THE STRONG UNIFORM CONSISTENCY OF NEAREST NEIGHBOR DENSITY ESTIMATES

By Luc P. Devroye and T. J. Wagner ${ }^{1}$
The University of Texas at Austin

Let X_{1}, \cdots, X_{n} be independent, identically distributed random vectors with values in \mathbb{R}^{d} and with a common probability density f. If $V_{k}(x)$ is the volume of the smallest sphere centered at x and containing at least k of the X_{1}, \cdots, X_{n} then $f_{n}(x)=k /\left(n V_{k}(x)\right)$ is a nearest neighbor density estimate of f. We show that if $k=k(n)$ satisfies $k(n) / n \rightarrow 0$ and $k(n) / \log n \rightarrow \infty$ then $\sup _{x}\left|f_{n}(x)-f(x)\right| \rightarrow 0$ w.p. 1 when f is uniformly continuous on \mathbb{R}^{d}.

Introduction. Suppose that X_{1}, \cdots, X_{n} are independent, identically distributed random vectors with values in \mathbb{R}^{d} and with a common probability density f. If $V_{k}(x)$ is the volume of the smallest sphere centered at x and containing at least k of the random vectors X_{1}, \cdots, X_{n}, then Loftsgaarden and Quesenberry (1965), to estimate $f(x)$ from X_{1}, \cdots, X_{n}, let

$$
\begin{equation*}
f_{n}(x)=k /\left(n V_{k}(x)\right) \tag{1}
\end{equation*}
$$

where $k=k(n)$ is a sequence of positive integers satisfying
(a)

$$
\begin{gather*}
k(n) \uparrow \infty \tag{2}\\
k(n) / n \rightarrow 0 .
\end{gather*}
$$

(The factor $k-1$ was used instead of k by Loftsgaarden and Quesenberry; this has no effect on any of the asymptotic results stated here.) They showed that $f_{n}(x)$ is a consistent estimate of $f(x)$ at each point where f is continuous and positive. This result can also easily be inferred from the work of Fix and Hodges (1951). For $d=1$, Moore and Henrichon (1969) showed that

$$
\sup _{x}\left|f_{n}(x)-f(x)\right| \rightarrow 0 \quad \text { in probability }
$$

if f is uniformly continuous and positive on \mathbb{R} and if, additionally,

$$
\begin{equation*}
k(n) / \log n \rightarrow \infty \tag{3}
\end{equation*}
$$

Wagner (1973) showed that $f_{n}(x)$ is a strongly consistent estimate of $f(x)$ at each continuity point of f if, in addition to $(2 \mathrm{~b})$,

$$
\begin{equation*}
\sum_{1}^{\infty} e^{-\alpha k(n)}<\infty \quad \text { for all } \quad \alpha>0 \tag{4}
\end{equation*}
$$

(Notice that (4) is always implied by (3) but (2a) and (4) are needed to imply (3).) The result of this paper is the following theorem.

[^0]Theorem. If f is uniformly continuous on \mathbb{R}^{d} and if $k(n)$ satisfies (2b) and (3) then

$$
\sup _{x}\left|f_{n}(x)-f(x)\right| \rightarrow_{n} 0 \quad \text { w.p. } 1
$$

If

$$
\hat{f}_{n}(x)=\sum_{i=1}^{n} K\left(\left(x-X_{i}\right) / r(n)\right) / n r(n)^{d},
$$

where K is the uniform probability density for the unit sphere in \mathbb{R}^{d} and $\{r(n)\}$ is a sequence of positive numbers, the recent results of Moore and Yackel (1977) (see Theorem 3.1) and the above theorem immediately yield that

$$
\sup _{x}\left|\hat{f}_{n}(x)-f(x)\right| \rightarrow 0 \quad \text { w.p. } 1
$$

whenever f is uniformly continuous on \mathbb{R}^{d} and $r(n) \rightarrow 0, n r(n)^{d} / \log n \rightarrow \infty$. This fact, an improvement over the previously published convergence results for the kernel estimate with a uniform kernel (e.g., see Theorem 2.1 of Moore and Yackel (1977)), also is a special case of Theorem 4.9 of Devroye (1976) who proves the same statement for all kernels K which are bounded probability densities with compact support and whose discontinuity points have a closure with Lebesgue measure 0.

Proof. To simplify notation we assume below that multiplications are always carried out before division. Let $\varepsilon>0$ and choose $\delta>0$ such that

$$
|f(y)-f(x)|<\varepsilon / 2
$$

whenever x and y are within a sphere of volume δ. Deferring measurability arguments for the moment,

$$
\begin{aligned}
& P\left\{\sup _{x}\left|f_{n}(x)-f(x)\right|>\varepsilon\right\} \\
& \quad=P\left\{\bigcup_{x}\left[V_{k}(x)<k / n(f(x)+\varepsilon)\right]\right\}+P\left\{\bigcup_{x: f(x)>\varepsilon}\left[V_{k}(x)>k / n(f(x)-\varepsilon)\right]\right\}
\end{aligned}
$$

The event $\bigcup_{x}\left[V_{k}(x)<k / n(f(x)+\varepsilon)\right]$ implies that, for some x, there must be a sphere centered at x with volume less than $k / n(f(x)+\varepsilon)$ and containing k of the random vectors X_{1}, \cdots, X_{n}. If $k / n \varepsilon<\delta$ then the probability measure of such a sphere must be less than $k(f(x)+\varepsilon / 2) / n(f(x)+\varepsilon)$ so that, for one of these spheres S,

$$
\begin{aligned}
\mu_{n}(S)-\mu(S) & >\frac{k}{n}-\frac{k(f(x)+\varepsilon / 2)}{n(f(x)+\varepsilon)} \\
& =\frac{k \varepsilon}{2 n(f(x)+\varepsilon)} \geqq \frac{k \varepsilon}{2 n(F+\varepsilon)}
\end{aligned}
$$

where F is the maximum of f on \mathbb{R}^{d}, μ is the measure on the Borel subsets of \mathbb{R}^{d} corresponding to f and μ_{n} is the empirical measure on the Borel subsets of \mathbb{R}^{d} for X_{1}, \cdots, X_{n}. Thus, for $k / n \varepsilon<\delta$,

$$
\begin{align*}
& P\left\{\bigcup_{x}\left[V_{k}(x)<k / n(f(x)+\varepsilon)\right]\right\} \tag{5}\\
& \leqq P\left\{\sup _{s \in \varkappa_{n}}\left|\mu_{n}(S)-\mu(S)\right|>k \varepsilon / 2 n(F+\varepsilon)\right\}
\end{align*}
$$

where \mathscr{A}_{n} is the class of all spheres in \mathbb{R}^{d} whose volume is less than $4 k / n \varepsilon$.

Next, with $4 k / n \varepsilon<\delta$,

$$
\bigcup_{x: f(x)>\varepsilon}\left[V_{k}(x)>k / n(f(x)-\varepsilon)\right] \cong \bigcup_{x: f(x)>\varepsilon}\left[V_{k}(x)>k / n(f(x)-(3 \varepsilon / 4))\right]
$$

which implies that, for some x with $f(x)>\varepsilon$, there is a sphere S centered at x, with volume $\leqq 4 k / n \varepsilon$, and

$$
\begin{aligned}
\mu(S) & \geqq k(f(x)-\varepsilon / 2) / n\left(f(x)-\left(\frac{3}{4}\right) \varepsilon\right), \\
\mu_{n}(S) & \leqq k / n, \quad \text { and } \\
\mu(S)-\mu_{n}(S) & \geqq k \varepsilon / 4 n\left(f(x)-\left(\frac{3}{4}\right) \varepsilon\right) .
\end{aligned}
$$

Thus

$$
\begin{align*}
P\left\{\bigcup_{x: f(x)>\varepsilon}\right. & {\left.\left[V_{k}(x)>k / n(f(x)-\varepsilon)\right]\right\} } \tag{6}\\
& \leqq P\left\{\sup _{s \in \mathscr{A}_{n}}\left|\mu(S)-\mu_{n}(S)\right| \geqq k \varepsilon / 4 n F\right\}
\end{align*}
$$

so that

$$
P\left\{\sup _{x}\left|f_{n}(x)-f(x)\right| \geqq \varepsilon\right\} \leqq 2 P\left\{\sup _{s \epsilon \mathscr{A}_{n}}\left|\mu_{n}(S)-\mu(S)\right| \geqq k \varepsilon / 4 n(F+\varepsilon)\right\}
$$

The proof will be completed if we show that for each $\varepsilon>0$

$$
\begin{equation*}
\sum_{n} P\left\{\sup _{S \in \mathscr{A}_{n}}\left|\mu_{n}(S)-\mu(S)\right| \geqq k \varepsilon / 4 n(F+\varepsilon)\right\}<\infty \tag{7}
\end{equation*}
$$

To prove (7) we employ a variation of the argument used by Vapnik and Chervonenkis (1971). In this variation use will be made of the following result. If Y_{1}, \ldots, Y_{n} represent independent drawings without replacement from a population of $k 0$'s and 1 's then, for $\varepsilon>0$ and $k \geqq n$,

$$
\begin{equation*}
P\left[\left|\left(\sum_{1}^{n} Y_{i}\right) / n-\mu\right| \geqq \varepsilon\right] \leqq 2 e^{-n \varepsilon^{2} /(2 \mu+\varepsilon)} \tag{8}
\end{equation*}
$$

where μ, the \{number of 1 's $\} / k$, is assumed to be $\leqq \frac{1}{2}$. Additionally (8) holds when Y_{1}, \cdots, Y_{n} are Bernoulli random variables with parameter $\mu \leqq \frac{1}{2}$. (Use the two-sided version of Theorem 3 of Hoeffding (1963) along with $\mu \leqq \frac{1}{2}$ and $\log (1+(\varepsilon / \mu)) \geqq 2 \varepsilon /(2 \mu+\varepsilon)$. See also Section 6 of this paper.)

Now, if $\sup _{\mathscr{A}} \mu(A) \leqq M$ and $n \geqq 8 M / \delta^{2}$, an easy modification of Lemma 1 of Vapnik and Chervonenkis (1971) yields

$$
\begin{equation*}
P\left[\sup _{\mathscr{A}}\left|\mu_{n}(A)-\mu(A)\right| \geqq \delta\right] \leqq 2 P\left[\sup _{\mathscr{A}}\left|\mu_{n}(A)-\mu_{n}^{\prime}(A)\right| \geqq \delta / 2\right] \tag{9}
\end{equation*}
$$

where $\mu_{n}{ }^{\prime}(A)$ is the empirical measure for A with $X_{n+1}, \cdots, X_{2 n}$ and \mathscr{A} is any class of Borel sets in \mathbb{R}^{d} for which

$$
\sup _{\mathscr{\infty}}\left|\mu_{n}(A)-\mu(A)\right| \quad \text { and } \quad \sup _{\mathscr{\infty}}\left|\mu_{n}(A)-\mu_{n}^{\prime}(A)\right|
$$

are random variables. Putting $\mathscr{A}=\mathscr{A}_{n}$ we see that M can be taken to be $4 k F / n \varepsilon$. Since, for $\alpha>0$,

$$
\begin{align*}
& P\left[\sup _{\mathscr{\varkappa}_{n}}\left|\mu_{n}(A)-\mu_{n}^{\prime}(A)\right| \geqq \delta / 2\right] \\
& \quad \leqq P\left[\sup _{\mathscr{A}_{n}}\left|\mu_{n}(A)-\mu_{n}^{\prime}(A)\right| \geqq \delta / 2 ; \sup _{\mathscr{\varkappa}_{n}} \mu_{2 n}(A) \leqq \alpha M\right] \tag{10}\\
& \quad \quad+P\left[\sup _{\mathscr{\varkappa}_{n}} \mu_{2 n}(A)>\alpha M\right]
\end{align*}
$$

we see, using (3) and putting $\delta=k \varepsilon / 4 n(F+\varepsilon)$, that (7) follows whenever both
terms of the right-hand side of (10) are summable for some $\alpha>0$. Looking at the first term, we note that it equals

$$
\int_{\mathrm{R}^{2 n d}} \frac{1}{(2 n)!} \sum I_{\left[\text {sup }_{\mathscr{A}_{n}}\left|\mu_{n}(A)-\mu_{n}^{\prime}(A)\right| \geq \delta / 2\right]} I_{\left[\sup _{\mathscr{N}_{n}} \mu_{2 n}(A) \leq \alpha M\right]} d Q
$$

where I_{E} is the indicator of the set $E \subseteq \mathbb{R}^{d}$ and Q is the probability measure on $\mathbb{R}^{2 n d}$ for $X_{1}, \cdots, X_{2 n}$ and where the inner summation is taken over all ($2 n$)! permutations of $x_{1}, \cdots, x_{2 n}$. But this last integral equals

$$
\begin{aligned}
\int_{\mathbb{R}^{2 n d}} \frac{1}{(2 n)!} & \sum I_{\left[\sup _{\mathscr{A} \mathscr{N}_{n}} \mu_{2 n}(A) \leq \alpha M\right]} \sup _{\mathscr{\varkappa}_{n}} I_{\left[\left|\mu_{n}(A)-\mu_{n}^{\prime}(A)\right| \geq \delta / 2\right]} d Q \\
& =\int_{\mathbb{R}^{2 n d}} \frac{1}{(2 n)!} \sum I_{\left[\sup _{\mathscr{A}_{n}} \mu_{2 n}(A) \leq \alpha M\right]} \sup \dot{\mathscr{A}} I_{\left[\mid \mu_{n}(A)-\mu_{n}^{\prime}(A) \geq \geq \delta / 2\right]} d Q \\
& \leqq \int_{\mathbb{R}^{2 n d}} \sum_{A \in \mathscr{A}^{\prime}} I_{\left[\sup _{\mathscr{A}_{n} \mu_{2 n}}(A) \leq \alpha M\right]}\left\{\frac{1}{(2 n)!} \sum I_{\left.\left[\left|\mu_{n}(A)-\mu_{2 n}(A)\right| \geq \delta / 4\right]\right]}\right\} d Q
\end{aligned}
$$

where $\mathscr{A}^{\prime}=\mathscr{A}^{\prime}\left(x_{1}, \cdots, x_{2 n}\right)$ is any finite subclass of \mathscr{A}_{n} which yields the same class of intersections with $\left\{x_{1}, \cdots, x_{2 n}\right\}$ and where the inner summation is again taken over the $(2 n)$! permutations of $x_{1}, \cdots, x_{2 n}$. The quantity within $\{\cdot\}$ is bounded above, using (8), by

$$
2 e^{-n \delta^{2} /\left(32 \mu_{2 n}(A)+4 \delta\right)}
$$

whenever $\mu_{2 n}(A) \leqq \frac{1}{2}$. Since $M=4 k F / n \varepsilon$ we see, from (3), that for all n sufficiently large the last integral is upper-bounded by

$$
2 \int_{\mathbb{R}^{2 n d}} e^{-n \delta^{2} /(32 \alpha M+4 \delta)}\left(\sum_{A \in \mathscr{A}^{\prime}} 1\right) d Q
$$

Choosing \mathscr{A}^{\prime} to be a smallest possible subclass, we have (Vapnik and Chervonenkis (1971), Cover (1965)) that $\left(\sum_{A \in \mathscr{A}}, 1\right) \leqq 1+(2 n)^{d+3}$ and, using (3) again, that the first term of (10) is summable for all $\alpha>0$.

Looking at the second term of (10), let r be the radius of a sphere in \mathbb{R}^{d} whose volume is $4 k / n \varepsilon$. If some sphere of radius r contains l of the points $X_{1}, \cdots, X_{2 n}$ then there must be at least one sphere or radius $2 r$, centered at one of the points $X_{1}, \cdots, X_{2 n}$ which contains at least l points. Thus

$$
P\left[\sup _{\mathscr{A}_{n}} \mu_{2 n}(A)>\alpha M\right] \leqq 2 n P\left[\mu_{2 n}\left(S_{X_{1}}(2 r)\right)>\alpha M\right]
$$

where $S_{x}(t)$ denotes the sphere of radius t centered at x. But

$$
\begin{aligned}
& P\left[\mu_{2 n}\left(S_{X_{1}}(2 r)\right)>\alpha M\right] \\
& \quad \leqq \max _{x \in \mathrm{R}^{d}} P\left[\mu_{2 n-1}\left(S_{x}(2 r)\right)>(\alpha 2 n M-1) /(2 n-1)\right] \\
& \quad \leqq \max _{x \in \mathrm{R}^{d}} P\left[\mu_{2 n-1}\left(S_{x}(2 r)\right)-\mu\left(S_{x}(2 r)\right)>[(\alpha 2 n M-1) /(2 n-1)]-2^{d} 4 k F / n \varepsilon\right]
\end{aligned}
$$

At this point it is not difficult, using (3) and (8), to show that the second term of (9) is summable as long as $\alpha>2^{d}$.

Finally, to complete the proof, it is easy to see that all of the uncountable unions over x are indeed events and that the various supremums over \mathscr{A}_{n} are indeed random variables.

REFERENCES

Cover, T. (1965). Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition. IEEE Trans. Computers 10 326-334.
Devroye, L. P. (1976). Nonparametric discrimination and density estimation. Ph. D. thesis, Univ. of Texas, Austin.
Fix, E. and Hodges, J. L. (1951). Discriminatory analysis. Nonparametric discrimination: consistency properties. Report 4, Project Number 21-49-004, USAF School of Aviation Medicine, Randolph Field, Texas.
Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58 13-30.
Loftsgatiden, D. O. and Quesenberry, C. P. (1965). A nonparametric estimate of a multivariate density function. Ann. Math. Statist. 36 1049-1051.
Moore, D. S. and Henrichon, E. G. (1969). Uniform consistency of some estimates of a density function. Ann. Math. Statist. 40 1499-1502.
Moore, D. S. and Yackel, J. W. (1977). Consistency properties of nearest neighbor density estimates. Ann. Statist. 5143-154.
Vapnik, V. N. and Chervonenkis, A. Ya. (1971). On the uniform convergence of relative frequencies of events to their probabilities. Theory Probability Appl. 16 264-280.
WAGNER, T. J. (1973). Strong consistency of a nonparametric estimate of a density function. IEEE Trans. Systems, Man, and Cybernet. 3, 289-290.

Department of Electrical Engineering The University of Texas at Austin College of Engineering Austin, Texas 78712

[^0]: Received February 1976; revised October 1976.
 ${ }^{1}$ Research of the authors was sponsored by AFOSR GRANT 72-2371.
 AMS 1970 subject classifications. 60F15, 62G05.
 Key words and phrases. Nonparametric density estimation, multivariate density estimation, uniform consistency, consistency.

