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Abstract: We split [0,1] in a uniform manner, take the largest of the two intervals thus obtained, split this interval again 
uniformly, and continue in this fashion ad infinitum. We show that the extremes of this interval converge almost surely to a 
beta (2,2) random variable. 
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1. Introduction 

An interval is split by generating a uniformly 
distributed random variable on that interval. As- 
sume that after a split, we decide to split the larger 
of the two subintervals again. We start with [0,1], 
and continue this splitting scheme at infinitum. 
The asymptotic properties of the interval are 
studied. The main result of this paper is that the 
distribution of the eventual location of the ex- 
tremes of the interval is beta (2,2) distributed. In 
other words, it is distributed as the median of 
three iid uniform [0,1] random variables. 

The interval splitting process should not be 
confused with Kakutani 's  interval splitting proce- 
dure (Kakutani, 1975; Lootgieter, 1977; Pyke, 
1980), in which a split is applied at every step to 
the largest subinterval (spacing) obtained thus far. 
In other words, after n splits, Kakutani splits the 
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largest of the n + 1 intervals induced by these 
splits. 

Also, there is almost no connection with the 
spacings obtained in an iid sample of uniform [0,1] 
random variables on [0,1] (see Pyke (1965, 1972) 
or Devroye (198l) for surveys of properties of 
these spacings). In 1941, Kolrnogorov introduced 
his rock-crushing process. A rock of size one is 
split. Each of the two rocks thus obtained is split. 
Thus, after k rounds of splitting, one obtains 2 ~ 
rocks. The distribution of the sizes of these rocks is 
studied by Fillippov (1961) and others. See also 
Athreya and Ney (1972). Our scheme is concerned 
with only one of these 2 k rocks. But aside from the 
size of the rock (which reduces to a trivial exercise), 
we are also interested in a location problem. 

We will employ the following notation: 

[A(,, 801 = [0,11, 

[A,,+I,B,,+I]={[X,,,B,,] ifX,,<~}(A,,+B,,), 
[A,,, X,,] ifX,,>½(A,,+B,,), 
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Here X , , = A , , + ( B , - A , , ) U , ,  and U 0, U,. U2 . . . .  is 
a sequence of iid uni form [0,1] r andom variables. 
In the first short subsection, we deal with the 
asymptot ic  size of  the interval. In the next subsec- 
tion, the limit distr ibution of the eventual location 
is obtained.  

2. Size of the interval 

Lemma 1. B,, - A,, is distributed as 

H . ~ < , . . ( ( 1  + U , ) /2 )  

where the Ui's are iid uniform [0,1] random varia- 
bles. In particular, 

A. E ( B , - A , , ) = ( ~ ) " ,  
B. B,, - A ,  ~ 0 almost surely as n --* oo. 

C. (e/2)v/"/(1-2t°g- ' (2))(B, ,  - A,,)1/V ['il :1"g2(2)) 

tends in distribution to the standard lognormal law. 
In other words we have that (log( B,, - A,, ) 

n l o g ( 2 / e ) ) / { n  (1 - 2 log 2 (2)) tends in distribution 
to a normal (0,1) random variable. 

Proof.  The first s ta tement  follows f rom the fact 
that  the interval selected after one split of [0,1] is 
distr ibuted as max(U, 1 -  U)  where U is uni- 
formly distr ibuted on [0,1], and the observat ion 
that this m a x i m u m  is in turn distr ibuted as 
(1 + U ) / 2 .  Statement  A follows immediate ly  f rom 
this. Statement  B follows f rom statement  A and 
the Borel Cantelli lemma.  A small computa t ion  
shows that log((1 + U ) / 2 )  has mean log(2/e) ,  sec- 
ond momen t  2 log(e /2)  - log2(2) and variance 1 - 
21og2(2). The central limit theorem gives us C. [] 

3. The asymptotic location 

In this section, we look at the limit law of A,,, 
B, and X,,. It is easy to see that such a limit law 
exists: 

Theorem 1. Existence of a limit law. There exists a 
random variable W such that 

lim A , =  lim X, ,= lim B, ,= W 

almost surely. 

Proof.  Since A,, and B,, are both  monotone  se- 
quences, their a lmost  sure limits exist. In view of 
L e m m a  1, They must be equal. [] 

Our  problem is solved if we can identify the law 
of W. It should be clear that W is symmetr ic  
about  ½. Fur thermore,  W satisfies the following 
distr ibutional equality: 

Lemma  2. The fundamenta l  distributional equa- 
tion. Let (IV, U)  be independent random variables, 
where W is the random variable of  Theorem 1, and 
U is a uniform [0,1] random variable. Then, define 
Zby 

f WU, U> '2, 
Z =  

t l -  W ( 1 - U ) ,  U ~ < I .  

Then Z is again distributed as W. 

Proof.  Consider  U as the location of X 0 for the 
first split, and observe that condit ioned on X 0, Z 
is the eventual location of the interval. But obvi- 
ously, Z is distr ibuted as IV, by construct ion of 
the processes. [] 

In Theorem 1, we observed that there is one 
limit r andom variable W. This r andom variable 
satisfies the distr ibutional  equality of L e m m a  2. 
The distr ibutional p roper ty  of Lemma  2 is satis- 
fied for the beta (2,2) density: 

Theorem 2. Let W be a random variable with the 
beta (2,2) density'. Then W satisfies the distribu- 
tional equality of  Lemma 2. 

Proof.  The beta (2,2) density is 6x(1 - x),  0 ~< x ~< 
1. Let W have this density, and let Z be defined 
by 

f wu,  u >  Z =  ll-W(1-u), 
Here U is uniformly distr ibuted on [0,1]. Then 
simple computa t ions  show that the density of  Z is 

6 1 Z ( 1  ~ a x ( : , 2 ) u -  ) 1 du 

rl 
+ 6  1 du 

Vmax(1 -=,2) 
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( 1) 
= 6 z  9 z 2 -  6(1 - z )  1 1 - z  

( ;) + 3 ( l - z )  2 1 (1 z)2 ( z < ½ )  

= 6 z -  9z 2 + 6 z -  3 ( 2 z -  z2) = 6 z -  6z 2. 

This concludes the proof of Theorem 2. [] 

Thus, 

- 1)- kbj=-~-i- (1 - 
i =  0 

/~"= 1 
1 -  2lrodd r +__~_ ( 1 -  2 (~+1)) 

2 ( i+11)  

( r = 1 , 2 , 3  . . . .  ). 

This concludes the proof of Theorem 3. [] 

The fact that the distributional equality is 
satisfied for the beta (2,2) density does not imply 
that it cannot be satisfied for other distributions as 
well. We are done if we can show that the distribu- 
tional equality has a unique solution. 

Theorem 3. Main result. W is beta (2,2) distrib- 

uted. 

Proof. Lemma 2 provides us with a relationship 
for the moments of any distribution for which the 
distributional property is satisfied. As we will see 
below, any such distribution must share the same 
moments /~, k% . . . . .  so that by the fact that an 
infinite moment sequence uniquely determines a 
distribution when it has compact support, we con- 
clude that only one distribution can satisfy the 
distributional property. But in view of Theorem 2, 
this then has to have beta (2,2) density. Since W of 
Theorem 1 also satisfies the distributional prop- 
erty (Lemma 2), W has beta (2,2) density. 

To see how the moments are uniquely de- 
termined by our distributional equality, we use/x r 
to denote E ( w r ) ,  where r is a nonnegative in- 
teger. Then 

[~r : E (  W ' U ' I u >  1/2)  

- w ( 1  - u ) )  

= E ( W r ) E ( U ~ I u > I / 2 )  

r 

j =  

1 2 , r+l , )  

r 

j =  

It is perhaps interesting to note that the limit 
law for our interval splitting process is the same as 
that of the median of three iid uniform [0,1] ran- 
dom variables. Another by-product is that the 
median of three iid uniform [0,1] random variables 
is distributed as the median of three uniform [A, 'B] 
random variables where [A, B] is the largest of 
[0, U], [U, 1], and U is a uniform [0,1] random 
variable. 

4. O t h e r  spl i t t ing s c h e m e s  

The splitting scheme can be generalized by tak- 
ing the largest spacing with probability p and the 
smallest spacing with probability 1 - p .  Let W be 
the asymptotic location (which exists with prob- 
ability one). Let W, U, B be independent random 
variables where U is uniform [0,1], B is Bernoulli 
(p ) ,  and W is our asymptotic location. Then the 
random variable Z defined by 

, ½, WU, U > ~ ,  Z = l o r U ~ <  

Z =  Z = 0 ,  
I - W(I - U) ,  otherwise, 

is again distributed as W. 

Theorem 4. In the general interval splitting scheme, 
W is beta distributed if and only if p = 1 or p = ½. 
When p = 1, it is beta (2,2), and when p = ½ it is 
beta ( ~, ½) (arcsin). 

Proof. The uniqueness of the solution of the dis- 
tributed equation is easily established (see e.g. the 
proof of Theorem 3). Also, in view of the fact that 
W is distributed as a uniform scale mixture, W 
has a density, which we shall call f .  Furthermore, 
by symmetry, f(1 - w ) = f ( w )  for all w ~ [0A]. 
For w ~ [0,½], we have 

185 



Volume 4, Number 4 

f (w)  = (1 - p ) [ '  f__(v) d v  
J2 w v 

0<w<½. 

if we replace f ( w )  by  (w(1 - w)) ~' in  the in tegra l  
equa t ion ,  where  a > - 1  is a cons tan t .  T h e n  the 
fo l lowing re la t ion  is o b t a i n e d :  

a ( w ( 1 - w ) ) "  ' ( 1 - 2 w )  

(2w(1 - 2 ) ) "  
-= (4p  - 2) 2w 

+ p ( w ( 1 - w ) ) "  1 - w  w " 

This  should  be an  iden t i t y  in  w. This  is the case 
w h e n  p = l ,  a = l  a n d  p = ½ ,  a = - ½ .  To  see 
tha t  there are no  o the r  solut ions ,  rewri te  the re- 
qu i r ed  iden t i ty  as fol lows:  

( a  + p ) ( ]  -- w )  a 1 ~ 2" ' (1  - 2 w ) "  ' ( 4 p  - 2). 

W h e n  a is no t  equa l  to 1, we need  to requi re  that  
a + p = 4p  - 2 = 0. W h e n  a = 1 it is necessary  that  

a + p = 4 p - 2  (i.e., p = l ) .  T h u s  there are n o  
o the r  be ta  so lu t ions .  [] 

The  in tegra l  e q u a t i o n  in the p roo f  of  T h e o r e m  4 
can  be used to d e t e r m i n e  the shape  of the dens i ty  f 
in  the genera l  case. 
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