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We consider the Parzen-Rosenblatt kernel density estimate on IP d with
data-dependent smoothing factor. Sufficient conditions on the asymptotic
behavior of the smoothing factor are given under which the estimate is
pointwise consistent almost everywhere for all densities f to be estimated .
When the smoothing factor is a function only of the sample size n, it is shown
that these conditions are also necessary, a generalization of results by Deheu-
vels . The consistency of various automatic kernel density estimates is a simple
consequence of these theorems.

1 . Introduction . The recent trend towards automatization of the kernel
density estimate has led to the development of many estimates that are not
known to be consistent . In this paper our primary goal is to give a consistency
theorem of sufficient generality for deriving the consisteicy of most automatic
kernel density estimates .

The kernel estimate on Rd is

(1)

	

f (x) _ (nhn) -1 7=i K((x - X)/h)

where X1 , . . ., Xn is an independent sample drawn from a density f on Rd, K is
a given density (kernel), and hn is a positive number depending upon n only (the
smoothing factor, or window width) (Parzen, 1962, Rosenblatt, 1956) . In an
automatic kernel estimate, h n is a measurable function of n, X1, . . ., Xn . The
function hn does not depend upon x however, since this would in general lead to
an estimate fn that is no longer a density on R d . Ideally, hn does not depend upon
parameters that have to be chosen by the user. In Section 2 we will give several
examples of automatic kernel estimates . In this section, we present our main
results, all based on the behavior of

(2)

	

D(x) = supH~ I fnh(x) - f (x) I

where fnh(x) _ ;(nh d )-1 E=i K((x - X1)/h), h > 0, and the supremum is taken
over all values of h in an interval Hn = [ hn, hg], where 0 < hn <_ hn < oo only
depend upon n.
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THEOREM 1. Let K be a bounded Riemann integrable density with compact
support, and let hn = o(1) .

A. Iflimnhnd = oo, then D(x) - 0 in probability, almost all x .

B. If hn varies regularly with coefficient r < 0 (i .e . h/hn

	

tr, all t > 0), and
limn~~nhnd/log log n = 00, then D(x) - 0 almost surely, almost all x .

C. If limnhnd/log n = 00, then D(x) - 0 completely, almost all x (i .e .
~n=1 n ql" (Dn (x) > ~) oo, all q, e > 0) .

The main theorem of this paper can be deduced without much effort from
Theorem 1 :

THEOREM 2 . Let K be a bounded Riemann integrable density with compact
support, and let f,, be an automatic kernel estimate with smoothing factor h n =
hn (X1 , . . . , X,) . Let f be a fixed but arbitrary density on R d.

A. If hn - 0 and nhn - oo in probability, then fn(x) - f(x) in probability, almost
all x, and f J fn (x) - f (x) J dx - 0 in probability .

B. If hn - 0 and nhn/log log n - oo almost surely, then fn (x) - f (x) almost
surely, almost all x, and f f (x) - f (x) dx - 0 almost surely.

C. If hn - 0 and nhn/log n - 0o completely, then fn(x) - f (x) completely, almost
all x.

The proofs are given in Section 3. We point out that there are no conditions
whatsoever on the density f, and that the conditions on K are weak enough to
cover all interesting kernels except possibly the normal kernel. The qualification
"almost all x" refers to all Lebesgue points of f. The conditions on hn can
essentially not be improved. To see this, we take h n as a function of n only, and
note that the conditions in A, B and C are necessary. The necessity of these
conditions (and in particular of B) was first proved by Deheuvels (1974) under
various regularity conditions on K, f and hn . For the sake of completeness, we
give here a generalization of Deheuvels' theorem, stripped of most regularity
conditions, together with a different, shorter proof.

DEFINITION. A sequence of positive numbers an is called semimonotone if
there exists a constant c > 0 such that an+m ? can for all m, n > 1 . (Note that
this implies that either lim infan = 00 or supnan < 00 .)

THEOREM 3 . Let fn be the kernel estimate (1) defined on R d, and let K be a
bounded density with compact support.

1 . [Weak version.] The following statements are equivalent :

A. f (x) - f (x) in probability, almost all x, some f.
B. fn(x) - f (x) in probability, almost all x, all f.
C. limn~o~hn = 0, limn~~nhn = oo .
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D. f fn (x) - f (x) dx - 0 in probability, some f.
E. f fn (x) - f (x) dx - 0 completely, all f.

2. [Strong version.] Let K also be Riemann integrable, and let the sequence
nhn/log log n be semimonotone. Then the following are equivalent :

A. f(x) - f(x) almost surely, almost all x, some f .
B . fn(x) - f(x) almost surely, almost all x, all f.
C. limhn = 0, limnhn/log log n - 0.

The Riemann integrability of K is only used in the proof of C - B. The
semimonotonicity o f nhn/log log n is only used in the proof o f A - C.

3. [Complete version.] Let nhn/log n be semimonotone . Then the following are
equivalent :

A . fn (x) - f (x) completely, almost all x, some f .
B . f (x) - f (x) completely, almost all x, all f.
C. limh,~ = 0, limnhn/log n = 0.

The semimonotonicity of nhn/log n is only used in the proof of A = C .

The equivalence of 1C, 1D and 1E is due to Devroye (1983) . Another by-
product of Theorem 3 is that the kernel estimate is pointwise convergent for
almost all x (in one of the senses given) for all f simultaneously, or for no f. There
is no intermediate situation .

In 1975, Wagner proved a theorem for the case d = 1 that is contained in
Theorem 2 . He showed that when K has bounded variation, lim,x 1~~ x K (x) _
0, and hn - 0 and nhn - oo in probability, then fn(x) - f (x) in probability at
continuity points of f. He remarked that "in probability" can be replaced by
"almost surely" if also hn - 0 and n"hn - oo almost surely for some 0 < a < 1 .
By quick inspection of his proof, we see that the last condition can be replaced
by nhn/log log n - oo almost surely (use Kiefer,1961, Theorem 2), but that no
further improvements can be made without major changes in the proof . Because
of its relevance in this paper, we reproduce here a uniform convergence theorem
similar to Theorem 2:

THEOREM 4 . (Devroye and Wagner, 1980) . Let K be a bounded Riemann
integrable density with compact support, and let f be a uniformly continuous density
on Rd. If hn - 0 and nhnd/log n - oo almost surely, then the automatic kernel
density estimate defined by K and hn satisfies

supx f (x) - f (x) - 0 almost surely .

The thrust of this paper is the replacement of Wagner's suboptimal conditions
on hn for pointwise convergence by optimal ones. His argument, based upon tight
bounds for the empirical distribution function, is replaced by a finer argument .
In Section 2, we apply Theorem 2 to several automatic kernel estimates . Because
of the generality of the theorem, we can only discuss the consistency of these
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estimates and not the rate of convergence to 0 of some global measure of deviation
such as f J fn (x) - f (x) J dx .

2. Applications. The fundamental result underlying most choices of hn is
due to Rosenblatt (1956, 1971) : when d =1, K is a bounded symmetric density
with f x2K(x) dx < oo, f is bounded and has two continuous derivatives, and
f, f " E L2 , then the kernel estimate (1) satisfies :

(3)
E

	

(f (x) f (x))2 dx

2

nh -1 5 K(2 x) dx + 1 h4

	

x2K(x) dx

	

f"2(x) dx(n)

	

n4

when hn - 0 and nhn - oo . From (3), it appears that the best value for hn is
given by

(4)

	

hn = A

	

n 5 f 2(x) dx

where A = f K2(x) dx/(f x2K(x) dx)2 is a factor depending upon K only.
Unfortunately, (4) depends on the unknown density f. There have been many
attempts at replacing (4) by a data dependent estimate . To cite a few :

1. The semi-parametric estimate . The statistician assumes that f can be
roughly estimated by some density in a family of densities g e parametrized by e.
The parameter vector e is estimated from X1 , • . ., Xn by standard parametric
techniques (maximum likelihood, method of moments, etc .). The unknown value
f f "2(x) dx in (4) is then replaced by the known value f g 2(x) dx where a is the
estimate of 9. This approach allows us to use a priori information about f. Its
first in-depth development is due to Deheuvels (1977) who in particular consid-
ered the ease of a normal parametric family in R 1 with mean µ and variance Q 2.

For the normal (µ, Q 2 ) density g, f g" 2(x) dx = 3/(8so that our estimate
of (4) for nearly-normal densities f becomes

(5)

	

hn = [A 8 ~/~/(3 n)J 1/5Qn

where Q~ is" the sample variance . See also Deheuvels and Nominal (1980) for
further discussions .

Invoking the strong law of large numbers, we deduce without further work
that for all densities f for which f x2f (x) dx < oo, and for all kernels of Theorem
2, the automatic kernel estimate (1)(5) satisfies f (x) - f (x) almost surely,
almost all x, and f fn(x) - f (x) dx - 0 almost surely. Estimate (5) can be
made more robust by using sample quantile based estimates for cr.

2 . Iterative estimation. Scott, Tapia and Thompson (1977) give a nonpara-
metric estimate C(h) of f f "2(x) dx for fixed smoothing factor h. With this

1/5
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value of C(h), a new value of h can be obtained by setting
hrieW = [AI (nCn(h))J 1

/5 ,

and this process can be repeated. The authors report that their algorithm does
not always converge. Theorem 2 is thus not directly applicable here. See also
Scott and Factor (1981) for experimental results.

3. Direct nonparametric estimation . In the hope of achieving the optimal
MISS rate as determined by (3)(4), Nadaraya (1974) proposed the following
scheme, valid for all even bounded K in R 1 for which f x 2K(x) dx < oo, K" exists
and is continuous, K'(x) + K(x) - 0 as x -~ oo and f x 2 K"(x) ( dx < oo :

Choose any sequence to - 0, tnn"50 - oo, and any sequence bn -~ 0 such
that nbn > c > 0 for some constant c . Compute G(t) = f fnn (x) dx
where fnt , is defined as in (1) with smoothing factor tn . Estimate (4) by
hn = fA/(n(bn + Cn(tn)))l i/5.

Nadaraya has shown that E ( hn - hn J) = O (n 5) when f is twice continuously
differentiable with f, f " E L2 . Thus, hn /h n - 1 in probability. By Theorem 2, we
note that fn (x) - f (x) in probability, almost all x, and f fn(x) - f(x) dx - 0
in probability. Of course, this result is overshadowed by the finer result of
Nadaraya's that estimate (1) with h~ has MISS asymptotic to the optimal MISS
(3)(4) under some additional conditions on K . See also woodroofe (1970),
Bretagnolle and Huber (1979) and Scott and Factor (1981) .

For an excellent discussion of the MISS of density estimates, see Tapia and
Thompson (1978) . The heaviness of the tail off has little influence on (3) . Yet,
because large tails are allowed within the class of densities for which (3) is valid,
we are faced with the curious phenomenon that within this class of densities,
any slow rate of convergence to 0 for E(f fn (x) - f (x) dx) can be achieved, for
any density estimate (Devroye, 1983) . Thus, we should perhaps look for a
smoothing factor that minimizes the average L1 error. Rosenblatt (1979) showed
that under the conditions for (3) and the additional condition that x 2f, x 2f ' and
x 2f" are absolutely bounded,

E(f I fn(x) - f (x)J dx

dx
1/2

< [f K2(x)

	

dx
nhn

,+ l h 2 f x2K(x) dx f If "2 n

	

(x) I dx + o(h n + (nhn) 2 ) .

This suggests the choice

hn = I AC f ~ dx /2 /C4n' f ( f"(x) ( dx /
2\llib

where A is as in (4) . Here we notice a dependence upon f VT dx, which is a
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SUP h~ :L(hn)>_asuph>oL(h) J If(x) - f (x) I dx - 0 almost surely .

measure of the heaviness of the tail of f. We are not aware of any automatic
kernel estimates in which this new value of h n is estimated from the data .
For more research along these lines, and for a wealth of inequalities linking
E(f I fn (x) - f (x) I A dx) (p ? 1) and functionals of f and its derivatives, we refer
the reader to Bretagnolle and Huber (1979) .

Expression (3) is only valid for densities with continuous second derivative in
L 2 . This requirement is often unrealistic . Choosing hn by maximum likelihood
principles effectively avoids this drawback . The ground-breaking work in this
area is due to Duin (1976, paper submitted in 1973) and Habbema et al . (1974) .
They suggest that h be chosen so as to maximize the likelihood

(6)

	

L(h) _ f l fni(Xi)

where
f (x) = (nh d )-1 Lrj 1,1#i K((x - X)/h) .

This cross-validated kernel density estimate seems to work well in most,
but not all, situations . For several years, it was not even known whether this
estimate was consistent or not . Schuster and Gregory (1981) proved that the

-76solution h n maximizing (6) in the case d =1 satisfies h n 0 in probability when
lim x~_~F(x)/f (x) > 0, and h n - oo in probability when lim x~_~F(x)/f (x) _ 00,

where F is the distribution function corresponding to f. In the latter case, we
have the disturbing result that sup xfn (x) - 0 in probability. This happens, for
example, when f (x) c/ I x a as x - 00 for some a > 1 . Chow, Geman and Wu
(1983) showed that if we choose h n such that L (h) ? a sup h>OL(h) for some
fixed a in (0, 1), then hn - 0 almost surely, and nh n /log n < e finitely often
almost surely for some e > 0 (see their Lemma 1.1) under the following assump-
tions on f and K: f is bounded and has compact support ; K is bounded, has
compact support, is nondecreasing on (-oo, 0], nonincreasing on [0, oo), and stays
bounded away from 0 on [- b, b ] for some b > 0. By our Theorem 2, we conclude
that under these conditions, fn (x) - f (x) almost surely, almost all x, and
f I fn (x) - f (x) I dx - 0 almost surely. Theorem 1 of Chow, Geman and Wu
follows from this, because we can choose h n within the allowed range of values
so as to maximize the L 1 error ; thus,

For other details, see also Geman (1981) . We stress the fact that f is only required
to be bounded and to have compact support . On the negative side, Hall (1982a,
1982b) gives evidence that the cross-validation method yields h n of magnitude
n-1/3 when f is concave on [0, 1] : these are necessarily suboptimal in certain
cases .

Schuster and Gregory (1978) determine h n by maximizing

fl /n2
i=1 fn/2 ( Xi )

where fn/2(x) _ ( 2/n) j =n/2+1 h dK((x - X; )/h) . The sample is artificially cut
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into two parts in order to preserve independence between hn and half of the
original sample. To correct for the nonconsistency of the cross-validated kernel
estimate in the case of medium- or long-tailed f, Schuster and Gregory (1981)
modify the cross-validation estimate slightly by including the variable kernel
estimate (Breiman, Meisel and Purcell,1977) in the class of densities over which
the maximization is carried out. Strictly speaking, this estimate is no longer an
automatic kernel estimate (as defined in the introduction) .

We found other interesting ideas in the literature, e .g . i verman (1978) and
Wagner (1975). For example, Wagner (1975) computes Dn1, • . ., Dnn, the dis-
tances between X 1 , • . ., Xn and their respective kth nearest neighbors where
k =, n;, 0 < a < 1 . He suggests many schemes for determining hn such as (i) hn
is chosen at random from Dn1, ..•, Dnn, (ii) hn = D 1/n; (iii) h n = max(Dnl) ;
(iv) hn = min(D ni ) . The number of possibilities is nearjy unlimited . For (i) he
has shown that for all f, hn - 0 and n"hnd - oo almost surely for all b > 1- a.
Thus, by our Theorem 2, for the kernels considered there and for all f, fn(x) -
f(x) almost surely for almost all x, and f I fn (x) - f (x) I dx - 0 almost surely.

Finally, we note that there are many authors who take

hn=hn(x,X1, . . .,X,) .

Such estimates are disregarded in this paper although they may be good pointwise
estimates . See for example Sacks and Ylvisaker (1981) and Krieger and Pickands
(1981) .

3. Proofs. Throughout this section, K is a density bounded by K* and
vanishes outside [- c, c}". h is sometimes a real number and sometimes a random
variable (this will be clear from the context) . Finally, we will often write fn and
E(f)n instead of fnh and E (fnh) . In particular, when h is random, E (fnh ) and
E(f)n are thus both functions of h, and should be thought of as convolutions
f f(x - y) h-"K(y/h) dy.

LEMMA 1 . (Lebesgue density theorem .) Let! be a density on R d . There exists
a set B C_ R d such that almost all x belong to B, and for all bounded sets A of
positive Lebesgue measure X (A) > 0 :

hmho
x+hA y y / x+hA

PROOF. See Wheeden and Zygmund (1977) .

LEMMA 2 . (Convergence of the bias .) Let hn be a sequence of positive
numbers tending to 0 as n - o°. For all densities f, and for the kernel estimate (1)
with smoothing factor h,

limn.~supo<h<_h;; I E(fn(x)) - f(x) ( = 0, almost all x .

dy = f(x), x E B .
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PROOF.

Supo<h<hn I E(fn(x)) - f (x)

<_ Supo<h<hn

	

Is

	

f(x y) - f (x) I h-d
y dyo, Ch

	

h

PI

<_ K* suph<_hn (f
S o ,,,

1
n Z~n F, i=1 i

If(x - y) f (x) ~ dy
SO,ch

- E(fn(x)) I > E) <_ 2 exp(-bnhn d )

dy I . Lc
-* 0, almost all x

by Lemma 1. Here Sx , r denotes the closed sphere of radius r centered at x.

LEMMA 3 . For every nonnegative Riemann integrable function K bounded by
K* on [0, 1]", and for every c > 0, there exists an integer N and nonnegative
numbers ai E [0, K*], 1 < i -< N d , such that the function

Ki(x) = L,ivl aiIA 1 (x), x E [0 , 1 ] d ,
in which the A's are the rectangles formed by the products o f intervals of the form
[(j -1)/N, j/N),1 <_ j < N, or [(N -1)/N,1], satisfies :

(i) I Ki(x) - K(x) I <c, all x A = union of some
(ii) 0 <_ K 1(x) <_ K*, all x ;
(iii) A(A) <c.

LEMMA 4 . (Fundamental inequalities for the uniform deviation .) Let c > 0
be an arbitrary number, let x be a Lebesgue point for f (i .e ., x E B as defined in
Lemma 1), and let hn and h' be two positive number sequences satisfying 0 < hn
< h' j. 0. Let fn be the estimate (1) with smoothing factor h. Then

suphn<h<hnP(Ifn(x)

where b can be taken to be E 2/(2K*(f (x) + o(1) + E)) .
If K is Riemann integrable, then also

P(suphn<h<h n I fn(x) - E(f~(x)) I > E) <_ a exp(-bnhnd)/(1- exp(-b'nhn d ))

for some positive constants a, b, b' not depending upon n .

PROOF . Bennett (1962) has shown that for independent identically distrib-
uted zero mean random variables Z i with I Zi I <_ t, and for all e > 0,

dy

n

	

Q2

	

2 tE>E <_2exp-2t 1+ 2t~ log1+ Q2 -1

nc2<_2exp- 2( 2Q + tE)
where Q2 = E(Z1) . The last inequality follows from log(1 + u) > 2u/(2 + u),
valid for all u > 0 .
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Our first inequality follows by replacing Z i by h-d(K((x - X1)/h) -
E(K((x - Xi)/h))), which is bounded in absolute value by t = K*/hd , and has
variance i 2 < K*E(fn (x))/hd = K*(f (x) + o(1))/h" uniformly on [0, hn ] (by
Lemma 2) .

For the second inequality, we take a positive number 8 (to be specified later),
and hni = hn(1 + 8) i, i > 0. Let i o be such that hni0_ 1 - h' <h 0. We have

- E(fn(x)) I

5 Supo<iSio[Ifnh 1zi-1 (x) - E(fnhni-1 (x)) I

+ Suphni- 1 <_h,h'Shni I E(fnh(x)) - E(fnh' (x)) I

+ Suph ni- 1<_h,h'<_hni I f th(x) - fnh'(x) I ]

= supo<i<io [Ui + Vi + W1 ] .

By the first part of Lemma 4, for e > 0,

P(U1 > e) <_ 2 exp(-nhni-le 2/(2K*(f (x) + e + o(1))))

where the o(1) term does not depend upon i (since 0 < i < i o ) . By Lemma 2,

(g)

	

Supo<i<i0 V1

	

2 Suph<hnio I E(fnh(x)) - f (x) I -*0.

For fixed e > 0, find K1, N, a1, ..•, aNd, and sets A i as in Lemma 3 (after having
replaced [0,1] d by [- c, c] d ) . The set A also keeps its meaning from Lemma 3 .
We introduce the notation µ and µn for the measure induced by f, and the
empirical measure defined by X1 , • . ., Xn respectively . Also, 0 is the difference
operator between sets .

Without loss of generality, we can assume that all sets A i are strictly con-
tained in one quadrant, such as [0, C]". We need a few geometrical facts now .
Let h, h' be numbers in the interval [hni-1, hni], and let A ; be fixed, e .g .
A; _ [ai , ai] X . . . X [ad , ad] . Then, (x + hA;) i (x + h'A;) C (x + hn1B; )
where B; is a set of fixed form and dimensions determined by A ;, d and S only.
Also, X (B) < 2 c db .

To prove this first geometrical fact, we need only show that uA; i u'A; C B,
for all u, u' E [1/(1 + b),1] . First, take

B; _ [a1 , a1'] X . . . X [ad, ad] -
I	 a1

L
al,

+

S
X . . . X ad,	 ad

1

	

1+b

Iai

	

ai X . . .
1+b j

ad

	

_

X 1 + S' a
d

	

[a1, ai ] X . . . X [ad, ad],

where the - operators are considered before the union operator +. We note that
B; is contained in [- c, C]". Also,

A(B)
<_ a' 1 - 1

	

+ ai1-1))aa'' . . . a'
~

	

1

	

1+S

	

1

	

2 3

	

d

< 2 ai a2 . . . a~S < 2cd8 .
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+

Next, let A be the set of Lemma 3, i .e. it is the union of M disjoint rectangles A;,
and let B be the set of all points contained in uB where u E [1/(1 + S),1] . Then,
B C [-c, C]", and by the previous derivation for a single rectangle, X(B) < X(A)

j'L 1 X (B,) <_ X (A) + 2 Mcdb . We can now obtain the following crucial upper
bound for Wi :

dWi

	

Suphni-1`-h,h'shn; cj 1 f a; I Ix+hA;(y) - Ix+h'Aj(y) µn(dy)lhni-1

+ 2 SUph _ 1<h<hni F,N1
x

	

I K((x - y)/h) - K1((x - y)/h) I µn(dy)/hni-1
+hA~

S ~,5 'i a;~l n(x + hn1Aj Lx + hni-lAj)/hni-1
(9)

+ 2cµn(x + [-c, c]dhni)/hni-1 + 2K*µn(x + hniB)/hni-1

hn 1 (~ 1
K*µn(x + hn1B;) + 2Eµn(x + [-c, c] dhni)

+ 2K*,u n(x + hniB))

=wi,+ W'+W"

where µn is the empirical measure for X1 , • • •, Xn .
For a given t > 0, we find c, b > 0 such that the expected value of each W 1

does not exceed 0/(3N"), and the expected value of W' and of W(' does not
exceed rj/3 . This corresponds to the requirement that

(f (x) + o(1))(1 + S)dK*2cdo < O/(3Nd) ;

(f (x) + o(1))(1 + a)d2e(2c)d < rj/3 ;

(f (x) + o(1))(1 + S) d2K*(e + 2Mcd8) </3.

Once again, the o(1) terms do not depend upon i, so that all three inequalities
can be satisfied for all n large enough, uniformly in i . A small technical note is
in order here : it seems necessary to choose a first under the assumption that 8
does not exceed 2 . This fixes N and M, so that in a second step we can choose a .

For each i, we have by simple bounding techniques,
P(Wi > 2rj )

	

P(Wi; - E(W) > 0/(3Nd))
(10)

+ P(W' - E(W') > ~/3) + P(W ' - E(W) > ~/3) .

Uniformly in i and j, we know that for all n ? no, all expected values are
smaller than ~/3 . Also, each of the Wi;'s, WI's and W' is can be written as
(1/n) m. 1 Ym where the Ym's are independent bounded nonnegative random
variables with absolute value not exceeding r/hni where

r = max(2K*, 2c) (1 + b) d .

Thus, by another application of Bennett's inequality, we see that each probability
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on the right-hand side of (10) does not exceed

(11) 2 exp - n(7~/(3Nd))2

	

(2(

	

+
h

: 'N
3Nd

	

= 2 exp(- bnhni)3 hni

	

ni

by definition of b. A combination of all the bounds derived above shows us that
for all n greater than some n 1 ,

P(suphn<h<hn I fnh(x) - f *Kh(x) I > 477)
(12)

<

	

2 exp(-snh,d(1 + 8)d(i-1) ) + (Nd + 2)2 exp(-bnhnd(1 + 8) " )

where s = n 2/(4K* (f (x) + j)) . Here, * is the convolution operator, and Kh(x) _
h -"K(x/h) (thus, f*Kh(x) = E(fnh(x))) . The right-hand side of (12) is again
bounded from above, albeit very crudely, by

~° o b' exp (-b "nh~d(1 + b)')

(13)

	

<

	

o b' exp(-b"nhnd(1 + 8i))

= b' exp(-b"nhnd)/(1 - exp(-b"8nh~d))

for some positive constants b', b" . This concludes the proof of Lemma 4.

LEMMA 5. (A binomial tail inequality.) Let Z be a binomial (n, p) random
variable, with p = p (n) E (0, 1) varying in such a way that np 2 = o(1) but
limnp = 00 . Then, for constant S > 0,

PZ-n

	

bn ,	l+0(1)
(

	

p _ p)

	

(27r(1 +
b)3np)1"2 exp(-npH(8))

where0<H(S)=(1+8)log(1+8)-8-*0asS ,0 .

PROOF. Let k be np(1 + S) . Then,

P(Z - np > 8np) >
n

()pk(i - p)n-k
k

> (n - k + 1)k
k(1

- p)ne pk > (np)k
(1
-

p)nepk
1 - k 2

k .

	

n

Since k2 = o(n), pk = o(1) and k ! (k/e) k2k, the lower bound is
k

(1 + o(1)) (nPe)e_np/2 = ( 1 + o(1))e k-np(1 +
k

>_ (1 + o(1))eanp-kiog( 1 +a)/ 27r

_> (1 + o(1))e-np" "/((1 + b) 2 ),
from which the sought inequality follows .

LEMMA 6 . (Exponential lower bounds for large deviations .) Let f be an
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arbitrary density on R d , and let x be a Lebesgue point off with f (x) > 0. Let c > 0
be a constant, and let h = h n be a sequence of positive numbers satisfying nh 2d =
o(1), limnhd = O. Let H( .) be defined as in Lemma 5, and let 8 = 2e/f (x) .
Then, for the kernel estimate (1),

P(fn(x) - E(fn(x)) > c)

	 1+ 0(1)		
hdH

	

d
~ (2irnh df(x)(2C)

d(1 + ~)3)1/2 exp(-n

	

(S) (f (x) + o(l)) (2c) ) •

PROOF . Let Y be a random vector defined as X restricted to x + [-c, c] dh .
Define

gn(x) _ (1/n)

	

1 h-dK((x - Y1)/h)

where Y1, Y2 , . . . are independent and distributed as Y. It is clear that f (x) is
distributed as (N/n)gN (x) where N is independent of the Y1's, and distributed
as the number of X's in x + [-c, c ] dh. Also, E (fn (x)) = pE (g~ (x)) where
p = P(X1 E A = x + [-c, c]dh) _ (2c) dhd(f(x) + o(1)) . We have the following
inclusion, valid for all n large enough:

P(fn(x) ' E(f~(x)) + c)
(14)

' P(N ? np(1 + 8)) infk> (1+a)P gk(x) ? E(gk(x)) 2p(1 + b)

Indeed, on a rich enough probability space, we can think of f(x) as being equal
to (N/n)gN(x) where Y1 , • . ., YN is the subset of X1 , • . ., Xn that falls in A . If
N > np(1 + 8) and gN(x) > E(gN(x)) - c/(2p(1 + S)), then

N

	

np(1 + ~)
E

	

x -
p(~

gN(x) - n

	

n

	

(gN(
)) 2 1+ b )

= p(1 + 8) E(f,~(x))/P
2p(1+

	

= E(fn(x)) + 8E(fn(x)) -
8)

	

2

fn(x)

> E(fn (x)) + c, n large enough .
This explains (14) . By Chebyshev's inequality and the fact that Var(gk(x)) <_
K*(f (x) + 0(1))/(khdp), we see that (14) is at least equal to

	 S)
P(N - np > 8np)infk> ( 1+a) 1-

2p(1+
)2var(gk (xn)

_ K*(f (x)+ 0(1))(2p) 2(1 + S)2
>_ P(N np ? bnp) 1

	

n 1 + b 2hdp(

	

)~ p

= P(N - np > Snp)(1 - o(1)),

to which Lemma 5 can be applied since N is binomial (n, p) with np 2 = o(1) and
limn~~ np = 00 . This concludes the proof of Lemma 6 .
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PROOF OF THEOREM 1 . Parts A and C follow directly from Lemmas 2 and 4
and the trivial inequality

D(x)

	

supHn I fnh(x) - E(fnh(x)) I + supHn I E(fnh(x)) - f(x) I •

To prove statement B, we fix a small 8 > 0, and define a subsequence n i =

(1+ b)1,

	

0, 1, 2, • .

	

Let
Ei = Supn;<-n<n,+1suphEH` I fnh(x) - E(fnh(x)) I

where H* _ [infni<n<ni+1h~, sup n ;< n<ni+1 h"] _ [h*, h**] . By Lemma 3, it is clear
that

supni<n<ni~ 1Dn (x) < Ei + o(1) as i - 00, all Lebesgue points x .

Thus, to show that D(x) - * 0 almost surely for almost all x, it suffices to show
that for all Lebesgue points, all c > 0 and some 8(c) > 0,

U P(Ei > E) < 00

(by the Borel-Cantelli lemma) . A simple bounding argument yields for all ni < n
<n 1+ 1, and fixed h, writing f *Kh instead of E (fnh(x)) :

Ifnh-f*KhI

•

	

Ifnh - fnih l + I fnih -1 *Kh I

1 - 1

	

ni 1 Kh(x_Xj )
ni

	

ni+1

+ 1 ni*1
Kh (x - X) +j=ni+1

	

1

	

I fnihni
- f*Kh

N

•

	

(b + o(1)) ( fnih + f n . + 1-nih) + I fnih - f*Kh I
N

•

	

(1 + S + o(1)) I fnih - f *Kh I + (S + o( 1 )) I fni+1 -nih - f*Kh I

+ (8 + o(1)) 2 f *Kh .

Here fnh is an estimate independent of fnh but distributed as fnh . It is clear that
Ei is not greater than the right-hand side of (15), preceded by suphEH*. Since
h** - * 0 as i -y oo, the last term in the upper bound is 28f (x) + 0(1) (Lemma 2) .
Now, for fixed c > 0, let us choose 8 so small that S <_ 1/2, 28f (x) <c/4, and i so
large that all the o(1) terms in (15) do not exceed 1/2 and the o(1) term in 2Sf (x)

+ o(1) does not exceed E/12 (thus, the entire term does not exceed E/3) . For such
large i, we have

N

(16)

	

E i 2 suphEH; I fnhi - f *Kh I + SuphEH ; I fni+i - nih - f *Kh I + E/3 .

By Lemma 4 there exist positive constants a, a', a", b, b', b" such that the
probabilities that the first and second terms on the right-hand side of (17) exceed
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E/3 do not exceed
d

	

d
a exp(-a' nih )/(1- exp(-a"nih )) and

(17)
b exp(-b ' (ni+1 - n1)hh/(1- eXp(-b"(n1+1- n~)h d))

respectively. The constants do not depend upon i .
For every M > 0, we can find i large enough such that j > i implies n; hi d >

M log log n; > M log(j log(1 + S)) . For j > i, the bounds in (17) are smaller than
a+0(1)

d ' tog(1 + b ))
Mb'b

respectively . But both expressions in (18) are summable in j when Ma' > 1 and
Mb' 8 > 1 . This shows that 8 (e) > 0 can be found such that

~° o,P(E i > E) < oo, all e > 0, all Lebesgue points off.
This concludes the proof of Theorem 1 .

PROOF OF THEOREM 2 . Theorem 2 is based upon the inequality

( 19 )

	

I fn (x) - f (x) I

	

supHn I fnh(x) - f (x) I + 00 . I[hn Hn ~

where I is the indicator function of an event, and 00 .0 is 0 . The integral versions
follow from the pointwise versions (statements A and B) after noting that fn is a
density on R" for each n, and that weak and strong extensions of Scheffe's
theorem are applicable (Glick,1974, Devroye and Wagner,1979) . The proofs of
the pointwise parts proceed by construction of a proper sequence Hn = [hn, hn ] .
They are based upon increasing subsequences of the integers, nk and nk respec-
tively. In all cases (A, B and C), we have nl = n1 = 1. Also, h' = 1/k on
[nk , nk+1) -* 0 as k - 0. Finally, hn and hn and arbitrarily defined on [nl, n2)
and [nl , n2) respectively .

Part A . Let
nk = inf(n : n > nk_ 1 , sup ra>nP(hm > 1/k) <_ 1/k), k > 2,

nk = inf(n: n > nk_ 1 , sup ra>nP(mhm <_ k) < 1/k), k > 2,

hn = (k/n) li ' on [nk, nk+1), k > 2 .

Clearly, nhnd -- oo . Also, on [nk , nk+1), P(h n - hn) = P(hn > 1/k) < 1/k -~ 0 as
k -* 0° . Similarly, P(nhn _< nh~~) = P(nhn _< k) < 1/k on [nk, nk+1), and this
tends to 0 as k - 0° . This completes the proof of part A .

Part C . Let

nk = inf(n: n > nk 1, ~m>_n m kP(hm > 1/k) < 2-k ), k > 2,

nk = inf(n : n > nk_1, ~ m>_n m kP(mh /log m S k) < 2- ), k > 2,

hn = (k log n/n)l~' on [nk, nk+1), k > 2 .



Clearly, nhn d
/log n -* o. Also, for all q > 0, if s = max(2, ceiling of q),

F,n=1 )Z gP(hn > hn) < lZs'q+l + ~k>s inknk1 nkp(hn > 1/k)

By an identical argument,
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#'q+1ns

	

+ ~k>s
2_k

< 00 .

2_k < oo .F, n=1 nqP (hn ~ hn) ~ ns q+l + F, k>_s
Thus, ,, nqP (hn Hn) < oo, all q >_ 0, and therefore, the right-hand side of (19)
tends to 0 completely in view of Theorem 1 .

Part B . Let
nk - inf(n : n > n'_1 , P(Um> n[mhm/log log m <.k]) <_ 2_ k), k 2,

nk - inf(n : n > nk_1, P(Um>_n[hm >- 1/k]) < 2-k ), k >- 2,

hn = (k log log n/n) lldon [nk, nk+1), k >- 2 .
Check that nhn d/log log n -+ oo, and that h > h'' finitely often almost surely
because on [nk, nk+1),

P(Um>n[hm > hm]) ~ j= k P(Um=n" [hm ~ 1/f])

< j=k2=2° as k-*oo .

In a similar way, it can be checked that hn < hn finitely often almost surely . Part
B will be complete if we can find a sequence of positive numbers hn < hn such
that nhnd/log log n -+ oo and that hn is regularly varying. Theorem 1 and (19)
will then complete the proof. The sequence 4(n) = nhn d/log log n is nondecreasing
by construction, and it tends to o. Define 4(t) on the real line by linear
interpolation from 4(n) . We will attempt to find a function i(t) with 0 < ~, < 4,

( t ) T oo as t T oo, and t~' (t)/~ (t) -+ 0 as t -+ oo . This function is thus slowly
varying (Seneta,1976, pages 6-7) . Then, we define hn = (~(n)log log n/)lId , n and
note that it satisfies all our requirements .

The function that we suggest is continuous and piecewise linear with knots
at tl < t 2 < . . . , where tk -* oo . Let t 1 =1, and set (t) _ 4(t) on [0,1 ] . Given tk
and '(tk ) we define tk+1 and '(tk+1) as follows :

(tk+1) - min(4(tk), i/i(tk) (1 + 1/(2 log k))),

tk+1 = inf(t : t > tk + 1, t/tk > 1J'(tk+l)/1&(tk),

t - tk ? (1/'(tk+l)- 1/'(tk))t log k/1/'(tk+l)) •

Note that tk > k -* oo as k -* 0°, that i/'(t)/t ,j,, and that on [tk, tk+1), /'(t) <
i/'(tk+1)/(tk+llog k) < (i/'(t)/t)/log k . The existence of tk+1 follows from the fact
that we can always find t > tk + 1 such that t > tk/(1- log k(1- ~(tk)/(tk+1))),
because the denominator in the last expression is always at least 1/2 (in other
words, t >- 2 tk will always satisfy the given condition) . Finally, 0 < <_ 4 and
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~(t) T oo because 4(t) -+0° and

f k2 (1 + 1/(2 log k)) = oo .

PROOF OF THEOREM 3. Part 1 requires no new proof. The equivalence of C,
D and E is established in Devroye (1983) . Obviously, C B A (see, for
example, Devroye and Wagner, 1979) . Finally, A D by Glick's extension of
Scheffe's theorem (Glick,1974) .

Part 3 is partially shown in Devroye and Wagner (1979) (i .e. C B A). To
show A C, we note that the necessity of hn = o(1) follows from part 1, and
that the necessity of nh'/log n -+ oo follows from Lemma 6 : indeed,

F,n=1 n gP(fn(x) - E(fn(x)) > e) < oo, all q > 0, e > 0,

almost all x,

hn = o(1) and nhn -+ oo (both consequences of part 1 of this theorem) imply that

(20)

	

~n 1 min(1, (nhn) -1 I 2exp(-anhn)) < oo, all a > 0

by Lemma 6, since we can restrict ourselves to Lebesgue points for f, with

f (x) > 0
. If nhn/log n is bounded by M, then the sum in (20) is at least equal to

F,n>e l/M (lVl log n )-1/2n-aM'

which is not summable for a < 1/M. But if nhn/log n cannot remain bounded,
then limnhn/log n = oo by its semimonotonicity. Hence A C.

Part 2 is the only nontrivial part of the Theorem. Clearly, B A . Also, C
B by Theorem 2 when K is Riemann integrable . We will now show that Lemma
6 suffices to prove that A = C. Fix a constant a > 0, and define the subsequence
ni by,exp(ailogi)1, i > 1 . Notice that (ni+1 - ni)/ni (ei )a . Assume that we can
show that whenever nhn/log log n <_ M < oo, hn -+ 0, nhn -+ oo, and x is a
Lebesgue point of f with f (x) > 0, then

(21)

	

P( I f (x) - E(fni (x)) I > e infinitely often) = 1

for a small enough. By the semimonotonicity of nhn/log log n, we must have that
limnhn/log log n = oo, to avoid a contradiction . The necessity of hn = o(1)
follows from part 1 of this Theorem, as does the necessity of limnhn = oo . We
will thus show (21) under the stated conditions . We have

[ I f (x)

	

E(fn~(x)) I > e l.o .]
N

	

N

(22)

	

C [ I f i(x) - E(fi(x)) I > 2e l.o .]

n [(ni/ni+1) I f * (x) - E(f * (x)) I > e f.o .]
where

f1(x) = (ni+1 - ni)-1 7L .+1 K((x - X1)lhni+~)lhni+~~

f * (x) = n11 F, j=1 K((x - Xj )/hni+1)lhni+l'



Implication (22) follows from the inequality

I fni+1 (x) - -(fni+1(x)) I

ni+1 nt
I f i(x) - E(/i(x)) I na I f*(x) - E(f*(x)) I

ni+1

	

ni+1

By Lemma 4,
ni

ni+1
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I 11(x) E(f * (x)) I > e

< 2 exp - nihni+ ~
	 e 2 (ni+1/ni) 2	

2K*(f (x) + e + o(1))

-

	

(e 2 +0(1))(ei)a	= 2 exp

	

ni+lhni+1

	

*2K (f (x) + e + o(1))
which is summable in i for all a, e > 0 (since nhn -+ 0°), so that by the Borel-
Cantelli lemma, the last event in (22) has probability 1 . By the independence of
its component events, the middle event in (22) occurs with probability one if and
only if

(23)

	

1 r ( I /(x)

	

i - E(fi(x)) I > 2e) _ o .
A lower bound for the ith probability in (23) is given in Lemma 6 if we replace
n and h there by ni+1 - ni and hni+1 respectively . By our assumptions, hni+1= o(1),
(ni+1 - ni)hnd = o(1) and (ni+1- ni)hn i+1 -* oo, so that Lemma 6 indeed applies .
The lower bound for the ith term is of the form
(24)

	

c1(ni+lhni+1)-112 exp(-c 2 ni+1hni+1), i large enough,
where c 1 , c 2 are positive constants for all e > 0, lim inf 0c 1 > 0 and lim inf 0 c 2 =
0. Clearly, (24) is at least equal to

c 1(M log log n +1) 112exp(-c 2M log log n +1 )

c 1(M log i) -112 (ai log i)c 2M'

and no tail sum is finite when c 2 < 1/M (i .e . when a is small enough). This
concludes the proof of (23), (21) and Theorem 3 .
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