other densities that will be very difficult to estimate using this approach. 
The purpose of this article is to quantify how easy a particular density is to estimate using a global 
smoothing parameter. By considering the asymptotic expected L, error we obtain a scale invariant 
functional that is useful for measuring degree of estimation difficulty. Implications for the 
transformation kernel density estimators, which attempt to overcome the inadequacy of the basic 
kernel estimator, are also discussed. 

Keywords: Kernel density estimator; L, loss; Mean integrated absolute error; Nonparametric 
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1. Introduction 

Suppose that X,, . . . , X, is a real-valued random sample with unknown proba- 
bility density function f. In data analytic applications it is desirable to construct 
an estimate of f over its support. The simplest and best understood way of 
doing this is via the kernel estimator 

f”(x; h) =n-lk K,(x -xi). (I4 
i=l 

Here K,(u) = K(u/h)/h and the kernel K is a function which integrates to 
one. However, throughout this article we will take K to be a symmetric density 
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having finite second moment. This ensures that (1.1) is also a density. The 
smoothing parameter h > 0 is called the window width or bandwidth. Because h 
is fixed across the range of the estimation (1.1) will be called a global window 
width kernel estimator. 

Kernel density estimators are a now becoming a popular tool for detecting 
and displaying distributional structure in populations and ongoing research, 
mainly concerned with the data-driven choice of the window width h, has made 
this methodology increasingly more practical (see e.g. Park and Marron, 1990). 
There are also many compelling reasons for using kernel estimators rather than 
the classical histogram density estimator. Several examples of practical kernel 
density estimation are given in Silverman (1986) and Izenman (1991). However, 
one problem which is very apparent in some of these examples is that certain 
density shapes can be difficult to estimate using (1.1). This notion is conveyed in 
Figure 1 where the underlying density is a strongly skewed density (density (n) 
as defined in Section 2). The underlying density corresponds to the dotted curve, 
while the three solid curves represent kernel ensity estimates based on a 
sample of size y1 = 1000 and window widths o fd 0.05, 0.15 and 0.45. The kernel 
function is the standard normal density. None of the estimates is close to the 
true density. The one with the smallest window width estimates the true density 
well near the peak, but perform terribly in the tails. The other estimates smooth 
the tail region much better, but severely underestimate the peak. It is clear that 

r 

Fig. 1. Kernel density estimates of the Strongly Skewed Density based on a sample of size 
n = 1000 and with window widths h = 0.05, h = 0.15 and h = 0.45. The kernel is the standard 

normal density. The dashed line is the true density. 
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(b) Standard Normal Density (n) Strongly Skewed Density 
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(d) Bimodai Density 

Fig. 2. Kernel density estimates using the L, optimal window width for II = 1000 based on the data 
set corresponding to the median of L, errors from a simulation having 500 replications. The solid 

line is the density estimate. The dashed line is the true density. 

this density is very difficult to estimate using (1.1) since no choice of h will give 
a satisfactory estimate. 

This point can be made more objectively through Figure 2. Each of these 
figures depict density estimates (solid line) based on samples of size n = 1000, 
but with h chosen to minimise the area, or L, distance, between (1.1) and the 
true density (dotted line). These densities are (b), Cm), (n) and (d) as defined 
and discussed in Section 2. In an attempt to have each these figures represent a 
typical situation the sample used in each case was chosen to be the one that 
gave the median minimum area out of 500 replications. By looking at pictures 
like Figure 1 one gets the impression that smooth ‘bell-shaped’ densities, close 
to normality say, should be estimated fairly well by (1.1). On the other hand, we 
should expect (1.1) to perform less well if the target density is more complex in 
the sense that it has features such as high skewness, high kurtosis, multiple 
modes or discontinuous low-order derivatives. 

This lack of flexibility of the kernel estimator is also shared by other delta 
sequence estimators such as the histogram and orthogonal series estimators 
since they are each based on local averaging with a global smoothing parameter. 
However, we will work with the kernel estimator because of its simplicity. 

The purpose of this article is to develop a better understanding for when the 
global window width kernel estimate can be expected to perform well in 
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practice. We shall show that theory for the L, norm provides a particularly 
appealing way of measuring the complexity of a particular density in terms of 
how difficult it is to estimate using a global window width kernel estimator. The 
result of our L, analysis is a positive valued functional Q(f) that depends only 
on the shape of f which can be thought of as measuring the degree of difficulty 
of estimating f via (1.1). We argue that measures of degree of difficulty based 
on the more popular and tractable L, loss are not as appealing since they 
depend on scale adjustment. These discussions are given in Section 2. 

If a particular density is difficult to estimate then one way to overcome this 
problem is to transform the data so that the density of the transformed data is 
easy to estimate. The kernel estimator can then be applied to the transformed 
data and the density estimator of the original data can be obtained by back 
transformation. This procedure was first discussed in Devroye and Gyijrfi (1985, 
Chapter 9>, Silverman (1986, p. 281, but for more recent discussion see Wand, 
Marron and Ruppert (1991) and Ruppert and Wand (1991) where the transfor- 
mation is chosen from an appropriate parametric family. In Section 3 we show 
how the Q(f) functional can be used to assess the flexibility of parametric 
families of transformations by measuring the extent to which they can lower the 
degree of difficulty of the density that is estimated by (1.1). 

2. Measuring ease of estimation 

As seen in Figure 1 it is clear that certain densities are easier to estimate than 
others. We now address the question as to whether there is a natural formal way 
of ordering probability densities according to their estimation complexity. 

The traditional way of studying the global performance of kernel density 
estimators is with the respect to the mean integrated squared error (MISE) 
given by 

MISE(h) =E/{fjx; h) -f(~,)’ dx. 

Under the assumptions that f has a continuous, square integrable second 
derivative we have as II --) 03, 

/iif, MISE(h) - (5/4)G(f)~f(K)n-~‘? 

where A(K) = {(/K(x)~ dx>2/x2K(x> dX}‘/’ and 

G(f) = (/f”(~)~ dx)“‘. 

It follows that densities with smaller values of the functional G(f) will be easier 
to estimate in terms of asymptotic MISE. However, G(f) is not scale-invariant 
so scale must be fixed in some way before densities can be compared through 
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this measure. Terell (1990) considers several scale measurements and derives 
minimum values of G(f) when the scale is fixed. In the case of standard 
deviation, this is equivalent to replacing G(f) by ~(f)G(f> where a(f) is the 
standard deviation of f. Terrell’s results show that the lowest possible value of 
a(f)G(f) is i3.5115 and that this is achieved for the Beta(4, 4) density. However, 
the fact that certain scale measurements are more appropriate than others for a 
particular density makes it desirable to obtain a functional for measuring ease of 
estimation that is not dependent on the choice of scale measurement. This goal 
can be achieved by working with the L, norm as we will now show. 

The expected L, loss or mean integrated absolute error (MIAE) of fi - ; h) is 

MIAE(h) =E/l{(x; h) -f(x) dx. 

The L, error / I fix; h) -f(x) I dx has the simple interpretation of being the 
area between the two curves. In addition it is invariant under monotone 
transformations of the coordinate axes which makes it an appealing quantity for 
measuring the performance of transformation kernel density estimators (see 
Section 3). See Devroye and Gyiirfi (1985) for a detailed exposition of L, loss 
for the density estimation problem. 

Consider the class of densities possessing two continuous, integrable deriva- 
tives and a finite moment of order 1 + E for some E > 0. Then Theorem 5.1 of 
Devroye and Gyiirfi (1985, p. 78) and Theorem 2.1 of Hall and Wand (1988) 
imply that 

jnf, MIAE(h) N (l/2)“5Q(f)A(K)n-2’5, 

where 

(2.1) 

u5f “( x) 

f(X)“* 
dx. (2.2) 

The function $ is given by G(t) = E I N - t I where N is a standard normal 
random variable. 

The functional Q(f > is both scale and location invariant and returns a 
positive number depending only on the shape of f. To see this, suppose that X 
has density f and Y = (X - b)/a is a linear transformation of X having density 
g, where a and b are real constants. Then, noting that g(x) = ( a I f(ux + b) we 
have 

Q(g) = ;rf, u-‘/ ) a p*f(ax + kJy*l+b 
u5 1 a 1 “f “(ax + b) 

I a I 1’2f(ux + by2 
dx 

= 

I 
dy = Q(f ). 

lal 
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Because of this invariance and (2.1), Q(f) p rovides a very appealing measure of 
how well f can be estimated. Of course, it is desirable to measure the 
complexity of all probability densities, not just those satisfying the above 
regularity conditions, so we should extend the definition of Q(f) to accommo- 
date all f. This can be done in the same way as was done by Devroye and Gyorfi 
(1985) for their functional B(f) by setting 

Q(f) = mf, lim sup u-i 
a-0 

(2.3) 

where * denotes ordinary convolution and cp is a compactly supported infinitely 
differentiable density and cp,(x) = q(x/a)/a. The function cp is sometimes 
called a mollifier. This definition can be shown to be equivalent to (2.2) for 
densities satisfying the above regularity conditions and to also be independent of 
the choice of the mollifier. Theorem 1 of Devroye and Wand (1993) shows that 
the following extension of (2.11, 

lim n2j5 fsf, MIAE(h) = (1/2)1’5Q(f)A(K), 
n--tm P-4) 

holds for all densities that can be written as a finite mixture of unimodal 
densities, or that have a finite moment of order 1 + E for some E > 0. The limit 
in (2.4) also caters for cases where Q(f) = cc which indicates that the best 
possible rate of convergence of (1.1) for such densities is slower than n-*15. 
Such a situation arises if either lim SUP,,~/ ( (f * cpg)(x) ) dx = 03 or 
/f’/*(x) dx = ~0. For example, the former of these conditions is satisfied by the 
uniform density or any other density with a simple discontinuity, and the latter 
by the Cauchy density and other densities with a heavier tail. 

The functional Q(f) is a theoretically pleasing alternative to L,-based 
measures of complexity. Of course, its form is not as simple as G(f), yet for 
many important families of densities it is not difficult to calculate Q(f) numeri- 
cally. 

We computed values of Q(f) for a collection of common densities and some 
of the normal mixture densities used as examples in Marron and Wand (1992). 
The values are shown with plots of each density in Figure 3. Most of the 
densities are either defined in Marron and Wand, or have well known defini- 
tions. The extreme value density has formula f(x) = eX ePe” while the lognor- 
ma1 density is that of an exponentiated standard normal random variable. For 
most of the densities in Figure 3 Q(f) was computed using trapezoidal integra- 
tion with successive doubling of the integration mesh until convergence was 
obtained. This also involved the truncation of the tails of the density which was 
not a problem for the light-tailed densities. The exceptions were the heavy-tailed 
Student’s t, and lognormal densities for which Q(f) was computed by simula- 
tion with 5 x 10’ random pairs. The values of Q(f) for the Laplace and 
isosceles triangular density were computed using analytic arguments as in 
Devroye and Gyijrfi (1985, Chapter 5). 
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Out of all of the common density families it appears that the symmetric 
bell-shaped Beta densities give the lowest value of Q(f) and within this family 
the parameters (5.3, 5.3) are approximately those for which Q(f) is lowest with 

ARE = 0.49 

ARE = 0.29 

Q(f)= 4.60 
ARE=011 

Q(f)= 4.35 

ARE = 0.13 

Fig. 3. Plots of 15 densities along with corresponding values of QC 
the Beta(5.3, 5.3) density. 

‘) and ARE(g, f) where g is 
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a value of about 1.92. The Gaussian density is not far behind with Q(f) = 1.99. 
It is interesting to see from Figure 3 how Q(f) is affected by features such as 
skewness, kurtosis, “corners” and discontinuities. 

An appropriate measure of relative ease of estimation is the asymptotic 
relative efficiency of g compared to f given by 

ARE(g> f) = {Q(s>/Q(f)}“” 
which, in view of (2.1) has a simple equivalent sample size interpretation. For 
example, if ARE(g, f).= 0.25 then only a quarter as many observations are 
required to achieve a certain minimum asymptotic MIAE when estimating g 
than are needed for estimating f with the same precision. In Figure 3 we also 
include values of ARE of the Beta(5.3, 5.3) density compared to each other 
density. 

It is particularly interesting to note how high Q(f) is for the Kurtotic Density 
cm), the Strongly Skewed Density (n) and the Lognormal Density (0) and is even 
higher than for the Claw Density (1). There is definitely a high price to pay for 
estimating heavily skewed or kurtotic densities, with these examples showing a 
six to ten fold increase in asymptotically equivalent sample size compared to the 
Gaussian density. 

Another interesting feature of the results in Figure 3 is that the Separated 
Bimodal Density (h) is more difficult to estimate than the related Bimodal 
Density (d). The separation of the modes means that the estimation of (h) 
should be roughly equivalent to estimating two Gaussian peaks, although with 
just one data set. Thus, from a sample size point of view we would expect it to 
be about twice as difficult to estimate (h) than (b), and density (dl to be 
somewhere intermediate between the two. The effect of several modes on the 
functional Q can be seen more clearly by taking f to be a twice continuously 
differentiable density having support on [O,l] (such as one of the smooth Beta 
densities, for example). Consider the m-modal density based on f and given by 

f&)=m-‘Ef(x-2i) 
i=l 

that is made up of m juxtaposed resealed versions of f. It is a trivial exercise to 
show that 

Q(f,) = m2'5Q(f) 

which implies that 

A=( f, f,) = l/m. 

Thus, unsurprisingly, m times as much data are needed to estimate m similar 
modes using the kernel estimator than just one such mode. Devroye and Gyijrfi 
(1985, p. 111) derive an analogous result for their functional B*(f). 

One could also compute the L,-based measure a(f>G(f> for the densities in 
Figure 3. However, because of the inappropriateness of standard deviation for 
scale adjustment of many of these densities the results would tend to be 
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misleading. This problem is most easily seen by considering the separated 
bimodal density (h). It is easy to see that the value of a(f) can be made 
arbitrarily large by moving the modes of the mixture sufficiently far apart. This 
means that o(f>G(f) could be made to equal any large number by increasing 
the separation of the modes, even though the degree of estimation difficulty of 
the density remains the same. Similar comments apply to other common scale 
measures such as the interquartile range. On the other hand, Q(f) would hardly 
change from the value of 2.59, no matter how much the modes are separated. 
The inappropriateness of standard deviation also applies to other densities 
exhibiting a departure from normality, such as heavy skewness and kurtosis. 

An intriguing question is: What is the lowest possible value of Q<f> and for 
which density is the minimum attained? An answer to this would tell us which 
density is easiest to estimate in terms of asymptotic L, error and at the same 
time provide a sharp universal lower bound for this error in the sense that for all 
fog, the class of all probability densities, 

lim inf n2/5 iif, MIAE(h) 2 (1/2)““A(K) ,Ii Q(f) 
n-m 

and this bound is obtainable for some f~s. Furthermore, we have from 
Theorem 5.2 of Devroye and Gyorfi (1985, p. 79) that for all non-negative 
kernels K, A(K) has minimum value (9/125)‘/5 when K is the Bartlett- 
Epanechnikov kernel K(x) = (3/4)(1 -x2), I x I I 1. This fact leads to the lower 
bound 

lim inf rz215 fr~f, MIAE(h) 2 (9/250)1’5 in& Q(f) (2.5) n-m 

for all non-negative kernels. Results of Devroye and Gyorfi (1985, pp. 78-79) 
show that for all densities f 

V*(f) s Q(f) ~C,B*(f) 
where C, = 1.18 and C, = 1.61 are universal constants satisfying 
and 

(2.6) 
c,/c, = 1.34 

In their Theorem 5.3 they also show that B*(f) is minimal when f is the 
Isosceles Triangular Density. On face value, this fact combined with (2.6) 
suggests that Q(f) may be minimised when f is the isosceles triangular, 
however, as shown in Figure 3, this is not the case and in fact for this density 
Q(f) and its upper bound CUB *(f> can be shown to coincide. A consequence 
of the minimum value of B *(f> and (2.6) is that inf, E ,Q<f> 2 1.708 for all f, 
yet inspection of Figure 3 suggests that this bound is far from sharp. It is 
possible to treat the minimisation of Q(f) as a variational calculus problem. 
However, the Euler-Lagrange equation is highly non-linear and does not 
appear to have an analytic solution. The numerical solution is also an open 
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problem. At this stage all we can do is speculate that inff,,Q(f> is approxi- 
mately 1.9 and that the easiest density to estimate is bellshaped and close to the 
Beta(5, 5) density. If this speculation is proven to be true then from (2.5) we 
would get that all non-negative kernel estimators can have an MIAE rate of 
convergence no faster than about 0.98n-2/5 which is slightly higher than the 
existing theoretical lower bound of 0.87~~‘~ given in Theorem 5.2 of Devroye 
and Gyiirfi (1985, p. 79). 

3. Parametric transformation kernel estimators 

A simple proposal for increasing the flexibility of the kernel density estimator is 
the transformation kernel estimator introduced by Devroye and Gyiirfi (1985, 
Chapter 9) and Silverman (1986). Wand, Marron and Ruppert (1991) and 
Ruppert and Wand (1991) recently investigated choosing the transformation 
from an appropriate parametric family. Formally, let {TA: A E A) be a parametric 
family of real-valued, increasing transformations on the support of f that 
includes the identity transformation. Smoothness assumptions such as the differ- 
entiability of Th and its inverse are usually required. For a particular choice of A 
we obtain the transformed sample Yi, . . . , Y, where Y = TA(Xi). The density of 
the transformed sample is 

g(x; A) =~{T,-‘(~)}(T,-‘)‘(~) 

which may be estimated by the kernel estimator (1.1) applied to Y,, . . . , Y,: 

&; A, h) =11-l i K& - lg. 
i=l 

Then our estimate of f is the inverse transform 

The transformation invariance property of the L, metric works to our advantage 
here since 

/lSix;~,h)-f(x)Idx=jIg^(x;A,h)-g(x)ldx 

so that for finite Q(g( .; A)), 

(3.1) 

inf E 
h>O / 

1 fix; A, h) -f(x) 1 dx - (1/2)“5Q(g( .; A))A(K)nP215. (3.2) 

Therefore, the transformation kernel estimator inherits the L, performance of 
the kernel estimate of g(* ; A). Clearly A should be chosen to minimise Q(g( * A)) 
if L, minimisation is the goal. 
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Let 37 be the collection of all densities g(x; A), and define 

inf AEA Q(sC; A)) 5’2 ARE(~?, f) = iyf ARE(g(*; A), f) = 1 Q(f) ’ 
Then the minimum asymptotic MIAE is the same whether we use IZ observa- 
tions and estimate f directly or whether we use ARE(s, f>n observations and 
estimate f using the transformation kernel estimator with the optimal transfor- 
mation from { Th: A E A}. 

We shall illustrate this with two examples. Firstly, suppose f is the lognormal 
density for which Q(f) = 4.58 and that the family of transformations is the 
Box-Cox family 

T,(x) = 
(2 - 1)/A, A # 0 

ln(x>, A =O. 

Then the value of A that minimises Q(g( .; A)) is A = 0 for which the density 
g( a; 0) is the Gaussian density having Q(g( .; 0)) = 1.99. Therefore 

ARE@?‘, f) = 0.12 

which indicates that considerable gains can be made by the transformation 
kernel estimator in this case. A second example comes from the kurtosis-reduc- 
ing family of transformations proposed by Ruppert and Wand (1992) given by 
(with A = ((.w, a>> 

T,(x) = ax + (1 - c~)(Za)“*rr{@(x/cr) - +}. (3.3) 

This family was shown by these authors to allow very good estimation of 
approximately symmetric kurtotic densites such as the Kurtotic Density (m) that 
has Q(f) = 4.20. Searching over a grid of (cu,a) values with each parameter 

(a) Skewed Lognormal Example (b) Kurtotic Normal Mixture Example 

-2 -1 0 1 2 3 4 -3 -2 -1 

Fig. 4. Plots of densities corresponding to (a> the lognormal example and (b) the kurtotic normal 
mixture example. Broken lines show the original density and solid lines show the optimally 

transformed density. All densities have been scaled to have unit variance. 
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ranging over IO.01, 0.02, 0.03,. . . } it was found that the value of A minimising 
Q(g(*; A)) was A = (0.17, 0.10) and the corresponding value of Q(g(*; 0.17, 
1.10)) is 2.05. This relatively low value of Q indicates that it is possible to get 
high quality estimation of (m) by using family (3.3). From this we obtain the 
approximation 

ARE(??, f) = 0.17 

which, once again, represents a considerable improvement through the use of 
transformation strategies. We also plotted the densities f and corresponding 
optimal g( 0; A) in Figures 4a and 4b. All densities have been scaled to have unit 
variance. Further appreciation of the possible improvements due to using the 
parametric transformation kernel estimator can be obtained by inspection of 
Figure 3 of Wand et al. (1992) and Figure 3b of Ruppert and Wand (1992) which 
respresent average case estimates of each of the densities in the above example 
using the transformation kernel estimator and data-driven selection of the 
parameters when n = 200. 
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