Convex Hulls for Random Lines

Luc Devroye and Godfried Toussaint*
Schoot of Computer Science, McGill Unitersity, Montreal, Canada H3A 247

Received May 1990; accepted May 1992

Abstract

Consider n i.i.d. random lines in the plane defined by their slope and distance from the origin. The slope is uniformly distributed on $[0,2 \pi]$ and independent of the distance R from the origin. These lines define a set \mathbf{I} of $n(n-1) / 2$ intersection points. It was recently shown by Atallah and Ching and Lee that the cardinality of the convex hull of these intersection points is $O(n)$, and they exhibited an $O(n \log n)$ time algorithm for computing such a convex hull. Let $N_{\text {ch }}$ and N_{01} be the number of points on the convex hull and outer layer of \mathbf{I}, respectively. We show that there exist arrangements of lines in which $N_{o l}=n(n-$ $1) / 2$. We show that, nevertheless, both N_{ch} and N_{ol} have expected values $O(1)$, and give bounds that are uniform over all distributions of R with $0<\mathbf{E} R<\infty$. These results lead to an algorithm for computing the convex hull of I in $O(n \log n)$ worst-case time and $O(n)$ expected time under these conditions. in 1993 Academic Press, Inc.

1. Introduction

Let $\mathbf{L}=\left\{L_{1}, \ldots, L_{n}\right\}$ be a finite set of lines in the plane, where each line L_{i} is specified by an equation $y=a_{i} x+b_{i}$ for some real numbers $a_{i}, b_{i}, 1 \leq i \leq n . \mathrm{L}$ induces a partition of the plane known as the arrangement $A(\mathrm{~L})$, into $O\left(n^{2}\right)$ faces, edges, and vertices. The vertices are the points where the lines in \mathbf{L} intersect. Let $V_{i j}$ denote the intersection point of L_{i} and L_{j}. The set $\mathbf{I}=\left\{V_{i j} \mid 1 \leq i, j \leq n, i \neq j\right\}$ collects all such intersection points. The edges are the connected components of the lines that remain when the vertices are deleted. The faces are the connected components of the complement of the union of the lines $L_{1}, L_{2}, \ldots, L_{n}$. For a detailed fundamental treatment of arrangements the reader is referred to Grunbaum [12] and Edelsbrunner [10]. A survey of recent

[^0]

Figurf 1
research results can be found in Edelsbrunner, Guibas, and Sharir [11]. Figure 1 illustrates an arrangement of the convex hull of \mathbf{I}.

Definition. The intersection point $V_{i j}$ for $i \neq j$ and $1 \leq i, j \leq n$ is said to be extreme with respect to line L_{i} if all other intersection points on L_{i} lie to one side of $V_{i j}$.

Definition. The intersection point $V_{i j}$ for $i \neq j$ and $1 \leq i, j \leq n$ is said to be critical if $V_{i j}$ is extreme with respect to both L_{i} and L_{j}.

It is well known that the convex hull of n points in the plane can be computed in $O(n \log n)$ worst-case and linear expected time [7] under certain assumptions on the distribution of the points. Straightforward application of such algorithms to all the points of I thus leads to algorithms with $O\left(n^{2} \log n\right)$ worst-case time and $O\left(n^{2}\right)$ space. Surprisingly, Atallah [1] and Ching and Lee [5] independently presented an $O(n \log n)$ worst-case time algorithm with $O(n)$ space for this problem. They show that the vertices of the convex hull of I are a subset of the critical points determined by pairs of lines that are adjacent on a list in which they are sorted by slope. Therefore they first sort the lines by slope to obtain $O(n)$ critical points and subsequently find their convex hull with any $O(n \log n)$ algorithm. We show here that if we choose our convex hull algorithm carefully we can obtain an algorithm which will also exhibit $O(n)$ expected complexity under a natural definition of a random line and almost any radially symmetric distribution on its parameters as well as under a model of computation that allows us to compute floor and ceiling functions in constant time.

2. The Main Result

Let X_{1}, \ldots, X_{n} be i.i.d. random variables with a radially symmetric distribution in the plane, i.e., X_{1} is distributed as $(R \cos \Theta, R \sin \Theta)$, where Θ is uniformly distributed on $[0,2 \pi]$, and R is independent of Θ and has a given distribution on the positive reals. With each point we associate a line passing through the point and perpendicular to the segment linking the origin with the point. We thus obtain n random lines defining $\binom{n}{2}$ intersection points $V_{i j}\left(V_{i j}\right.$ is the intersection of the lines through X_{i} and X_{j}, respectively).

The object of this note is to study the convex hull and the outer layer formed by the $V_{i j}$'s. Recall that the outer layer is the subset of $V_{i j}$'s with the property that an observer sitting on $V_{i j}$ cannot see any $V_{l k}$ in at least one of the four quadrants around him. The quadrants in the definition are aligned with the coordinate axes. Also, any convex hull point is an outer layer point.

Let $N_{\text {ch }}$ and $N_{\text {ol }}$ be the number of points on the convex hull and outer layer of the $V_{i j}$'s. We prove the following

Theorem 1. Let R have a distribution with $0<\mathbf{E} R<\infty$. Then there exists a unicersal constant γ such that uniformly over all $n, \mathbf{E} N_{\mathrm{ch}} \leq \mathbf{E} N_{\mathrm{ol}} \leq$ $\gamma<\infty$. The constant γ does not depend upon the distribution of R.

The proof of Theorem 1 is given in Section 4. To keep the proof relatively short, we will not try to find the best possible γ, although $\mathbf{E} N_{\text {ch }} \rightarrow 4$ as $n \rightarrow \infty$ is conjectured. The point is that $\mathbf{E} N_{\text {ch }}$ is $O(1)$, and that the bound is in fact distribution-free. The constant γ that emerges from our proof is

$$
4+\sum_{j=0}^{\infty} 2^{j+3} \exp \left(-\left(1-(7 / 6) e^{-1 / 6}\right)(3 / \pi) 2^{j-1}\right)=1939.4634 \ldots
$$

The asymptotics for our problem are not unlike those for samples of n i.i.d. points in the plane having a common heavy-tailed radially symmetric distribution. The study of the size of random convex hulls dates back to Rényi and Sulanke [18], and that of radially symmetric distributions to Carnal [4]. Additional results were obtained in the radially symmetric case by Dwyer [8, 9] and Borgwardt [2]. Dwyer also points out the importance of the results in computational geometry, while Borgwardt illustrates the use of convex hulls in analyzing linear programming algorithms. For a survey of results on random convex hulls, see Buchta [3] or Schneider [19].

The theorem proved here can be generalized to other models, and in particular models in which the X_{i} 's are i.i.d., but not necessarily radially
symmetric. One that seems particularly promising is that in which the X_{i} 's have a common but arbitrary density. Such generalizations will not be considered in the present paper. Additionally, it turns out that $\mathbf{E} N_{\theta} \leq$ $\gamma(\theta)<\infty$ as well, where $\theta \in(0, \pi]$ is a given camera angle, and N_{θ} is the number of $V_{i j}$'s for which an observer sitting on $V_{i j}$ with a camera of viewing angle θ can rotate his camera in such a way that at one point in the rotation, he does not see any $V_{k l}$ through his finder. Such $V_{i j}$'s are called θ-visible. Every outer layer point is $\pi / 2$-visible. Every π-visible point is a convex hull point. Thus, $N_{\pi} \leq N_{\text {ch }} \leq N_{\mathrm{ol}} \leq N_{\pi / 2} \leq N_{\theta}$, where $\theta \leq \pi / 2$. The proof that $\mathbf{E} N_{\theta} \leq \gamma(\theta)<\infty$ is not included here.

3. Algorithm and Discussion

Consider n i.i.d. random lines in the plane defined by their slope and distance from the origin. The slope is uniformly distributed on $[0,2 \pi]$ and independent of the distance R from the origin. Let N_{ch} and N_{ol} be the number of points on the convex hull and outer layer (maximal vectors) of I, respectively. We show that there exist arrangements of lines in which $N_{\mathrm{ol}}=n(n-1) / 2$. By Theorem 1, nevertheless, both N_{ch} and N_{ol} have expected values $O(1)$. Therefore, if we first sort the lines using distributive partitioning [6] in $O(n \log n)$ worst-case time, $O(n)$ expected time, and $O(n)$ space (which is possible by the uniformity of the distribution of the slopes), and subsequently find the convex hull of the adjacent critical points in I using the output-sensitive algorithm of Kirkpatrick and Seidel [15] which has complexity of $O(k \log h)$, where k is the number of input points and h is the cardinality of the convex hull, we obtain an algorithm for computing the convex hull of \mathbf{I} in $O(n \log n)$ worst-case time, $O(n)$ expected time, and $O(n)$ space.

For an arbitrary set of k points in the plane it is well known that computing the outer layer has the same complexity as computing their convex hull. However, for the case of arrangements of n lines computing the outer layer is more difficult. The standard method based on sorting I clearly yields an algorithm with $O\left(n^{2} \log n\right)$ worst-case time, $O\left(n^{2}\right)$ expected time, and $O\left(n^{2}\right)$ space. While we can improve slightly on the actual running time, it is difficult to improve on the above complexities for the following reason.

Lemma 2. An arrangement of the lines $\mathbf{L}=\left\{L_{1}, L_{2}, \ldots, L_{n}\right\}$ may contain as many as $\binom{n}{2}$ outer layer points.

Proof. We provide a construction illustrated in Fig. 2 that has all points in I as outer layer points. Let the first point on I be a point a

Figure 2
located at the origin. We accomplish this be defining line L_{1} to have the equation $y=-x$, and line L_{2} to have the equation $y=-(1+\varepsilon) x$, where ε is a suitably small positive constant. Let θ denote the angle that the line with maximum slope makes (over all lines drawn so far) with the y-axis measured in a counterclockwise manner. The third line has equation $y=-(1+2 \varepsilon) x-\delta$, where δ is a small positive constant. This constitutes the three-step initialization phase of the construction and yields a triangle $[\mathbf{a}, \mathbf{b}, \mathbf{c}$] such that all three vertices are outer layer points and \mathbf{c} has maximum y coordinate. We now show how to add, at step r, line L_{r}, and create $r-1$ new outer layer points at each step. Let d define the leftmost intersection point on L_{1} of a horizontal line colinear with c. Line L_{4} is constructed to pass through point d and make an angle $\theta / 2$ with the y-axis. This procedure is repeated until all n lines have been used up. For example, after line L_{4} has been inserted, \mathbf{f} is the intersection point with maximum y-coordinate and g is the point on line L_{1} with y-coordinate equal to that of f. Therefore, line L_{5} passes through g and makes an angle $\theta / 2$ with the y-axis, where θ is the angle made by line L_{4} with the y-axis.

Since at each step the angle with the y-axis is decreased by half of the remaining angle all the lines in the arrangement have negative slope and this ensures that when we add a new line no new intersection point is dominated by any other new intersection point. By making each line pass through the point on line L_{1} that has the same y-coordinate of the highest intersection point created thus far we ensure that no new intersection point is dominated by any old intersection point. Therefore at each step all the new intersection points introduced are outer layer points. Therefore all $n(n-1) / 2$ intersection points are outer layer points.

It follows that even if we use the output-sensitive algorithm of Kirkpatrick and Seidel [16] with $O(k \log v)$ complexity, where k is the number of input points and v is the number of outer layer points found, our results imply an adaptive algorithm with $O\left(n^{2} \log v\right)$ actual running time, $O\left(n^{2}\right)$ expected time, and $O\left(n^{2}\right)$ space.

4. Proof of Theorem 1

It suffices to show the result for $\mathbf{E} N_{\text {ol }}$. In our proof, we require many auxiliary results.

Lemma 3. Let $\left(R_{1}, \Theta_{1}\right)$ and $\left(R_{2}, \Theta_{2}\right)$ define two random lines according to the model of the previous section. Then, for $r>0$, if the intersection point is at distance Δ from the origin,

$$
\mathbf{P}\{\Delta \geq r\} \leq 2 \mathbf{E} R / r
$$

Proof. Consider Fig. 3. Figure 3 shows two random lines with $\Theta_{1}=$ $3 \pi / 2$ and $\Theta_{2} \in(0, \pi / 2)$. The distribution of Δ remains unchanged if we replace Θ_{2} by $\pi-\Theta_{2}$. To treat the case $\Theta_{2} \in(\pi, 2 \pi)$, we note that if Θ_{2} is replaced by either $2 \pi-\Theta_{2}$ or by $\pi+\Theta_{2}$, then the new Δ^{*} (say) is not greater than Δ. Thus, to bound $\mathbf{P}\{\Delta \geq r\}$ from above, it suffices to consider $\Theta_{1}=3 \pi / 2$ and Θ_{2} uniformly distributed on ($0, \pi / 2$).

The angles η_{1} and η_{2} are as shown in Fig. 3. We have $\eta_{1}=$ $\arcsin \left(R_{1} / \Delta\right), \eta_{2}=\arcsin \left(R_{2} / \Delta\right)$, and $\pi / 2-\Theta_{2}=\eta_{1}+\eta_{2}$. Thus,

$$
\frac{R_{1}}{\Delta}=\sin \eta_{1}>\frac{2}{\pi} \eta_{1},
$$

and similarly for R_{2}. Combining this shows that

$$
\frac{R_{1}+R_{2}}{\Delta} \geq \frac{2}{\pi}\left(\eta_{1}+\eta_{2}\right)=1-\frac{2}{\pi} \Theta_{2}=U
$$

Figure: 3
where U is a uniform $[0,1]$ random variable. Thus, $\Delta \leq\left(R_{1}+R_{2}\right) / U$, and by Markov's inequality, after conditioning on $R_{1}+R_{2}$ and then un-conditioning,

$$
\mathbf{P}\{\Delta \geq r\} \leq \mathbf{P}\left\{U \leq \frac{R_{1}+R_{2}}{r}\right\} \leq \frac{2 \mathbf{E} R_{1}}{r}
$$

LEMMA 4. Let g_{i} be nonnegative nonincreasing functions. If (X_{1}, \ldots, X_{n}) is a multinomial random variable, then

$$
\mathbf{E} \prod_{i} g_{i}\left(X_{i}\right) \leq \prod_{i} \mathbf{E} g_{i}\left(X_{i}\right)
$$

Proof. The multinomial distribution is negatively quadrant dependent (see, e.g., [17]). In addition, it is S-MRR2 (it is strongly multivariate reverse of order 2), from which Lemma 4 follows according to Corollary 2.1 on page 505 of Karlin and Rinott [13].

Lemma 5. Let $p \in(0,1)$ and positive integers l and n be given, and let

$$
\left(N_{1}, N_{2}, \ldots, N_{l n}\right)
$$

be a multinomial random vector with parameters n (the sample size) and
$1 /(\ln)$ (equal probabilities). Then

$$
\mathbf{E}\left(\prod_{1 \leq i \leq n: N_{i} \geq 2}(1-p)\right) \leq e^{-\varepsilon_{n} p n},
$$

where $c_{n}=1-(1+1 / l) e^{-(n-1) / l n}$, and $c_{n} \rightarrow c=1-(1+1 / l) e^{-1 / l}$ as $n \rightarrow \infty$.

Proof. We rewrite the product and use Lemma 4:

$$
\begin{aligned}
\mathbf{E} \prod_{i=1}^{n} & \left((1-p) I_{\left[N_{i} \geq 2\right]}+I_{\left[N_{i}<2\right]}\right) \\
& =\mathbf{E} \prod_{i=1}^{n}\left(1-p+p I_{\left[N_{i}<2\right]}\right) \\
& \leq \prod_{i=1}^{n} \mathbf{E}\left(1-p+p I_{\left[N_{i}<2\right]}\right) \\
& =\left(1-p+p\left(1-\frac{1}{\ln }\right)^{n}+p \frac{n}{\ln }\left(1-\frac{1}{\ln }\right)^{n-1}\right)^{n} \\
& =\left(1-p+p\left(1-\frac{1}{\ln }\right)^{n-1}\left(1-\frac{1}{\ln }+\frac{1}{l}\right)\right)^{n} \\
& \leq\left(1-p+p e^{(n-1) / l n}\left(1+\frac{1}{l}\right)\right)^{n} \\
& \leq \exp \left(-p n\left(1-\left(1+\frac{1}{l}\right) e^{-(n-1) / l n}\right)\right) .
\end{aligned}
$$

Next, we partition the plane up into 12 cones C_{i} of equal angle $2 \pi / 12$, and with the center at the origin. The range of angles governed by C_{i} is [$2 \pi(i-1) / 12,2 \pi i / 12$). Furthermore, every cone is divided up into precisely n small cones of equal angle range $2 \pi / 12 n$. For one of these small cones C, the cone obtained by mirroring about the origin is denoted by C^{\prime}.

Lemma 6. Let $\left(R_{1}, \Theta_{1}\right)$ be a random line in which Θ_{1} is restricted to a small cone C contained in C_{10}, and let $\left(R_{2}, \Theta_{2}\right)$ be a random line in which Θ_{2} is restricted to $C^{\prime} \subseteq C_{4}$. Let $V=V_{1,2}$ be the intersection point of the two lines, and let $r>0$ be a given constant. Then

$$
\mathbf{P}\left\{\|V\| \geq r, V \in C_{1}\right\} \geq 6 n \mathbf{E} R / \pi r
$$

if $n \mathbf{E} R / r \leq \pi / 12$.

Figure 4

Proof. Figure 4 shows a particular collection of 12 cones. The circle of radius r centered at the origin is also shown. The small cones are not shown in Fig. 4 as each C_{i} contains precisely n of them.

The first fact needed is that V necessarily belongs to C_{1} or C_{7}. An argument such as the one used in Lemma 3 shows that, using $\sin \eta \leq \eta$ for $\eta>0$,

$$
\frac{R_{1}+R_{2}}{\|V\|} \leq\left|\Theta_{1}-\pi-\Theta_{2}\right| .
$$

Conditional on $X_{1} \in C$ and $X_{2} \in C^{\prime}$, the right-hand side of this inequality is distributed as $\left.(2 \pi / 12 n) \mid U-U^{\prime}\right\}$, where U and U^{\prime} are i.i.d. random variables with the uniform distribution on $[0,1]$. Note that $\mathbf{P}\left\{\left|U-U^{\prime}\right| \leq x\right\}=2 x-x^{2}$ if $0 \leq x \leq 1$ so that $\mathbf{P}\left\{\left|U-U^{\prime}\right| \leq x\right\} \geq$ $\min (1, x)$. Also, on a large enough probability space, we may assume that U and U^{\prime} are independent of R_{1}, R_{2}. Thus, we have, exploiting various
symmetries,

$$
\begin{aligned}
\mathbf{P}\{\|V\| & \left.\geq r, V \in C_{1}\right\} \\
& =\frac{1}{2} \mathbf{P}\left\{\|V\| \geq r, V \in C_{1} \cup C_{7}\right\} \\
& =\frac{1}{2} \mathbf{P}\{\|V\| \geq r\} \\
& \geq \frac{1}{2} \mathbf{P}\left\{\frac{R_{1}+R_{2}}{(2 \pi / 12 n)\left|U-U^{\prime}\right|} \geq r\right\} \\
& \geq \frac{1}{2} \mathbf{E}\left\{\min \left(1, \frac{(12 n)\left(R_{1}+R_{2}\right)}{2 \pi r}\right)\right) \\
& \geq \frac{1}{2} \min \left(1, \frac{12 n \mathbf{E} R}{\pi r}\right) \\
& =\frac{6 n \mathbf{E} R}{\pi r},
\end{aligned}
$$

where we used the fact that $n \mathbf{E} R / r \leq \pi / 12$.
Lemma 7. Assume that R and r are related via the inequality

$$
\frac{n \mathbf{E} R}{r} \leq \frac{\pi}{12} .
$$

Let N denote the number of $V_{i j}$'s that end up with $\left\|V_{i j}\right\| \geq r$ and $V_{i j} \in C_{1}$ (in the notation of Lemma 6). Then

$$
\mathbf{P}\{N=0\} \leq \exp \left(-c_{n} \frac{3 n^{2} \mathbf{E} R}{\pi r}\right),
$$

where $c_{n}=1-(1+1 / 6) e^{-(n-1) / 6 n}$.
Proof. We consider the cone partition defined above Lemma 6. There are $12 n$ small cones. We create $6 n$ double cones by joining each cone with its mirror cone (about the origin). These are called B_{i} (B for baby cone). The indices of the baby cones that intersect C_{4} are grouped into a set G (G for good indices). Observe that the cardinality of G is precisely n. Let N_{i} denote the number of points X_{j} that belong to the baby cone B_{i}. The probability of $\left[X_{1} \in B_{i}\right.$] is precisely $1 / 6 n$ for each i. The vector of N_{i} 's is multinomially distributed with sample size n and equal probability parameters $1 / 6 n$. If B_{i} has at least two X_{j} 's, then we take the first two such X_{j} 's
(by index) and define the intersection point of their lines by W_{i} (W for way out there); otherwise, we artificially generate a W_{i} distributed as in the case of $N_{i}=2$. This necessitates a larger probability space; in fact, we are using an embedding argument. The purpose of this is to ensure that the W_{i} 's and the N_{i} 's are independent. Clearly, if $p_{i} \stackrel{\text { def }}{=} \mathbf{P}\left\{W_{i} \in C_{1},\left\|W_{i}\right\| \geq r\right\}$, then, by Lemma 6 , for $i \in G$,

$$
p_{i} \geq \frac{1}{2} \times \frac{6 n \mathbf{E} R}{\pi r} \stackrel{\text { def }}{=} p
$$

where the factor $\frac{1}{2}$ takes into account that there is a 50% probability of X_{1} and X_{2} ending up in opposite cones of B_{i} given that both belong to B_{i}. Thus,

$$
\begin{aligned}
\mathbf{P}\{N=0\} & \leq \mathbf{P}\left\{\bigcap_{i \in G: N_{i} \geq 2}\left[W_{i} \notin C_{1}\right] \cup\left[\left\|W_{i}\right\|<r\right]\right\} \\
& \leq \mathbf{E}\left(\prod_{i \in G: N, \geq 2}(1-p)\right) \\
& \leq e^{-c_{n} p n} \quad(\text { Lemma } 5)
\end{aligned}
$$

Note also that, in the last step we required the inequality for $\mathbf{E} R$ given in the statement of the lemma.

To prove Theorem 1, it is convenient to compute an upper bound for $\mathbf{E} N_{0}$ with sample size $n+2$. In the notation of the lemmata, we will take $r=(n+2)^{2} \mathbf{E} R$. However, we will delay the substitution of r until as far as possible to show why such a choice is practical. The plane is partitioned into 12 equal cones C_{i}. We reserve the notation $C_{i}(r)$ for the subset of C_{i} consisting of all points at distance at least r from the origin. The cardinality (number of points among the $V_{k j}$'s, $1 \leq k, j \leq n$, falling in a set) of $C_{i}(r)$ is denoted by $\left|C_{i}(r)\right|$. The intersection point of the lines defined by X_{n+1} and X_{n+2} is $V=V_{n+1, n+2}$. The following claim is crucial. If V is an outer layer point for the lines defined by X_{1}, \ldots, X_{n} and $\left|C_{2}(2 r)\right|>0,\left|C_{5}(2 r)\right|>0,\left|C_{8}(2 r)\right|>0$, and $\left|C_{11}(2 r)\right|>0$, then $\|V\| \geq$ r. To see this, we refer to Fig. 5.

Cover the circle of radius r by a square of sides $2 r$ and with center at the origin. Take any x in this square. We claim that all four quadrants centered at x properly contain one of the sets $C_{i}(2 r)$ with $i \in\{2,5,8,11\}$. In Fig. 5, note that the points at coordinates $(2 r, 0)$ and $(r \sqrt{3}, r)$ form an angle of $\pi / 6$ at the origin. Thus, no point inside the square can be an outer layer point if all four $C_{i}(2 r)$'s are nonempty.

The argument then continues as follows. Choose the largest integer M with the property that

$$
2^{M} \leq \frac{\pi}{12} \frac{r}{n \mathbf{E} R}=\frac{\pi}{12} \frac{(n+2)^{2}}{n}
$$

Such a choice is necessary in order to allow us to meet the inequality constraint imposed by Lemma 7. We have

$$
\begin{aligned}
& \mathbf{E} N_{\mathrm{ol}} \leq\binom{ n+2}{2} \mathbf{P}\left\{V \text { is an outer layer point for the lines } X_{1}, \ldots, X_{n}\right\} \\
& \leq \frac{(n+2)^{2}}{2} \mathbf{P}\left\{\bigcup_{i \in\{2,5,8,11\}}\left[\left|C_{i}(2\|V\|)\right|=0\right]\right\} \\
& \leq 2(n+2)^{2} \mathbf{P}\left\{\left|C_{1}(2\|V\|)\right|=0\right\} \text { (by rotational symmetry) } \\
& \leq 2(n+2)^{2}\left(\sum_{j=0}^{M} \mathbf{P}\left\{\|V\| \in\left(r 2^{-(j+1)}, r 2^{-j}\right\},\left|C_{1}\left(r 2^{-(i-1)}\right)\right|=0\right\}\right. \\
& \left.+\mathbf{P}\left\{\left|C_{1}\left(r 2^{-M}\right)\right|=0\right\}+\mathbf{P}\{\|V\|>r\}\right) \\
& =2(n+2)^{2}\left(\sum_{j=0}^{M} \mathbf{P}\left\{\|V\| \in\left(r 2^{-(j+1)}, r 2^{-j}\right]\right\} \mathbf{P}\left\{\left|C_{1}\left(r 2^{-(j-1)}\right)\right|=0\right\}\right. \\
& \left.+\mathbf{P}\left\{\left|C_{1}\left(r 2^{-M}\right)\right|=0\right\}+\mathbf{P}\{\|V\|>r\}\right) \\
& \leq 2(n+2)^{2}\left\{\exp \left(-c_{n} \frac{3 n^{2} \mathbf{E} R 2^{M}}{\pi r}\right)\right. \\
& \left.+\sum_{j=0}^{M} \frac{2^{j+2} \mathbf{E} R}{r} \exp \left(-c_{n} \frac{3 n^{2} \mathbf{E} R 2^{j-1}}{\pi r}\right)+\frac{2 \mathbf{E} R}{r}\right\},
\end{aligned}
$$

where we applied Lemmata 3 and 7. We resubstitute the values of M and r and recall that $c_{n}=1-(7 / 6) e^{-(n-1) / 6 n} \rightarrow c \stackrel{\text { def }}{=} 1-(7 / 6) e^{-1 / 6}$. The upper bound can be bounded in turn by

$$
\begin{aligned}
2(n & +2)^{2} \exp \left(-c_{n} \frac{3 n^{2} 2^{M}}{\pi(n+2)^{2}}\right)+\sum_{j=0}^{\infty} 2^{j+3} \exp \left(-c_{n} \frac{3 n^{2} 2^{j-1}}{\pi(n+2)^{2}}\right)+4 \\
& =\mathrm{I}+\mathrm{II}+4
\end{aligned}
$$

Figure 5
which does not depend upon the distribution of R. Also, I tends to 0 with n since 2^{M} grows linearly with n. Finally, for all n large enough (so that c_{n} is positive), the sum in II is finite. In fact, we have

$$
\limsup _{n \rightarrow \infty} \mathbf{E} N_{\mathrm{ol}} \leq 4+\sum_{j=0}^{\infty} 2^{j+3} \exp \left(-(3 c / \pi) 2^{j-1}\right)
$$

This concludes the proof of the theorem.

Acknowledgments

The authors are grateful to W. Randolph Franklin and Hazel Everett for discussions on line arrangements. We also thank Imre Bárány for discussions related to the dual of our problem. Finaliy, the careful comments of the referees are deeply appreciated.

References

I. M. J. Attallah, Computing the convex hull of line intersections, J. Algorithms 7 (1986), 285-288.
2. K. H. Borgwardt, "The Simplex Method-A Probabilistic Analysis," Springer-Verlag, Berlin, 1987.
3. C. Buchta, Zufällige Polyeder: ein Ubersicht, in "Lecture Notes in Mathematics," Vol. 1114, pp. 1-13, Springer-Verlag, Berlin, 1985.
4. H. Carnal, Die konvexe Hülle von n rotationssymmetrisch verteilten Punkten, Z. Wahrsch. Verw. Gebiete (1970), 168-176.
5. Y. T. Ching and D. T. Lee, Finding the diameter of a set of lines, Pattern Recognit. 18 (1985), 249-255.
6. L. Devroye and T. Klincsek, Average time behavior of distributive sorting algorithms, Computing 26 (1981), 1-7.
7. L. Devroye and G. T. Toussaint, A note on linear expected time algorithms for finding convex hulls, Computing (1981), 361-366.
8. R. A. Dwyer, "Average-Case Analysis of Algorithms for Convex Hulls and Voronoi Diagrams," Ph.D. dissertation, Carnegie-Mellon University, 1988.
9. R. A. Dwyer, "Convex Hulls of Samples from Spherically Symmetric Distributions," Technical Report, North Carolina State University, 1989.
10. H. Edelsbrunner, "Algorithms in Combinatorial Geometry," Springer-Verlag, Heidelberg, 1987.
11. H. Edelsbrunner, L. Guibas, and M. Sharir, The complexity and construction of many faces in arrangements of lines and of segments, Discrete Comput. Geom. 5 (1990), 161-196.
12. B. Grunbaum, "Convex Polytopes," Wiley, London, 1967.
13. S. Kari.in and Y. Rinott, Classes of orderings of measures and related correlation inequalities. II. Multivariate reverse rule distributions, J. Multitariate Anal. 10 (1980), 499-516.
14. S. Karlin and Y. Rinott, Classes of orderings of measures and related correlation inequalities. I. Multivariate totally positive distributions, J. Multitariate Anal. 10 (1980) 467-498.
15. D. G. Kirkpatrick and R. Seidel, Output-sensitive algorithms for finding maximal vectors, in "Proceedings, 2nd Annual Symposium on Computational Geometry, Baltimore," pp. 89-96, ACM, New York, 1985.
16. D. Kirkpatrick and R. Selofl. The ultimate planar convex hull algorithm?, SIAM J. Comput. 15 (1986), 287-299.
17. C. L. Mallows, An inequality involving multinomial probabilities, Biometrika (1968), 422-424.
18. A. Rényi and R. Sulanke, Über die konvexe Hülle von n zufällig gewählten Punkten, Z. Wahrsch. Verw. Gebiete 3 (1964), 138-1247.
19. R. Schneider, Random approximation of convex sets, J. Microscopy 151 (1988), 211-227.

[^0]: * Research of the authors was sponsored by NSERC Grant A3456 and by FCAR Grant 90-ER-0291.

