THE STRONG UNIFORM CONSISTENCY OF NEAREST NEIGHBOR DENSITY ESTIMATES

BY LUC P. DEVROYE AND T. J. WAGNER¹

The University of Texas at Austin

Let X_1, \dots, X_n be independent, identically distributed random vectors with values in \mathbb{R}^d and with a common probability density f. If $V_k(x)$ is the volume of the smallest sphere centered at x and containing at least kof the X_1, \dots, X_n then $f_n(x) = k/(nV_k(x))$ is a nearest neighbor density estimate of f. We show that if k = k(n) satisfies $k(n)/n \to 0$ and $k(n)/\log n \to \infty$ then $\sup_x |f_n(x) - f(x)| \to 0$ w.p. 1 when f is uniformly continuous on \mathbb{R}^d .

Introduction. Suppose that X_1, \dots, X_n are independent, identically distributed random vectors with values in \mathbb{R}^d and with a common probability density f. If $V_k(x)$ is the volume of the smallest sphere centered at x and containing at least k of the random vectors X_1, \dots, X_n , then Loftsgaarden and Quesenberry (1965), to estimate f(x) from X_1, \dots, X_n , let

(1)
$$f_n(x) = k/(nV_k(x))$$

where k = k(n) is a sequence of positive integers satisfying

(2) (a)
$$k(n) \uparrow \infty$$

(b) $k(n)/n \to 0$.

(The factor k - 1 was used instead of k by Loftsgaarden and Quesenberry; this has no effect on any of the asymptotic results stated here.) They showed that $f_n(x)$ is a consistent estimate of f(x) at each point where f is continuous and positive. This result can also easily be inferred from the work of Fix and Hodges (1951). For d = 1, Moore and Henrichon (1969) showed that

 $\sup_x |f_n(x) - f(x)| \to 0$ in probability

if f is uniformly continuous and positive on \mathbb{R} and if, additionally,

(3)
$$k(n)/\log n \to \infty$$
.

Wagner (1973) showed that $f_n(x)$ is a strongly consistent estimate of f(x) at each continuity point of f if, in addition to (2b),

(4)
$$\sum_{1}^{\infty} e^{-\alpha k(n)} < \infty$$
 for all $\alpha > 0$.

(Notice that (4) is always implied by (3) but (2a) and (4) are needed to imply (3).) The result of this paper is the following theorem.

Received February 1976; revised October 1976.

¹ Research of the authors was sponsored by AFOSR GRANT 72-2371.

AMS 1970 subject classifications. 60F15, 62G05.

Key words and phrases. Nonparametric density estimation, multivariate density estimation, uniform consistency, consistency.

THEOREM. If f is uniformly continuous on \mathbb{R}^d and if k(n) satisfies (2b) and (3) then

$$\sup_{x} |f_{n}(x) - f(x)| \rightarrow_{n} 0 \quad \text{w.p. 1}.$$

If

$$\hat{f}_n(x) = \sum_{i=1}^n K((x - X_i)/r(n))/nr(n)^d$$
,

where K is the uniform probability density for the unit sphere in \mathbb{R}^d and $\{r(n)\}$ is a sequence of positive numbers, the recent results of Moore and Yackel (1977) (see Theorem 3.1) and the above theorem immediately yield that

$$\sup_{x} |\hat{f}_{n}(x) - f(x)| \to 0 \quad \text{w.p. 1}$$

whenever f is uniformly continuous on \mathbb{R}^d and $r(n) \to 0$, $nr(n)^d/\log n \to \infty$. This fact, an improvement over the previously published convergence results for the kernel estimate with a uniform kernel (e.g., see Theorem 2.1 of Moore and Yackel (1977)), also is a special case of Theorem 4.9 of Devroye (1976) who proves the same statement for all kernels K which are bounded probability densities with compact support and whose discontinuity points have a closure with Lebesgue measure 0.

PROOF. To simplify notation we assume below that multiplications are always carried out before division. Let $\varepsilon > 0$ and choose $\delta > 0$ such that

$$|f(y) - f(x)| < \varepsilon/2$$

whenever x and y are within a sphere of volume δ . Deferring measurability arguments for the moment,

$$P\{\sup_{x} |f_n(x) - f(x)| > \varepsilon\}$$

= $P\{\bigcup_{x} [V_k(x) < k/n(f(x) + \varepsilon)]\} + P\{\bigcup_{x:f(x)>\varepsilon} [V_k(x) > k/n(f(x) - \varepsilon)]\}.$

The event $\bigcup_x [V_k(x) < k/n(f(x) + \varepsilon)]$ implies that, for some x, there must be a sphere centered at x with volume less than $k/n(f(x) + \varepsilon)$ and containing k of the random vectors X_1, \dots, X_n . If $k/n\varepsilon < \delta$ then the probability measure of such a sphere must be less than $k(f(x) + \varepsilon/2)/n(f(x) + \varepsilon)$ so that, for one of these spheres S,

$$\mu_n(S) - \mu(S) > \frac{k}{n} - \frac{k(f(x) + \varepsilon/2)}{n(f(x) + \varepsilon)}$$
$$= \frac{k\varepsilon}{2n(f(x) + \varepsilon)} \ge \frac{k\varepsilon}{2n(F + \varepsilon)}$$

where F is the maximum of f on \mathbb{R}^d , μ is the measure on the Borel subsets of \mathbb{R}^d corresponding to f and μ_n is the empirical measure on the Borel subsets of \mathbb{R}^d for X_1, \dots, X_n . Thus, for $k/n\varepsilon < \delta$,

(5)
$$P\{\bigcup_{x} [V_{k}(x) < k/n(f(x) + \varepsilon)]\}$$

$$\leq P\{\sup_{S \in \mathscr{S}_{n}} |\mu_{n}(S) - \mu(S)| > k\varepsilon/2n(F + \varepsilon)\}$$

where \mathscr{N}_n is the class of all spheres in \mathbb{R}^d whose volume is less than $4k/n\varepsilon$.

Next, with $4k/n\varepsilon < \delta$,

 $\bigcup_{x:f(x)>\varepsilon} \left[V_k(x) > k/n(f(x)-\varepsilon) \right] \subseteq \bigcup_{x:f(x)>\varepsilon} \left[V_k(x) > k/n(f(x)-(3\varepsilon/4)) \right]$

which implies that, for some x with $f(x) > \varepsilon$, there is a sphere S centered at x, with volume $\leq 4k/n\varepsilon$, and

$$\mu(S) \ge k(f(x) - \varepsilon/2)/n(f(x) - (\frac{3}{4})\varepsilon) ,$$

$$\mu_n(S) \le k/n , \quad \text{and}$$

$$\mu(S) - \mu_n(S) \ge k\varepsilon/4n(f(x) - (\frac{3}{4})\varepsilon) .$$

Thus

(6) $P\{\bigcup_{x:f(x)>\varepsilon} [V_k(x) > k/n(f(x) - \varepsilon)]\} \\ \leq P\{\sup_{S \in \mathscr{S}_n} |\mu(S) - \mu_n(S)| \geq k\varepsilon/4nF\},\$

so that

$$P\{\sup_{x} |f_{n}(x) - f(x)| \ge \varepsilon\} \le 2P\{\sup_{S \in \mathscr{A}_{n}} |\mu_{n}(S) - \mu(S)| \ge k\varepsilon/4n(F+\varepsilon)\}.$$

The proof will be completed if we show that for each $\varepsilon > 0$

(7)
$$\sum_{n} P\{\sup_{S \in \mathscr{S}_{n}} |\mu_{n}(S) - \mu(S)| \geq k\varepsilon/4n(F+\varepsilon)\} < \infty$$

To prove (7) we employ a variation of the argument used by Vapnik and Chervonenkis (1971). In this variation use will be made of the following result. If Y_1, \dots, Y_n represent independent drawings without replacement from a population of k 0's and 1's then, for $\varepsilon > 0$ and $k \ge n$,

(8)
$$P[|(\sum_{i=1}^{n} Y_i)/n - \mu| \ge \varepsilon] \le 2e^{-n\varepsilon^2/(2\mu+\varepsilon)}$$

where μ , the {number of 1's}/k, is assumed to be $\leq \frac{1}{2}$. Additionally (8) holds when Y_1, \dots, Y_n are Bernoulli random variables with parameter $\mu \leq \frac{1}{2}$. (Use the two-sided version of Theorem 3 of Hoeffding (1963) along with $\mu \leq \frac{1}{2}$ and $\log (1 + (\varepsilon/\mu)) \geq 2\varepsilon/(2\mu + \varepsilon)$. See also Section 6 of this paper.)

Now, if $\sup_{\mathscr{A}} \mu(A) \leq M$ and $n \geq 8M/\delta^2$, an easy modification of Lemma 1 of Vapnik and Chervonenkis (1971) yields

(9)
$$P[\sup_{\mathscr{A}} |\mu_n(A) - \mu(A)| \ge \delta] \le 2P[\sup_{\mathscr{A}} |\mu_n(A) - \mu_n'(A)| \ge \delta/2]$$

where $\mu_n'(A)$ is the empirical measure for A with X_{n+1}, \dots, X_{2n} and \mathscr{A} is any class of Borel sets in \mathbb{R}^d for which

$$\sup_{\mathscr{A}} |\mu_n(A) - \mu(A)|$$
 and $\sup_{\mathscr{A}} |\mu_n(A) - \mu_n'(A)|$

are random variables. Putting $\mathscr{A} = \mathscr{A}_n$ we see that M can be taken to be $4kF/n\varepsilon$. Since, for $\alpha > 0$,

(10)

$$P[\sup_{\mathscr{S}_{n}} |\mu_{n}(A) - \mu_{n}'(A)| \geq \delta/2]$$

$$\leq P[\sup_{\mathscr{S}_{n}} |\mu_{n}(A) - \mu_{n}'(A)| \geq \delta/2; \sup_{\mathscr{S}_{n}} \mu_{2n}(A) \leq \alpha M]$$

$$+ P[\sup_{\mathscr{S}_{n}} \mu_{2n}(A) > \alpha M]$$

we see, using (3) and putting $\delta = k\varepsilon/4n(F + \varepsilon)$, that (7) follows whenever both

538

terms of the right-hand side of (10) are summable for some $\alpha > 0$. Looking at the first term, we note that it equals

$$\int_{\mathbb{R}^{2nd}} \frac{1}{(2n)!} \sum I_{[\sup_{\mathscr{N}_n} | \mu_n(A) - \mu'_n(A)| \ge \delta/2]} I_{[\sup_{\mathscr{N}_n} \mu_{2n}(A) \le \alpha M]} dQ$$

where I_E is the indicator of the set $E \subseteq \mathbb{R}^d$ and Q is the probability measure on \mathbb{R}^{2nd} for X_1, \dots, X_{2n} and where the inner summation is taken over all (2n)! permutations of x_1, \dots, x_{2n} . But this last integral equals

$$\begin{split} \int_{\mathbb{R}^{2nd}} \frac{1}{(2n)!} & \sum I_{[\sup_{\mathcal{N}_{n}} \mu_{2n}(A) \leq \alpha M]} \sup_{\mathcal{N}_{n}} I_{[|\mu_{n}(A) - \mu'_{n}(A)| \geq \delta/2]} dQ \\ &= \int_{\mathbb{R}^{2nd}} \frac{1}{(2n)!} \sum I_{[\sup_{\mathcal{N}_{n}} \mu_{2n}(A) \leq \alpha M]} \sup_{\mathcal{N}'} I_{[|\mu_{n}(A) - \mu'_{n}(A)| \geq \delta/2]} dQ \\ &\leq \int_{\mathbb{R}^{2nd}} \sum_{A \in \mathcal{N}'} I_{[\sup_{\mathcal{N}_{n}} \mu_{2n}(A) \leq \alpha M]} \left\{ \frac{1}{(2n)!} \sum I_{[|\mu_{n}(A) - \mu_{2n}(A)| \geq \delta/4]} \right\} dQ \end{split}$$

where $\mathscr{H}' = \mathscr{H}'(x_1, \dots, x_{2n})$ is any finite subclass of \mathscr{H}_n which yields the same class of intersections with $\{x_1, \dots, x_{2n}\}$ and where the inner summation is again taken over the (2n)! permutations of x_1, \dots, x_{2n} . The quantity within $\{\cdot\}$ is bounded above, using (8), by

 $2e^{-n\delta^{2/(32\mu_{2n}(A)+4\delta)}}$

whenever $\mu_{2n}(A) \leq \frac{1}{2}$. Since $M = 4kF/n\varepsilon$ we see, from (3), that for all *n* sufficiently large the last integral is upper-bounded by

$$2 \int_{\mathbb{R}^{2nd}} e^{-n\delta^2/(32\alpha M + 4\delta)} (\sum_{\lambda \in \mathcal{A}'} 1) dQ$$

Choosing \mathscr{N}' to be a smallest possible subclass, we have (Vapnik and Chervonenkis (1971), Cover (1965)) that $(\sum_{A \in \mathscr{N}'} 1) \leq 1 + (2n)^{d+3}$ and, using (3) again, that the first term of (10) is summable for all $\alpha > 0$.

Looking at the second term of (10), let r be the radius of a sphere in \mathbb{R}^d whose volume is $4k/n\varepsilon$. If some sphere of radius r contains l of the points X_1, \dots, X_{2n} then there must be at least one sphere or radius 2r, centered at one of the points X_1, \dots, X_{2n} which contains at least l points. Thus

$$P[\sup_{\mathscr{A}_n} \mu_{2n}(A) > \alpha M] \leq 2nP[\mu_{2n}(S_{X_1}(2r)) > \alpha M]$$

where $S_x(t)$ denotes the sphere of radius t centered at x. But

$$P[\mu_{2n}(S_{X_1}(2r)) > \alpha M] \\ \leq \max_{x \in \mathbb{R}^d} P[\mu_{2n-1}(S_x(2r)) > (\alpha 2nM - 1)/(2n - 1)] \\ \leq \max_{x \in \mathbb{R}^d} P[\mu_{2n-1}(S_x(2r)) - \mu(S_x(2r)) > [(\alpha 2nM - 1)/(2n - 1)] - 2^d 4kF/n\varepsilon].$$

At this point it is not difficult, using (3) and (8), to show that the second term of (9) is summable as long as $\alpha > 2^d$.

Finally, to complete the proof, it is easy to see that all of the uncountable unions over x are indeed events and that the various supremums over \mathcal{M}_n are indeed random variables.

REFERENCES

- COVER, T. (1965). Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition. *IEEE Trans. Computers* **10** 326-334.
- DEVROYE, L. P. (1976). Nonparametric discrimination and density estimation. Ph. D. thesis, Univ. of Texas, Austin.
- FIX, E. and HODGES, J. L. (1951). Discriminatory analysis. Nonparametric discrimination: consistency properties. Report 4, Project Number 21-49-004, USAF School of Aviation Medicine, Randolph Field, Texas.
- HOEFFDING, W. (1963). Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58 13-30.
- LOFTSGAARDEN, D. O. and QUESENBERRY, C. P. (1965). A nonparametric estimate of a multivariate density function. Ann. Math. Statist. 36 1049-1051.
- MOORE, D. S. and HENRICHON, E. G. (1969). Uniform consistency of some estimates of a density function. Ann. Math. Statist. 40 1499-1502.
- MOORE, D. S. and YACKEL, J. W. (1977). Consistency properties of nearest neighbor density estimates. Ann. Statist. 5 143-154.
- VAPNIK, V. N. and CHERVONENKIS, A. YA. (1971). On the uniform convergence of relative frequencies of events to their probabilities. *Theory Probability Appl.* **16** 264–280.
- WAGNER, T. J. (1973). Strong consistency of a nonparametric estimate of a density function. IEEE Trans. Systems, Man, and Cybernet. 3, 289–290.

DEPARTMENT OF ELECTRICAL ENGINEERING THE UNIVERSITY OF TEXAS AT AUSTIN College of Engineering Austin, Texas 78712