
SCAM J . CoMPUT.

	

© 1 995 Society Far Industrial and Applied Mathemtiacs
001

Vol . 24, No. 6, pp . 1141-1156, December 1995

ON THE GENERATION OF RANDOM BINARY SEARCH TREES*
LUG DEVROYEt AND JOHN MICHAEL ROBSONt

Abstract . We consider the computer generation of random binary search trees with n nodes for the standard
random permutation model . The algorithms discussed here output the number of external nodes at each level, but
not the shape of the tree. This is important, for example, when one wishes to simulate the height of the binary search
tree . Various paradigms are proposed, including depth-first search with pruning, incremental methods in which the
tree grows with random-sized jumps, and a tree growing procedure gleaned from birth--and-death processes. The last
method takes O(logo n) expected time .

Key words, binary search tree, height of a tree, probabilistic analysis, expected complexity, simulation, random
combinatorial object, point process, recursive procedure

AMS subject classification, 68Q25, 68U20, 93E30, 00A72, 11 K45, 65C05, 65C10, 05080, 68R++, 68P05,
68P10, 60C05

1. Introduction. The binary search tree is one of the most frequently used structures in
computer science, see e.g ., Aho, Hopcroft, and U11man [1], Knuth [19], or Cormen, Leiserson,
and Rivest [4] . A random binary search tree is defined as the random binary tree obtained by
consecutive insertion of X 1	X,, into an initially empty tree, where X j , . . . , X 1, is either
an independently and identically distributed (i .i.d .) sequence of random variables with a fixed
density, or an equiprobable random permutation of { 1, . . . , n} . The height Hn of the tree is the
maximal distance between any node and the root (thus, H 1 .= 0, as the root is at distance 0 from
itself, and H2 = 1) . In this paper, we propose various methods for the generation of random
binary search trees . Trees with n nodes necessarily require Q (n) time . Since many quantities
related to random trees such as their heights grow logarithmically with n, large size trees are
required in simulations that attempt to extract asymptotic information . In fact, one often does
not care about the actual tree, but rather about the number of nodes at each level. The methods
given below take sublinear expected time and output a random vector (flu	flm) where n
is the number of external nodes at level i . The height Hn is nothing but m - 1, for example .
Early studies of Hn include Robson [26], [27], Pittel [23], and Mahmoud and Pittel [21] . See
also Mahmoud [20] . While it is known that

Hn

	

defc

	

4.33107 . . . a.s .log n
as n -~-* ono (Devroye, [6], [9]), very little additional information is available regarding H n ,
and one is led to simulation in order to study the second-order properties of H n such as its
variance, its asymptotic distribution, and so forth . Such simulations require formidable values
of n in view of the logarithmic growth of Hn with n . It is thus of great importance to ensure
that the time and especially the space requirements grow slowly with n .

Constructing the tree by consecutive insertions leads to a ®(n log n) expected time and
e (n) space algorithm. One cann exploit a certain growth property of the random binary search
tree (all external nodes are equally likely to receive a new node), leading to a e (n) time and
e (n) space method for growing the tree by direct insertion of new nodes at old leaves . With
extra effort, the space requirement can be reduced to ® (log n) expected space .

* Received by the editors January 22, 1992 ; accepted for publication (in revised form) March 15, 1994 .
t School of Computer Science, McGill University, 3480 University Street, Montreal, Quebec H3A 2K6, Canada

(1 u c@c r odo . c s . me g i 11 . ca) . This author's research was sponsored by National Science and Engineering
Research Council of Canada grant A3456 and Formation de chercheurs et action de recherche grant 90-ER-0291 .

$ Department of Computer Science, Australian National University, G.P.O. Box 4, Canberra, A .C.T. 2601, Aus-
tralia . Current address: LaBRI, University Bordeaux I, 351 Cours de la Libiration, 33445 Talence cedex, France
(robson@essi2 .cerisi .tr).

1141

1 142

	

LUC DEVROYE AND JOHN MICHAEL ROBSON

In §3, we present a simple method that requires O (n / log n) expected time and O (log n)
expected space . A shortcut is required as a sublinear time method cannot possibly con-
sider all nodes in the tree. The algorithm presented here uses some sort of depth-first
search with tree pruning gleaned from game tree search applications . The idea of sim-
ulating random variables via shortcuts that bypass the definition of the random variables
has been exploited by many . For example, the maximum of n i .i .d. random variables with
a given density f can be generated in expected time 0(1) or O (log n) depending upon
whether the distribution function is available at unit cost or not [28], [5] . The sum of n
i .i .d. random variables can also be generated in time o(n) ; often, 0(1) expected time is
achievable, as is demonstrated in [7], [11] . A binomial (n, p) random variable represent-
ing the outcome of n coin flips is nowadays routinely generated in 0(1) expected time
([2], [15], [24], [25], [10], [16], [29]--[30]) uniformly bounded over n and p . The result
of this paper is just another illustration of the same principle . The method of §3 is extremely
easy to implement, and is competitive with the other methods for values n that are not too
large .

In §4, we recall a simple linear time method based upon growing a random binary search
tree by replacing external nodes, i .e ., not by insertion from the root down . Probabilistic
shortcuts based upon waiting times allow us in § 5 to reduce the expected time to O(/ log n) .
This requires efficient generators for a multivariate hypergeometric' and a certain waiting
time distribution, thereby rendering the programming effort and the overhead a bit heavier .
Nevertheless, for medium-sized values of n, the method is very useful .

In §6, a random binary search tree is grown by imagining that each external node is a living
organism that will bear two children and die according to a simple Poisson point process . We
then let the time grow by constant amounts, so that the tree grows at an exponential rate . At
any given moment, we have a correctly distributed binary search tree, but the size is random .
When one stops as soon as the size of the tree is n or larger, the expected time complexity is
o (logo n) . A modification of the algorithm is introduced to obtain the right size . The constant
in o (logo n) is rather large due to the overhead in a multinomial random vector generator used
in a bottleneck portion of the algorithm. This last method is useful for extremely large n, such
as n

	

1040.

2. Two key properties of random binary search trees .
FACT 1. If we associate with node i in a random binary search tree an integer S~ denoting

the size of the subtree rooted at that node, then for any (i .e., left or right) child j of node i, we

have

Si G LS; U J

where means "is distributed as," and U is a uniform [o, 1] random variable independent of

Si .
As an immediate corollary of this we have the following fact .

FACT 2. Let node i in a random binary search tree have children j and k . Then

c

	

c

	

1+U
max(SJ , Sk)

	

[Sf max(U, 1 -- U)J , - Sr

	

,
2

where U is a uniform [0, 1] random variable independent of S ; .

ON THE GENERATION OF RANDOM BINARY SEARCH TREES

	

1 143

3. A simple algorithm for the height of a random binary search tree .

3.1. Description. The algorithm keeps a stack of nodes characterized by a pair (1, s),
where 1 is the level of a node (i .e ., its distance from the root), and s is the size of the subtree
rooted at that node . The actual position of each node in the tree and the actual tree with all
its links are never constructed . As we proceed, nodes on the stack are split into two nodes
representing the children. A node (1, s) is thus split into (1 + 1, s) and (1 + 1, s2), where
s 1 +- s2 = s -- 1 . Moreover, s 1 is distributed as Ls U] , where U is uniformly distributed on
[o, 11. See Fact 1 above. The new nodes are put back on the stack with the largest subtree on
top. A node (1, s) can at best produce a node at distance 1 + s --- 1 from the root, so there is
no point in processing or stacking such a node if 1 + s -- 1 does not exceed the current value
of the height of the tree, i .e., the largest level among all nodes seen thus far . This observation
is at the basis of the sublinear expected time : not all nodes in the random binary search tree
are expanded ; in fact, only a negligible fraction (0(1/log n)) is ever expanded .

A sublinear depth-first search algorithm .

m,akenull (S) (S is a stack) .
push ((o, n), S) (put the root Onto the stack) .
h+-0 (h is the current value of the height) .
while not empty (S) do

pop ((1, s), S)
i f l+ s --- 1> h then
l1+1--
if l > h then h -- l
generate U uniformly on [1/2,1] .
s2 + - [s U j , 51 4- 5 - 1 - 52 .
if sj > 1 then i f 1 + sl -1> h then push ((l, s1), 5) .
i f s2 > 1 then i f l + s2 --- 1 > h then push ((l, s2), S) .

return h .

3.2. Expected stack size . It is easy to verify by induction that every level except the
furthest can occur at most once on the stack ; the furthest occurs at most twice (just note that
the level numbers of the nodes on the stack are strictly increasing except possibly for the top
node). This shows without further ado that the maximal stack size is less than one plus the
height of the tree, and this in turn is less than (c + E) log n almost surely for any E > o .
Furthermore, the expected stack size is not greater than (c + o(1)) log n .

3.3. Expected time analysis . Initially, we push and pop a sequence of nodes that corre-
spond to a path down the tree ending with a node with a subtree of size one . After that, the
algorithm backtracks by processing a node closer to the root . Let us call L„ the level of this
furthest node encountered in the first phase of the algorithm. Let

So -n

1+Ur

	

~i-1

	

2

	

j

	

(I_1),

where U1, U2, . . . are i .i .d. uniform [o, 1] random variables. The sequence So, S1, . . . corre-
sponds to the sizes of the subtrees rooted at the nodes processed on the first pass (see Fact 2) .

1 144

i=1

LUC DEVROYE AND JOHN MICHAEL ROBSON

It is clear that L n = k if and only if Sk_ 1 > 1 and Sk = 1. The asymptotic behavior of L n is
covered by the following result .

FACT 3 . As n --+ oo, we have

Ln

	

1
= 3.258891togn

	

log(e/2)

as n -- oo. In particular, if a < 1/ log(e/2), then

P{Ln < a log n { = O(n)~~

for some ,B > 0 depending upon a .
Proof. Observe that

k	
n~ (1 + Ui

;_1

Hence,

P{Ln ~ k} ~ P {Sk < 1}

P

	

k

C
1+U;

_< n~ 2 <_k+l
i=1

k

< P log n + > log (1 U`) < log(k + 1)
r=i

= { > 1 k
log 1 + U1 - lag n

+
log(k + 1)P --

k i _ 1

	

2

	

k

	

k

Now take k = ia log nl with O < a < 1 / loge/2). We now apply a large deviation theorem
(see, e.g., [22] or [12, §1 .9]), which states that if 11 ,)'2 , . . . are i .i .d. random variables with
mean t, and if Ee _ t~" C oo for some t > o, then, for every E > o, there exists a 8 > O such
that

k
P k~Y; <µ-E < e-ka

Now, applied to our situation, noting that

E log (1 2 U') = log(2/e)

and that

log n

	

log(k + 1)

	

1--	
+	

+ o (1) ,
k

	

k

	

a

we obtain

k
- k Sk n

C 1+U,
<<~

t-i

. . . a .s.

1 + Ui

	

log n

	

log(k + 1)

	

-a bog,7-a~ --

	

-- 4 (e

	

) -.
O(n)

2

	

k

	

k

ON THE GENERATION OF RANDOM BINARY SEARCH TREES

	

1 145

for some S > 0, provided that -1/a < log(2/e) . This proves the second half of Fact 3 . In
the same manner, one can show that

P{Ln > a log n } = o(1)

for all a > 1/loge/2) .

	

0
THEOREM. The expected time taken by the algorithm given above is O (n/ log n) .
Proof. The running time of the algorithm is appropriately measured by the number of

nodes that are ever stacked . On the first pass just described, we push at most 2(L n + 1)
onto the stack. After this first pass, only nodes with the property that the (l, s) pair satisfies
l + s - 1 > Ln can ever be pushed onto the stack. The expected number of nodes pushed on
the stack after the first pass is not more than

min n,

	

2 k I~Nk~~,k+~k-1~L„l
kTl

E

2 kP{ Nk 1 } +

	

2kP{a log n + Nk -- 1 > 3.2}log n }
k?u logo

	

k<u Iogn

nP{L n < 3.2 log n }

def I + I I ,,; III ,

where Nk is the size of the subtree of a typical node at distance k from the root. Here we took
into account that there are potentially 2" nodes at distance k from the root. Observe next that

Nk = LNk-l Uk] , No = n

where U1, U2, . . . are i .i .d: uniform [o, 1] random variables . Thus,
k

Nk C n

	

Ui G elo +1 _ G~

where Gk is a gamma (k) random variable. We have

C

a
a- 1

i1

t

(log n)k e- lag ~r

P{Nk ? 1} P{Iog n -- Gk ? 0} k!(1 - logn/(k + 1))

by an inequality for the left tail of the gamma distribution found, for example, in [9] . As a
result of this estimate, we see that for a > 1,

I =

	

2"P{Nk ? 1}
k?u 1og n

(2 Iog n)ka 1a~

k?u log n k!(1 - 1 /a)
Qlog n Iog n1ka --21og rr

k 1k?u 1og n
an P{Z a log n }
a-1

where Z is a Poisson (2 log n) random variable . We will see that we need to take a E (2, 3 .2) .
By Ghebyshev's inequality, since a > 2, we see that

Var{Z}

	

2
P{Z > a logn} C	2 Z

(a _ 2}log n - 2)2 log n

1 146

	

LUC DEVROYE AND JOHN MICHAEL ROBSON

We conclude that for a > 2,

Next,

for some 8 > 0 by Fact 3 . Finally, if y = log n - log log n -- log(3.2 - a),

Ii-

	

2k P{a log n + Nk - 1 > 3.2 log n }
k<U logn

21+l.llogn +

- 2n077

C2n0.77 +11eti

C 2n0.77 + 11 e ti

<2n077 + L.

k< 1 .1 log n

	

1.11ogn k <U log n

2nD77 +

	

: :

	

2 kP{logn --- Gk > log(3 .2 --- a) + log logn }
1 .1 log n<k<U logn

yk e
_ti,

k!(1 - y/(k + 1))1 .11ogn~kCUlogn

(2y) ke-z`

1 .1 logn~k<U logn k!

(11 1 n

3.2-a) logn

2an

1 } (a - 2)2 log n

III = nP{L„ < 3 .2 log n } n 1 --5

2kP{Nk -1> (3 .2-a)logn}

Thus, I + I I + III = D (n /logn) .

	

0

4, A simple linear time algorithm . In [7, p.650], a linear time method is given for
generating a random binary search tree. The basic algorithm is shown below.

m+-0 (m i s the number of levels)
fo g--1
for N := 1 to n do (N i s the number of external nodes)

generate L randomly in { , . . . , m
according to the frequencies n0, . . . , n,,,

nL 4 L - 1
if L -m then m#-m±1L+1

4- 'L+1 + 2
return (n0, n1, . . . , n ;,,)
(the height of the tree is m --- 1)

In this algorithm, we keep the number of external nodes at each level in an array (n0, n 1,
. . . , n,,,) . The expected storage needed for this is O (log n) since the expected height is
o (log n) . The algorithm is based upon the fact that when adding a new node, each of the ex-
ternal nodes is equally likely to receive the node. To generate the random integer L according
to the vector of frequencies (n0, . . . , n,11), one can trivially proceed in time 0(1 + m), but

ON THE GENERATION OF RANDOM BINARY SEARCH TREES

	

1 147

this would result in overall expected time 0(n log n) . To generate L in 0(1) expected time,
one has to either use more space or more programming resources . For example, keeping an
array with no + n + . . . + n,,, entries, of which n, entries have label i, would enable us to
generate L in 0(1) time. The overall time and space both are 0(n) . By a dynamic version of
the guide table method (see [3] or [13], for the raw guide table method}, D (lag n) expected
space is achievable provided that we can update the guide table in 0(1) amortized time . This
is easy to achieve if we take care to rebuild the table every log nth (or mth) entry . Between
rebuilding, the new entries in the table are collected in a simple overflow list ; this does not
affect the overall linear expected time .

5. Discrete jumps in the simulation : An a(/i log n) method .

5.1. Description . Consider a vector (no, n 1	n,,,) representing the number of external
nodes at levels o, 1	m, respectively, and assume that no + . . . + n,,, = n for now. The
previous linear time algorithm is based upon the selection of a uniform random external node,
say one at level k € (0	m}, and the updating of the vector by the rule

k+ ~-1 ~- nk+1 + 2 .

Imagine that the n original external nodes are white balls in an urn, and that the label of each
ball is its level number. A randomly selected (white) ball is removed. If its label is k, two
black balls with label k + 1 are added. This process can be repeated until we pick a black
ball for the first time. The number of draws required until this happens is a random variable
T„ E (2, . . . , n + 1}. We say that T,, has the waiting-time distribution with parameter n . We
can let the tree--growing process jump ahead by T steps at once if we are given T . Indeed,
given T, it suffices to draw T -- 1 white balls uniformly and without replacement from the urn .
The vector (Do, D 1, . . . , D,,,) represents the number of balls drawn with labels o, 1	 m ,
respectively. The distribution of this vector is multivariate hypergeometric ; the details on how
to generate the vector on a computer will be given later; it suffices for now to say that this
vector can be generated in 0(m) expected time uniformly over all n . Now, the vector of
external nodes is updated by the rule

(no	n»T, n,,,+1) +- (no, . . . ,n,,,, 0)
- (Do, D1, . . . , D,,, , 0)
+ 2(o, Do, . . . ,

The single black bail is taken care of by selecting a label L at random from the T - 1 white
ball labels just selected, the kth label being picked with probability proportional to Dk . This
label can be chosen in time 0(m) by the trivial algorithm

generate X uniformly on (1	T-1} .
S #-- Do, L

	

o .
while X > S do
L~-L+1
SE--S+DL

return L

A further update is required;

(n L+ 1, fl L+2) + (n L+ 1 - 1 fl L+2 + 2) ,

1 148

	

LUO DEVROYE AND JOHN MICHAEL ROBSON

where, if L = m + 1, we define n,,,+2 = 0 before the update and n r,r +2 - 2 after the change .
The number of external nodes now is n + T instead of n . Iterate this process until we obtain
more external nodes than needed . It is a simple matter to get the exact size one wants by
simply truncating T in the last iteration . Let us first provide the algorithm in its entirety
N 1 (N i s the number o f external nodes)
m #-0 (m i s the number of levels)=

no4-l
repeat
generate T E {2, . . .,N+ 1} with the waiting time distribution
with parameter N

if T+N > n+ 1
then T#-n+2-N, S ~-- 1
else generate S uniformly in (0, . . ., T - 1)

generate a multivariate hypergeometric (Do, . . . , Dm)
with parameters T-1 and (no , . . . , nm)

i f Dm > 0
then m #- m + 1

(no	n,,,) +- (no, . . . , fin-1, O) - (Do	D,,, .._ 1, 0) + 2(0, Do, . . . , Dm-1
else (no	nm) E-~ (no, . . • , nm) --- (Do, . . . , Dm) + 2(0, Do, • . . , Dm ._i)

i f S-1
then generate a random integer L E {o, . . . , m}

from S by inversion according to the frequencies Do, . . . , Dr„
nL+1 4- nL+1

i f L+ 2 m then n L+2 n L+2 +2
else TZL+2 4-2, mum + 1

until T +N > n+ 1
return (no, n 1 ,

	

, n,,,)
The algorithm given above returns a vector with m components nr , where nr is the number of
external nodes on level i . Clearly, for a random binary search tree with n nodes, we have n + I
external nodes, and thus ~, n t = n + 1 . Thus, besides the height of the binary search tree
(m -- 1), we also have information about the distribution of the nodes over the various levels .

A few details have to be ironed out :
•

	

Determine the waiting time distribution for T and show how a random variate T can
be generated in constant expected time, bounded uniformly over n .

•

	

Show how one can generate a multivariate hypergeometric random variate .
•

	

Show that the algorithm takes O (%J log n) expected time units .
5.2. The distribution of T. By using the urn with white balls and black balls, we see

that P{T > k } is equal to the probability that in the first k draws only white balls are chosen .
Clearly then, if the urn has n white balls to begin with,

P{T>k}=

	

, , 2<k<n+1
i . •= 1

	

+ I

so that

2k ~ 2,r
PST-k+1}-`"

	

~

	

1 <k<n .
n (211)

11

-1

ON THE GENERATION OF RANDOM BINARY SEARCH TREES

	

1 149

Random variate generation can be dealt with by von Neumann's rejection method, which
requires a summable function of k that dominates the probability vector given above . In von
Neumann's method, worked out below for our case, it suffices to generate random variates
from a distribution with probabilities proportional to the bounding vector and stop when for
the first time an acceptance condition is satisfied . We first derive an upper bound from the
following inequality :

PCT=k+1}C _e-2k2/3n, 1CkC_

		

__n .
n

This can be shown as follows. Using log(1 + u) ? 2u/(2 + u) for u > O, we have

P T -

	

2knk_1

	

2k -2k2/(2n+k)
{

	

k+1}_

	

e
(n + k)k

	

n

C ~~ -2k2/3ne
n
2(x -- 1)C

n

Observe that

J°° Zx _~2/3n 3
e

fl n

	

2

e~2x2/3n , k -- 1 C x

	

k .

Thus, the density 2(x+1 } e ~" 2x2 /3n on the positive halfline is the mixture of the Maxwell density
and the normal density. The rejection method for T can be summarized as follows :

generator for. T with parameter n

repeat
generate U, V uniform [0, 1]
i f U <	3/2

3/2+J73n2n
then generate an exponential random variate E ; set
else generate N standard normal ; set Y F- /3nN2/4

x+-1Y1
until Y < n and VZ tt+2 exp(-2X2/3n) < (2Y/n) ((n2+"y,)/(n"))
return T -Y + 1

The expected number of iterations in this algorithm is 3/2 + . J3rr/4n. The expected time
is uniformly bounded over n if we can evaluate factorials in 0(1) time or if we can verify the
acceptance condition in 0(1) time . If we accept a model in which simple basic operations take
constant time, regardless of the size of the operands . The factorial, evaluated naively, would
thus take time proportional to n . One can consult Chapter X of [7] on this issue ; depending
upon the situation, one can use a combination of either Stirling's approximation or Binet's
approximation with the alternating series acceptance/rejection method. Another property we
will require is that P(T > n /4} > 1/2> o . To see this, observe that with s = i n/41
for s - 1 ? 1,

Y E-- 4J3nE/2

1 150

	

LUC DEVROYE AND JOHN MICHAEL ROBSON

	'-1P{T>s}> fn-s+1
n
+
s-1

2s-2
' - 1= 1-

n-f-s-1)

?
C

1 _ 2(s -
1)2\n+s 1 f

7
1
2

since s

	

1 + nJ74. When s .= 1 (thus, n 4), the inequality we are trying to establish is
obviously satisfied, as T 2 with probability one .

5.3. Generation of random vectors with a multivariate hypergeometric distribution .
The random vector (Do, D 1 , . . . , Dm) obtained by drawing without replacement k balls from
an urn having n1 balls with label i, 4 i m, is called a multivariate hypergeometric random
vector with parameters k and (no, n1 nm) . In a simple hypergeometric situation, we have
m = 1 . For m = l, various generators have uniformly fast expected time per random variate ;
see for example the generators of Kachitvichyanukul [15], Kachitvichyanukul and Schmeiser
[16], [17], Stadlober [29]- [3 1], or Devroye [7] . Using these algorithms, we can generate D0
by drawing from an urn with no balls labeled o and n i + -+ n1, balls labeled "> D." By
repeating this step, we can generate the multivariate hypereometric random variate in expected
time 0(m) uniformly in all the other parameters .

5.4. Probabilistic analysis. We will show the following fact .
FACT 4 . The algorithm given above takes expected time o (4,/log n) .
Proof. The following notation will be used : the number of external nodes at the beginning

of the i th iteration is N1 : thus,

1=N0<N1 <N~<

We consider the algorithm without truncation, iterated ad infinitum. Let T, be the value of the
waiting time random variable for the i th iteration ; its parameter is N 1_ 1 , and we have

Ni =N1 _1+T, (i ? 1) .

The algorithm halts after iteration k when for the first time N n + 1 . The number of
iterations is denoted by J,, . Clearly, J„ > k if and only if Nk < n + 1 . Also, by construction,
N;

	

2i for all i, so that J„ n . This implies that

EJn < ~ P{Jn > i} < inf (n 2P{Nk <n+ 1} +k 2) .

We will see that E J = 0(n) . Then we continue as follows : if the vector of external nodes at
the outset of an iteration is (no, . . . , n,,,), then that iteration takes expected time bounded by
a universal constant times m + 1 . Clearly, m H,,, the height of the random tree generated .
Hence, the overall expected time is bounded by

cE{ J„ + J„ H„ } ,

ON THE GENERATION OF RANDOM BINARY SEARCH TREES

where a is a universal constant. By the Cauchy- Schwarz inequality, we have

E{J„H„} /EJEH .nn
From [6], we recall that EH, = D (log e n) . Since EJ = 0(n), Fact 4 is proved.

To show EJ _ 0(n), it clearly suffices to choose k = €(4Ji) and to show that

P{NkCn+l}=a(l/n) .

Let It be the indicator function of the event Ti > Ni_ i /4. Thus,

Ni ? Ni_ i +max 2, JNi _ i /4 Ii i ? 1 .

Consider a deterministic sequence d, determined by d0 = 1,

di_1 + max {2, /di -1/4}

By induction, it is easy to see that N i dB , , where

Again by induction, we have d i ? (i/8)2 for all i ? 1 . Thus, N1 (B, /8) 2 . The Ii 's are
dependent. Nevertheless, we have shown that E { Ia l I i , . . . , Ij_ i } ? 1/2, so that by a simple
coupling argument, Bi is stochastically dominated by a binomial (i, 1/2) random variable B~ .
Therefore, by Hoeffding's inequality [14],

P{Nk<n+1}<P{Bk<8 n+l}

<P{Bk -EBk<8Jn+1-k/2}

< P {Bk - EBk <-k/4}

(if k ? 32~/n + 1)

C ~--2[k J4}2 k

= e-k's

Take k = 132/n -1- 1 1 and conclude that

P{Nk < n + 1} = O(1/n),

as required. In fact, we have shown that

EJzC16n+17

for all n large enough .

1151

1 152

	

LUC DEVROYE AND JOHN MICHAEL ROBSON

6. A birth-and-death process method .

6.1. Derivation . In Robson [26], [27], simulations were reported that were based upon
an ultra-fast algorithm that produces random binary search trees of random size . This method
has never been published nor analyzed . Also, the modifications required to produce a random
tree of the correct size are discussed in this paper .

Once again, consider a vector (no, n 1	nm) representing the number of external nodes
at levels O, 1, . . . , m, respectively, and assume that n o + . . . + n,, = n for now. Every
external node should be considered as a living element in a birth-and-death process with unit
reproduction rate for each element . When an external node gives birth, it produces two new
elements (which live at one level below their parent), and it immediately dies, for a net gain
of one element . This is nothing but the Yule process (a special case of a pure birth process ;
see [32, p . 215]) . The n nodes at time t will thus spawn families of offspring at time t + O of
i .i .d. sizes Si, . . ., Sn . The common distribution of the S, 's is that of S, where

P{S = k} - i -- e-~ k--i e~~ (k 7 1) .

If the state at time t is described by (no, n 1 , . . . , n,,), then our purpose is to efficiently
generate an updated state at time t + O, where is a constant to be selected . The first step is
to generate the sizes of the subtrees of external nodes (at time t + i) with roots at the elements
alive at time t . This leads to the generation of the triangular array of random integers N (i , j),
each representing the number of size j subtrees with original root at level i . Thus,

00
N(i,j)-n t , obi urn .

j=i

In fact, (N (i , 1), N (i , 2), N (i , 3), . . . } is multinomial with parameter n 1 and probabilities given
by p i (z\), p2(0) By repeatedly appealing to a uniformly fast binomial generator, we
can generate this vector in expected time bounded by a constant times the expected value
of the maximal size subtree M (n ,) for any of the n , roots. Now, the maximum of n , i . i .d .
geometric random variables described by the probabilities p, (0), i l, has an expected value
not exceeding

1+
1 + log n ,

log(1/(1 - e)}

Since each n i does not exceed n, we see that, given m, all N (i , j) can be generated in expected
time O (m log n) .

The next step in the algorithm consists of generating the correct numbers of external nodes
at all levels . This can be done in one sweep from o to m . Assume that we are given N (i , j),
j ? l, for fixed i . This leads to N (i, 1) external nodes at level i . For fixed j ? 2, we obtain
no external nodes at level i . Rather, it is possible to determine how many subtrees rooted at
nodes of level i + 1 this leads to . Indeed, a node at level i with a subtree having j external
nodes yields a left child at level i - I which itself has a subtree of (random) size S 2, where
S is equally likely to take any value between 1 and j -- 1 . The size of the subtree rooted at the
right child is j - S . Of course, we won't have to do this for each node separately. Rather, it
is easy to see that we need only generate a multinomial random vector w i , w2	w3 _ i with

wj = N (i , j), and equal probabilities . Here wj represents the number of left child nodes at
level i + 1 having i external nodes in their subtrees . Adding in the sizes of the right subtrees,
we see that at level i + 1, the N (i , j) level i nodes spawn 2 N (i , j) nodes with w j + wj _t nodes
of size i. A uniformly fast binomial generator can "split" all N (i , j) at level i in this manner
in expected time 4 (EM (n ,) 2) . For fixed z, this is O (log e n) .

ON THE GENERATION OF RANDOM BINARY SEARCH TREES

	

1 153

The sizes of the nodes at level i + 1 can now be updated, and they in turn are split. An
iteration thus takes expected time not exceeding EHN times 4 (log e n) where N is the number
of external nodes at the end of the iteration .

a generator for a random binary search tree
with n+1 external nodes

N

	

1, m+-o, nor--1
while N C n + 1 do

r *-- 1, t 1 +-0
processed #-0, j#-0

while processed C N do
generate a multinomial random vector (u1, u2, . . . , UR) with

parameter n~ and probabilities Pk e~° (1 - e)"', k 1
N 4-N+ul+2u2++.RuR--nJ

1 f R C r then (uR+l, . . . , U .) f-- o, R +- r

(U1,U2, . . .,ur) # (u1,U2	ur)+(t1,t2	tr)
n- 4-- ul, processed 4-- processed +ul
.1 4- j+ 1
m 4-2, (t1	tR) +- O
while m R do

generate a multinomial random vector (Wi, . . . , Wm_i)
with parameter um and equal- probabilities 1/(m-1)

(t1, . . . , tm_1) 4- -- (ti, . . . , tm-1) +" (W1	w„ _i)
(t1, . . . , tm_1) +_ (t1, . . . , t n_ i) + (wm-i, . . . , WI)

m4-m+1
i f ~2 um = o then r +- 1 else r F-- max{i : tt > o)

return (n0, nl	flrn)

6.2. Probabilistic analysis .
FACT 5. The algorithm shown above halts in expected time D (log o n) .
Proof. Consider the overall number of external nodes T; after i iterations, starting with

TO - 1 . T, is the sum of T~_1 i .i .d. geometric random variables with probabilities given by
pi() ~, p2(s)	The expected value of one geometric random variable is e- . Thus,

ETA e° ET, _ 1 = e r ° (i ? 0) .

The tree thus grows exponentially quickly . In fact, we know much more . By the derivation
given above, the distribution of Tr is geometric itself with parameter e 1 '' . It is perhaps a
bit counterintuitive that T, has a monotonically decreasing discrete density, with the value 1
being most likely . Clearly, if we are aiming for a tree of approximate size n, then we can take
O = log 2, and perform log e n iterations . Or we can iterate until for the first time T~ > n -- 1 .
In the latter case, if the number of iterations is Jn and the height after stopping is HN, the
overall expected time is bounded by 0 (loge n) times

E {Jn Hey } < JE { J n } E { NN } _ O (ioS2 n),

provided that EHN = O(log n) and that E { JR } = O(log 2 n). We conclude that the expected
complexity is O(log4 n) . But

P{J„>k}<P{Tk<_n+l}=1-(1-e-k0 n'} i

1 154

so that

LUC DEVROYE AND JOHN MICHAEL ROBSON

E{Jn}=

	

2kP{J„ >k}
k

<k*(k*+1)+(n+1)2ke-'~°
k>k*

00

k*(k* + 1) + (n + 1)2xe-x° dx
k*

= k*(k* + 1) + (n + 1)20 -2(1 + ak*)e- k *°

log n ~
<2 +

	

+ 20_2(1 + log(n + 1))O
(take k* _ 12 log(n + 1)/1)

_ O (log e n) .

Finally, we show that E HN = O (log n) . Clearly, for k > o,

P{ 'N 7 4e log(n + 1) + 4ek + 1}

P{N > k2 (n + 1) Z } + P{Hk 2(n+ 1) z > 4e log(n + 1) + 4ek + 1},

where we used the monotonicity of the tree--building process; here Hi denotes the height of
the tree in the birth-and--death process at the moment that it has precisely j + 1 external nodes .
The last probability decreases exponentially quickly with n and k: for k 2 log n,

P{H > < 2(210g
n)k

	

2(2e log n / k) kn

	

k}
nk!

	

n

[9, Thm 5] . Therefore,

P{ Hk2 (n+ 1) 2 > 4e log(n + 1) + 4ek + 1 }

-

	

4e(log(n + 1) + log k) (4e log(n+1)+4ek+2

	

1
2 4e tog (n+ 1+ 4ek

	

2~

	

k (n -#- 1)2

2k-2(n + 1) -2 .

Also,

P{N > k~(n + 1) 2 } C P{Uk O[Tk C n + 1, Tk+1 > k2(n + 1)2]}
(n+ 1) sup P{Tk<n+ 1, Tk+l> k2 (n+1)2}

1 ~k~n
iI

_ (n± 1) sup

	

P{Tk = j }P{Tk+1 ? k 2 (n + 1)2 I Tk -= j }
1~k~n j-1

(n + 1) sup P{Tk +1 a k2 (n + 1)2ITk --= n}
1 <k <ii

_(n+1)P{T1 ak 2 (n+1)2IT0=n}
k-4 (n + 1)-3E{Ti IT0 = n}

= k-4(n .+ I)-3 ((ne)2°-+ n(e° --- 1))

2e2°C
k4 (n + 1) .

Sum the upper bounds over k > o, and conclude that EH N 4e log (n + 1) + 0(1) . 0

ON THE GENERATION OF RANDOM BINARY SEARCH TREES

	

1 155

6.3. Stopping at exactly n nodes . To obtain a tree of exactly n nodes from the algorithm
above, we need to modify it so that before each iteration copies of N, m and (n o, n1, . . ., n,)
are made and, if the iteration would increase the number of nodes beyond n, the iteration is
aborted by returning to the copied values . To preserve the expected time O (log o n), it is also
necessary to reduce the value of O when it is likely that taking a time step of will give an
aborted iteration. A simple approach is to take Li as log ((n + N)/2N) whenever this is less
than log 2 (that is when N > n/3), so that the expected number of new nodes created is half
of the number required to reach n .

FACT f . The algorithm modified in this way halts in expected time 0 (log o n) .
Proof. To prove the bound 0 (logo n) on the expected time, it is only necessary to show

that the bound E { J n } Q (log e n) still holds . First we count only nonaborted iterations.
By the reasoning above, the bound holds for the number of iterations to reach n/3 nodes .
After n/3 nodes, each iteration has value of G, such that the expected number of new nodes is
half that required to reach n and it is easy to see that there is a constant c > 0 such that each
iteration has probability at least c of adding at least half of that expected number (since the rate
of creation of new nodes is at least that of a Poisson process creating N nodes per unit time) .
But the maximum number of iterations after n/3 nodes which add at least a quarter of then -- N
nodes still required is 0 (log n) so that the expectation E J n } = Q (loge n /c 2) = 0 (loge n)
as required .

To handle aborted iterations, we use a similar argument : each iteration has a probability
at least 1/2 of not being aborted ; hence including aborted iterations can increase E J n } by
at most a factor of 4 .

	

0
In practice it would be sensible to halt this process when the number of nodes required to

be added was small (say < ,fn Iog2 n) and finish the simulation with the method of §5 .
Acknowledgments . We thank the referees.

REFERENCES

[1] A. V. AHO, J . E . HopcROFT, AND J. D. ULLMAN, Data Structures and Algorithms, Addison-Wesley, Reading,
MA, 1983 .

[2] J. H. AHRENS AND U. DIETER, Sampling from binomial and Poisson distributions: A method with bounded
computation times, Computing, 25 (1980), pp . 193-208 .

[3] H. C. CHEN AND Y ASAU, on generating random variates from an empirical distribution, AIIE Transactions,
6 (1974), pp. 163-166 .

[4] T. H. CORMEN, C . E. LEISERSON, AND R . L. RIVEST, Introduction to Algorithms, MIT Press, Boston, 1990 .
[5] L . DEVROYE, Generating the maximum of independent identically distributed random variables, Comput . Math .

Appl., 6 (1980) pp . 305-3 15 .
[6]

	

, A note on the height of binary search trees, J . Assoc. Comput . Mach., 33 (1986), pp. 489-498 .
[7]	, Non-Uniform Random Variate Generation, Springer-Verlag, New York, 1986 .
[8]	, A simple generator for discrete log-concave distributions, Computing, 39 (1987), pp . 87-91 .
[9]

	

, Branching processes in the analysis of the heights of trees, Acta Inform ., 24 (1987), pp . 277-298 .
[10]

	

, A simple generator for discrete log-concave distributions, Computing, 39 (1987), pp . 87-91 .
[11]

	

, Generating sums in constant average time, in Proceedings of the 1988 Winter Simulation Conference,
M. A. Abrams, P L. Haigh, and J . C . Comfort, eds ., IEEE, San Diego, CA., 1988, pp . 425 -431 .

[12] R . DURRETT, Probability : Theory and Examples, Wadsworth and Brooks, Pacific Grove, CA, 1991 .
[13] G . 5. FISHMAN AND L . R. MOORS, Sampling from a discrete distribution while preserving monotonicity, Amer.

Statist., 38 (1984), pp . 219-223 .
[14] W. HOE vING, Probability inequalities for sums of bounded random variables, J . Amer. Statist. Assoc .,

58 (1963), pp . 13-30 .
[15] V KACHITVICHYANUKUL, Computer Generation of Poisson, Binomial, and Hypergeometric Random Variates,

Ph.D. Dissertation, School of Industrial Engineering, Purdue University, West Lafayette, IN, 1982 .
[16] V KACHIT`rICHYANUKUL AND B . W. SCHMEISER, Computer generation of hypergeometric random variates,

J . Statist . Comput. Simulation, 22 (1985), pp . 127-145 .

1 156

	

LUC DEVROYE AND JOHN MICHAEL ROBSON

[17] V KACHITVICHYANUKUL AND B . W SCHMEISER, Binomial random variate generation, Comm. ACM, 31 (1988),
pp. 216-222 .

[18]	,Algorithm 668 H2PEC: Sampling from the hypergeometric distribution, ACM Trans . Math. Software,
14 (1988), pp. 397-398 .

[19] D . E. KNUTH, The Art of Computer Programming, Vor 3: Sorting and Searching, Addison-Wesley, Reading,
MA, 1973 .

[20] H. M. MAHMOUD, Evolution of Random Search Trees, John Wiley, New York, 1992 .
[21] H. MAHMOUD AND B. PITreL, On the most probable shape of a search tree grown from a random permutation,

SIAM J . A1g . Discrete Methods, 5 (1984), pp . 69-8 1 .
[22] V. V PETROV, Sums of Independent Random Variables, Springer-Verlag, Berlin, 1975 .
[23] B. PITTEL., On growing random binary trees, J . Math. Anal . App . 103 (1984), pp. 461-480 .
[24] B. B. POKHODZEI, Beta- and gamma-methods of modelling binomial and Poisson distributions, USSR Com-

putational Mathematics and Mathematical Physics, 24 (1984), pp . 114--118 .
[25]	, A note on beta-methods for simulating binomial distributions, USSR Computational Mathematics

and Mathematical Physics, 28 (1988), pp . 207-208 .
[26] J . M. ROBSON, The height of binary search trees, The Australian Computer Journal, 11 (1979), pp . 151-153 .
[27]	, The asymptotic behaviour of the height of binary search trees, Austral . Comput. Sci. Comm., 1982,

p . 88 .
[28] B. W. SCHMEISER, Generation of the maximum (minimum) value in digital computer simulation, J . Statist.

Comput. Simulation, 8 (1978), pp . 103-115 .
[29] E . STADLOBER, Sampling from Poisson, binomial and hypergeometric distributions : Ratio of uniforms as a

simple fast alternative, Habilitationsschrift, Institute of Statistics, Technical University of Graz, Austria,
1988 .

[30]	, Binomial random variate generation : a method based on ratio of uniforms, Amer. J . Math. Manage-
ment Sci., 9 (1989), pp. 1-20.

[31]	, Ratio of uniforms as a convenient method for sampling from classical discrete distributions," in
Proceedings of the 1989 Winter Simulation Conference, E . A . MacNair, K . J . Musselman, and P Heidel-
berger, eds., IEEE, Washington, DC, 1989, pp. 484-489 .

[32] H. M. TAYLOR AND S . KARLIN, An Introduction to Stochastic Modeling, Academic Press, Orlando, FL, 1984 .

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16

