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DISTRIBUTION-FREE CONSISTENCY RESULTS IN
NONPARAMETRIC DISCRIMINATION AND REGRESSION

FUNCTION ESTIMATION'

BY Luc P . DEVROYE AND T . J. WAGNER

McGill University and University of Texas, Austin
Let (X, Y) be an Rd X R-valued random vector and let (X 1, Y1 ), ..•,

(X,,, Y„) be a random sample drawn from its distribution . We study the
consistency properties of the kernel estimate m(x) of the regression function
m(x) = E { Y X = x} that is defined by

m(x) = ~ i-1 Y,k((X, - x)/h)/7 . n~1k((Xi - x)/h,?)

where k is a bounded nonnegative function on Rd with compact support and
(h,? ) is a sequence of positive numbers satisfying h„ --~,,0, nh,'-noo . It is shown
that E{ f I m„ (x) - m(x)rµ(dx)) --~,,0 whenever E(I YAP) < x (p > 1) . No
other restrictions are placed on the distribution of (X, Y) . The result is applied
to verify the Bayes risk consistency of the corresponding discrimination rules .

1 . Introduction and summary. In this paper we present consistency results for
the nonparametric regression function estimation problem. Assume that (X, Y),
(X1 , Y1), . • • , (Xn, Yn) are independent identically distributed Rd x R-valued ran-
dom vectors with E { I Y I} C oo . The purpose is to estimate the regression function

m(x) = E{YIX = x}

from the data, (X1, Y1 ), • • • , (X,, Yn ). The estimate studied here is the kernel
estimate

first proposed by Watson (1964) and Nadaraya (1964) . In (1) k is a nonnegative
function on R" and {h}n is a sequence of positive numbers . The pointwise con-
sistency of (1) is discussed by Watson (1964), Nadaraya (1964, 1965), Rosenblatt
(1969), Schuster (1972), Greblicki (1974) and Noda (1976) . The uniform con-
sistency is treated in the papers by Nadaraya (1965, 1970), Greblicki (1974) and
Devroye (1978a) .
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(2)

(a)

In this note we are interested in the convergence to 0 of

where µ is the probability measure of X .

THEOREM 1. If

(3)

	

E{I YIp} <°°

	

p>1,

(s)

and if k satisfies

= E(fm,(x) - m(x)I"p.(dx)),

hn -~nO,

nhn ~n ~

(i) k is a nonnegative function on Rd bounded by k * C oo ;

(6)

	

(ii) k has compact support A ;

(iii) k > f3IB for some a > 0 and some closed sphere B
centered at the origin and having positive radius (I is the
indicator function),

then J,,,, -~ n0.

Notice that no conditions whatever are put on the underlying distribution of
(X, Y) except for the necessary condition E { I Y F°} C oo . Recently, Stone (1977)
showed that the nearest neighbor regression function estimates also have J,,,, -n0
for all possible distributions of (X, Y) . (For other consistency properties, see
Royal! (1966), Cover (1968), and Devroye (1978b .) This same property is also
shared by some regression function estimates that are based upon the partitioning
of Rd into blocks (Gordon and Olshen (1978), see also Mahalanobis (1961),
Parthasarathy and Bhattacharya (1961), Anderson (1966)) .

2 . Development. The proof of Theorem 1 is based on the inequalities devel-
oped in Lemmas 1 and 2. In (1) and subsequent expressions, we arbitrarily define
0/0 to be 0.

LENn~tn 1 . Let k be a function on R" satisfying (6). Then there exists a constant
0 < y < o0 only depending upon k such that for all z E Rd, all r > 0 and all
probability measures µ on the Borel sets of UBd,

k((z - x)/r)
f Ik(( .v - x)/r)) µ~~, ~ Y

PROOF OF LEMMA 1 . We define the set a + bC, a E Rd, b E R, C C Rd by
{xlx = a + by, y E C) . We will use the symbols k*, /3, A, B defined in (6) . The
sphere B has a positive radius p > 0.
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First we find a finite coyer {A1 , . • • , AN} of A by translates of B/2. Because
this is a cover we have

k((z - x)/r) ~ k`Is-rA(x) < ~N ik*IZ-rAi (x) •
Further, for every x E z - rA;, z - rA; C x + rB. Thus,

jk((y - x)/r)µ(dy) > aµ(x + rB) > /3µ(z - rA;)

for such x. Consequently,

	k((z -x)/r)	
µ~dx~ < ~N ~

k*µ(z - rA;) - Nk*/~3,
Ik((Y - x)/r)µ01')

	

/3µ(z - rA1 )

independently of z, r and µ .

LEhn~rn 2. Let k be a function satisfying (6), and let (X, Y), (Xl, Y1 ), •
(X„, Y„) be a sequence of independent, identically distributed random vectors from
R'' X R where X has probability measure µ.
For allr>Oandalln>1,

(8)

	

E{iI Y,Ik((X; - X)/r)/ik((X; - X)/r)} < AYE{IYI)
where y is the constant of Lemma 1 .

PROOF OF LEMMA 2. We need only consider E { I Y I} <00. We assume that
n > 8 since (8) is clearly satisfied for n < 7 because y in Lemma 1 is greater than
1 . Let

N(x) _ ~~_Zk((X, - x)/r)

so that N1(x) E{N(x)} _ (n - 1)jk((y - x)/r)µ(dy). Noting that Var {N(x))
~ (n - 1)k*jk((y - x)/r)µ(dy), we have
(9)

	

P{1V(x) < 1V1 (x)/2} = P(N(x) - N1(x) < -N 1(x)/2}

< min{1, 4k*/N,(x)},

by Chebyshev's inequality. Since N1(X1) = E{N(X1)/Xl}, we rewrite (8) as
~i- 1E{I YIk((X - X;)/r)/ (k((X, - X,)/r) + k((X - X;)/r))}

= nE { J YIk((X - X,)/r)/ ( 2k((x, - X1)/r) + k((X - Xi)/r))}

< nE{IYIk((X - X1)/r)/ (N1(X1)/2 + k((X - X1)/r))}

+ nE { ~ YII[N(x 1)<N 1(x1 )/2; k((x_xi )/,),o] },

The first term in the last expression is upper bounded by
nE{IYImui{1, 2k((X - X1)/r)/N1(X,)}}

= nE{IYIE(min{1, 2k((X - Xi)/r)/Nl(Xi)}IX}}

< nE{IYIsupZE{min(1, 2k((z - X1)/r)/Nl(Xl))}}

nE{I~'I}SUPzf mint!
2k((z-x)/r) l	 N(x)	
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'P{N(Xi) < N i(Xi)/2IX1 )

s
~ nE {('Y'IA(

X
r

	 Xl

	

(
1 N(X)}}

	 ,

nE i Y
l
min

4k*1,,((X - X,)/r) 1
N1(X1)<

< nE{I YI }SUPZf minS 1 4k*IA((z - x)/r)
N1 (x)

where we used (9) and the previous argument . Combining both inequalities with
Lemma 1, we upper bound the left-hand-side of (8) by :

6 n n 1 YE{IYI) < AYE{IYI} •

COROLLARY. By Jensen's inequality, we have for all p > 1,

E{{E"-iIYIk((X; - X)/r)/1k((X; -

< E{ -i I Y;Vk((X~ - X)/r)/k((X,; - X)/r)} < AYE{ YIp} •

The constant y > 0 is a covering constant because it is proportional to the
number of spheres B/2 ngeded to cover a compact set A . In the next lemma
another facet of the covering problem is used .

LEw~n 3. Let k be a nonnegative function on Wd satisfying (6) (iii) . If (5) holds,
then

P { n f k((Y - X )/hn)l.~(dy) <c) -nO

for all c > 0 and all probability measures µ for X.

PROOF OF LEMMA 3. Since k > f3IB for some f > 0 and some closed sphere B
centered at the origin with radius p > 0, we have for x E Rd,

n fk((Y - x)/hn)IL(dY) > nRl~(x + h„B).

A sphere of radius r can be covered by max(4, 4dr/s)d closed spheres of radius
s/2 . To see this, construct a set C of points a, = is/d, i = 0, ±1, ± 2, • • • , with
Ial < r. Add to C the end points - r and + r . The grid Cd has at most
(2 + 2dr/s)d < max(4, 4dr/s)d points. We show that the spheres with radius s/2
centered at the points in Cd cover the sphere S(0, r) centered at 0 with radius r . For
each x E S(0, r) we have II x - all < ~a . is/2d = s/2 for some a E Cd.
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Find r so large that 1 - µ(S(0, r)) <e. If S1 , S2,

	

are the spheres of radius
phn/2 covering S(0, r), then x E S, implies S, c x + hn B . Consequently,

P{nlk((Y - X)/hn)IL(dY) <c}

•

	

P{n/3µ(X + h„B) <c}

•

	

P {X ~ S(0, r)} + P {X E S(0, r) ; nf3µ(X + h„B) <c}

<e+E;P{X ES;;nf3µ(X+h„B)<c}

•

	

E + ~l : P{xE5)<C/pfP{X E S)

<E + 4dC/i(in + (4 dr/ph„) c/f3n

•

	

2e for n large enough.

The lemma follows by the arbitrariness of e > 0.
We now prove Theorem 1 . One of the facts crucial to the proof is the denseness

of all bounded continuous functions in Lp(µ), a property also exploited by Stone
(1977) in his consistency proof for nearest neighbor estimates .

PROOF OF THEOREM I . For any function g : Pd- Ot we have Im(x)„- m(x)I"
<(U; (x) + U(x) + U3 (x) + U4(x))4p- ' where now

N(x) = E;k((X, - x)/h„),

U1(x) ° N(x)-'I~i(Y~ - m(X,))k((Xi - x)/hh)J,

U2(x) = N(x)-'ErIm(X,) - S(X,)~k((X; - x)/h),

Us(x) _ ~N(x)-1~~8(X,)k((X; - x)/h) - S(x)~,

and
U4(x) _ ~ g(x) - m(x)I •

We will show that E { J U,?(x)µ(dx)} < e for n large enough, i = 1, 2, 3, 4 .
Since mp is µ-integrable, we can find a, function g that is bounded, continuous,

and zero outside a compact set such that j U4(x)µ(4x) < 8 (Dunford and Schwartz,
1957, page 298).
By the corollary to Lemma 2

E{U'(X)} =fE{Ui(x)}µ(dx) < AYE{Im(X)-8(X)~p) CE

by the choice of g .
Let g be fixed and put cg = supx~ g(x)p. We can find S > O so small that

SUpxERd;yEx+SAIS(Y) g(x) l <(E/2)L/P,
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where A is the support of k . Thus U3(x) <e/2 when h,2 < S and N(x) > 0. Thus, if
hn <8,

E{U3(X)} < cgjP{N(x) = 0}µ(dx) + e/2

•

	

c8f (1 - µ(x + h„A))'`µ(dz) + e/2

•

	

cgfe-Rµcx+r~A>µ(dx) + e/2

•

	

cg(e -~` + P{nµ(X + h„A) <X}) + e/2

where A> 0 is picked large enough to make cge -'` smaller than e/4. Letting n grow
large and applying Lemma 3 with k = I,, to the term P{nµ(X + h„A) <X} shows
that E { U3(x)} < 8 for all n large enough.
Next, we use the fact that conditioned on X 1 , • • • , X,,, the random variables

Yl - m(Xl), • • • , Y„ - m(X) are independent. Assume first that I Y,1 < c< < 00
a.s. (so that I Yl - m(Xl)I < 2ct a.s.). Then for p < 2

(E {f vi(x)µ(dx)})2/p <
fE { Ui(x)} µ(dx)

= IE { E { Ui (x)IXv . . . , X,j) } µ(dx)

= JE{~;E{(Y; - m(Xr))ZIXJ

k2((Xi - x)/hn)/N2(x)} 1~(dx)

•

	

4c~ JE{min{1; k"/N(x)}} µ(dx)

•

	

c1k*/cs + 4cl JP{N(x) <c} µ(dx)

•

	

4clk*/cs + 4c?jP{N(x) < E{N(x)}/2} µ(dx)

+4c?jl(a, 2,)(E { N(x) ))(dx) .µ

For any cs , c, the last term tends to 0 as n - oo by Lemma 3 . The first term can be
made arbitrarily small by choosing cs large enough . For the middle term, which is
estimated as in the proof of Lemma 2 (see (9)) by
42f min{1 ; 4k*/E{N(x)}} µ(dx) < 4c14k*/cs + 4clJl(a,,3)(E{N(x)})µ(dx),

we have already demonstrated that it is small for large n and large c, .
For p > 2, use the facts that

U~ (x) - U? (x)ur Z(x ) < (2cY 2 U(x)1
-i

and

!E { Ui(x)} µ(ms) < (2cY 2fE{~-U?(x)) µ(dx),

and proceed similarly.
To complete the proof of Theorem 1, we only have to show that E { Ui(x)} can

be made arbitrarily small even if Yl is not a .s. bounded. Assume that c, > 0 is a



constant, and let Yl = Yl + Yl" where

and

Further, let m'(x) = E { Yi IX 1 = x}, m"(x) = E { Yi' X1 = x}, and notice that
m(x) = m'(x) + m"(x) for almost all x( µ) . We have for almost all x( µ) :

Ui(x) < 2p -1(N(z) -1 I~"_ i( Yi - m'(Xi))k((X, - z)/hR)I l

+2p-1(N(x) -lEi_ i I Yr' - m"(Xr)Ik((X, - x)/h)~

U°(x) + Uip(x).

It is clear from the previous argument (since I Y; - m(X;)) G 2ct a.s.) that for any
cf > 0, E { J Uip(x)µ(dx) } can be made arbitrarily small. For the last term we use

E{f vip(x)µ(dx)} < AYE{I Yi - m"(Xi)IP }2P-1

< 7Y22p-2(E{IYi~°I[-~„~~1`( Yi )} + E{Im"(X i ) Ip})

< 4y2~E{~Yl IpII-C1`(Yl)}

-0 as cf ~oo

by the finiteness of E { I Y, 1p } .

3. Bayes risk consistency in discrimination . In discrimination Y takes values
from a known finite set {1, . . . , M } and the problem, as before, is to estimate Y
from X. The estimate g(X) is a measurable function of X with values in
(1, . . • , M } and the performance of the estimate with the data is now measured
by the probability of error,

Ln = P { g(X)

	

YIX 1 , '1, . . . , X,, Y,~ } .

Clearly, Ln cannot be smaller than the Bayes probability of error

If we define

L*
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Yl = Yl l~_~t, ~t~(Yl)

Yl/' = YII[
_ c c J

C( 1,)

= infg . ,"-{ . . .1,

	

,

P;(x)

nr}P{S(X) # Y} •

=P{Y=iIX=x},

	

1 <i <M, xER",
then all discrimination rules g satisfying'

g(x) # i whenever p;(x) < max1<1<,NPe(x)

have probability of error L*. The unknown regression functions p, can be estimated
by any method. Writing p,,; for the estimate of p;, we can in turn pick g„ such that
(I1)

	

g(x) ~ i whenever p,,(x) < max1<,<Mp,,(x) .

For all discrimination rules satisfying (11) we have

(12)

	

0 <L„ - L* < 2 iJIP;(x) - p,(x)~ µ (dx) .
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Inequality (12) is easy to show (see, e.g ., Stone (1977)). If we write a(x) for p1(x)
with i = gn(x), and an(x) for p 1(x) when i = gn(x), then it is true that L* = f(1 -

max1pl(x))µ(dx), Ln = f(1 - a(x))µ(dx), an(x) = maxj,(x) and
Ln - L* = f(maxip,(x) - a(x))µ(dx)

= f(max~p,(x) - maxipni(x))µ(dx)

+ f(an(x) - a(x))µ(dx)

2~M 1f I p,(x) - pn,(x)I µ(dx) .

This proves (12) . The inequality (12) links in a very simple way the distance in L1
between the p,~ i and the pj with Ln - L*. For instance, if we use (1) as our
regression function estimate (i.e., to estimate pj,replace Y, in (1) by 'EYj=j1 ), then the
condition (11) reduces to
( 13 )

	

g(x)=in

whenever
j : Y =ik((Xj x)/hj < maxi <I~M~j . Y =Ik((Xj x)/hj .

If k is the indicator function of the unit sphere centered at the origin, then (13) is
equivalent to taking a majority vote with those Y for which 11 X, x l i < hn . This
simple rule can be traced back to the work of Fix and Hodges (1951) . The
following theorem is a direct corollary of inequality (12) and Theorem 1 .
THEOREM 2. (Bayes risk consistency). All discrimination rules satisfying (13) are

Bayes risk consistent (that is, E{L}n _*L*) if (4-6) hold.

Theorem 2 is entirely distribution-free : no restrictions are put on the distribution of
(X, Y). This result may seem a bit surprising because (13) was originally obtained
in the literature for the Parzen density estimate under the assumption that X has a
density (van Ryzin (1966), Glick (1972, 1976), Greblicki (1974, 1977), Devroye and
Wagner (1976, 1977)). In all but the last of the cited papers, additional continuity
conditions were put on the density of X to prove Bayes risk consistency .
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