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DISTRIBUTION-FREE LOWER BOUNDS IN DENSITY
ESTIMATION

BY LUC DEVROYE AND CLARK S . PENROD I

McGill University and The University of Texas at Austin
We consider the kernel estimate on the real line,

fn(x) _ ( nh)-1 E n 1 K((X; - x)/h),

where K is a bounded even density with compact support, and X1 , • • •, X, are
independent random variables with common density f. We treat the problem
of placing a lower bound on the Ll error J, = E(f I fn - f I) which holds for
all f. In particular, we show that there exist A(K) > (9/125)" depending only
upon K, and B*(f) > 1 depending only upon f such that

(i) for all f: infh,on 218Jn >_ CA(K)B*(f) + o(1) > 0.6076703 . . . + o(1) where
C =1.028493 • • • is a universal constant ;

(ii) for all f with compact support and two bounded continuous absolutely
integrable derivatives, infh ,on 218Jn <_ C*A(K)B*(f) + o(1) where C* _
1.3768102 . . . is another universal constant . For this class of densities, we
also obtain the exact asymptotic behavior of J,~ .

1 . Introduction. Assume that a density f on R d is to be estimated from
data X1 , • . •, Xn (independent random vectors with common density f) . One
expects that with a finite amount of data a given estimate has built-in limitations,
even for the best densities f. In this paper we derive lower bounds for the L 1
performance of the kernel estimate

(1 )

	

fn(x) = (nhd ) _1 F, 1 K((X1 - x)/h)

(Parzen,1962 ; Rosenblatt,1956), where h = hn is a given sequence of positive
numbers, and K is a given density (kernel) . Throughout we assume that K
satisfies :

(2)

	

K > 0, 5 K(x) dx =1, K(x) = K(-x), all x,

K is bounded and has compact support . We are interested in lower bounds for

Jn = E

	

I fn(x) - f(x) I dx

for estimates defined by (1) and (2) . The situation where K is not a density is
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not investigated here. The only interesting sequences h satisfy

(3)

	

limh = 0, limn nh = 00

in view of the equivalence of (3) and the convergence to 0 of J, for some f or for
all f (see Devroye,1983a) .

Our choice of the L1 error criterion arises out of several considerations,
foremost among them being its scale independence. Rescaling the components of
X1 has no effect on the L1 error as it does for Lp error (E 1 ' (f I f, (x) - f(x) I ° dx))
when p ~ 1 . Hence the Lp error, p ~ 1, actually has no absolute relation to the
error committed . Thus, distribution-free lower bounds describing the limitations
of an estimate cannot be obtained by Lp errors except when p =1, which is the
subject of this paper . Other factors influencing our choice of L1 include the fact
that by treating the L1 error we avoid introducing such' unnatural conditions as
"f belongs to La" . Another consideration is that the L1 error is proportional to
what is observed visually when one superimposes the graphs of f, and f, although
such graphs should not be used to corroborate the results of a simulation study
since the errors can vary widely .

To set the stage for our main result, we mention first that for all sequences of
density estimates fn = f, (x, X1, . . ., Xn), and for all sequences an J, 0 however
slowly, there exists a density f that is infinitely many times continuously
differentiable and another density f* that is bounded and has compact support,
such that J, > an infinitely often for both f and f * (Devroye,1983b) . Results of
this type are concerned with the most difficult members in rich enough families
of densities. They do not give us information about the actual rate of convergence
of most or all densities in these families . See also Boyd and Steele (1978) and
Bretagnolle and Huber (1979) for similar results about the L2 error and the Lp
error, respectively .

Our main result is a distribution-free lower bound valid for all densities f on
R 1 .

THEOREM 1. For all densities f on R 1 , the kernel estimate defined by (1) and
(2) satisfies

(4)

	

lim infra infhn 2/5Jn > CA(K)B*(f) > CA(K) >_ C 1 > 0

where

C = 1.028493 . . . is a universal constant ;

2/5

	

1/5

A(K) =

	

K2

	

x 2K

	

is a factor only depending upon K

(note : A(K) > (9/125) 1 / 5) ;

1

	

4

	

1/5B *(f) _ - [ (f q) supa>o f I (f * &)" I
2

where 4 is a bounded density with compact support and two continuous derivatives,

LOWER BOUNDS FOR DENSITY ESTIMATES
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and ~a = (1/a)q5(x/a) and * is the convolution operator . The constant Cl is
0.6076703 . . . . In particular, when f E . , the class o f all densities f of compact
support, such that f and f ' are absolutely continuous and f " is bounded and
continuous, then B*(f) = B(f) _ [( 1/2)(f Vf)4

f
If"

I ]1/5

REMARK 1 . (Practical use of (4)) . Theorem 1 gives us information on the
best possible performance of the kernel estimate for the nicest densities . It allows
us to check at a glance how large n must be to achieve a certain L l error rate for
very well-behaved densities . In many cases, (4) can be used to point out that
"good" Ll performance is not possible with a given value for n, since in first
approximation J, > CA(K)n"5 for all f.

REMARK 2 . (Choice of K) . The factor A(K) is minimized by the Epanechni-
kov kernel K(x) = 3 4(1- x2 ), I x I <_ 1(see Bartlett,1962, Epanechnikov,1969 or
Tapia and Thompson,1978) .

REMARK 3. (Difficult densities) . The factor B *(f) indicates the difficulty
posed by f for the kernel estimate . In the profound study of Bretagnolle and
Huber (1979) it can also be found as a universal lower bound for the expected Ll
error of any density estimate if one is allowed to choose the "worst" density in a
given class of densities . The rate n-215 is thus not achievable whenever B*(f) _
00 : this happens for one of two reasons: either f = oo (which indicates the
presence of a large tail, e .g. the Cauchy density falls into this category), or
sups>o f I (f* ) 'F I = 00 (which indicates the presence of at least one simple
discontinuity, e .g. the uniform [0,1] density and the exponential density fall into
this category) .

REMARK 4 . (Simulation of f) . In a computer simulation we could use fn
(instead of the unknown f) to generate an independent sample of size no . The
efficiency of the replacement off by fn can be measured by

su

	

x) dx -

	

f(x) dx =1

	

I f(x) - f(x dx .pB

	

f(x)

	

2

	

n

	

) I ,
B

	

B

Consider accurate simulations with sample size no in which the average number
of data points in each Borel set under fn is within 1 of that under f. This is
violated when noJn/2 is of the order of magnitude of 1 or bigger. As a rule of
thumb, we are "safe" in simulations of size

n0 <_ 2/Jn .

But, for all f we have in first approximation Jn ? CA(K)/n 5 , which leads to the
limitation

n0 2n215/(CA(K)) = 3.29n215

in the best possible case! The bound on n o is smaller when f is not well-behaved .
Thus, to increase the simulation sample size no by a factor of 100, it is necessary
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to increase the original sample size n by a factor of 1005/2 =100,000. For no =
1000, we will need n >_ 1,600,000 . This indicates the limitations of the use of
nonparametric estimates f, of the type discussed here for the purposes of
computer simulation in all but a few situations, i .e. when n is gigantic. The
situation for d > 1 is probably much worse .

THEOREM 2. (Exact asymptotic behavior of Jn) . For all f in . the kernel
estimate defined by (1), (2), (3) satisfies

J, = J(n, h) + o(h2 + 1//)

where

«~

	

alf"I

	

2

	

2J(n, h) _

	

h

	

a = f

	

~3 = f x, K(x) dxf n

	

2a~
and

Also,

and thus

(5)
where

~(u) - 2~1 u f u

J(n, h) <_ ~ a~f + 2 h2

lim sup ra infh>on 2 / 5E(J~) < C*A(K)B*(f )

C* = 5(8ir) 2/5 =1.3768102 . . . .
The upper bound is not exceeded for the following choice of h when f E .
B*(f) < oo :

h=
«	f'[f
2a supa>o f I (f*)"

e-x2/2 dx = e 2/2), u >_ 0 .

2/5

2 n-1/5

REMARK 5 . (Sharpness of the bounds .) . Upper bound (5) is reasonably sharp
since C* is about 35% bigger than the constant C of (4) . Rosenblatt (1979)
obtained an inequality in the spirit of (5) with a slightly larger constant C' _
(512) 9/5 = 1 .435872 . . ., under regularity conditions not nested with those of
Theorem 2. Devroye and Gyorfi proved that (5) remains valid for all f with
compact support (Devroye and Gyorfi,1984) .

REMARK 6. (Choice of h) . The formula obtained for h in Theorem 2 can be
used to construct a good data-dependent smoothing factor, at least when f is
smooth enough and does not have too large tails . Notice that the optimal h
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obtained via the L2 theory is drastically different, e .g. it does not depend upon
the "tail size" f ~.

2 . Proofs .

LEMMA 1 . (See, e.g. de Guzman, 1981) . Let g be an absolutely integrable
function on R d, and let K be an arbitrary density on R d . Then

(i) lim h ~0 f I g*Kh - g I = 0;
(ii) f I g* h I< f l g l ;
(iii) If K is bounded and has compact support, then g*Kh -* g for almost all x.

LEMMA 2 . Let X1 , • . ., Xn be independent random variables with a common
distribution. Let E(X1 ) = 0, E(X) _ y 2 > 0, p = E( I Xl 1 3 ) < oo . Then,

supaER I E(I (~ J Y' ~,i==1 Xi a I) -- E(I N a I) I <_ cps -3/~
where c is a universal positive constant and N is a normal (0,1) random variable .
In particular,

E(IN - aI) = IaIP(INI <_ lal) + J 7e 2/2 = ~( IaI) •

NOTE . Since

e-x2 /2 dx < 1 e-u2/2
u

	

u

we have t(u) > u . Also, by inspection, t(u) > 2. Furthermore
u

~(u) <_ u + 2 , '(u) =2

	

e
-x2 2

dx > 0, and "(u)
0

Thus, is monotone, convex, and varies as 2 near u = 0 and as u when
u-*oo.

PROOF. Let Fn be the distribution function of X = (~ J )-1 ~n 1 Xi , and let
F be the distribution function ofN. Clearly,

E(I X - a I) =
0

P(I X - a I > t) dt =
0

(1- Fn(a + t) + Fn(a - t)) dt,

and a similar equation is valid for N and F . The absolute value of the difference
between both equations does not exceed

0 I ~(a + t) - Fn(a + t) I dt +
0

I ~(a - t) - Fn(a - t) I dt

- - I ~(t) - Fn(t) I dt .
oo

By well-known nonuniform estimates in the Berry-Esseen type central limit

?0.



LOWER BOUNDS FOR DENSITY ESTIMATES

	

1255

theorem (see Petrov,1975, Theorem 14, page 125),

14 (t) - Fn(t) I

	

cps-3/((1 + I t 1 3)J)
for some universal constant c. Since (1 + I t 13)-i is integrable, we obtain the
desired result.

For the expression of E( I N - a I), we note that for a > 0,

E(IN- aI) = E(INI) + E(IN- ai - INI)

= E( I N I) + aP(N < 0) + E((a - 2N)ho<N<a]) - aP(N > a)

= E( I N I) + a - 2E(Nho<N<a]) - 2aP(N > a)

a
to

_ t2 / 2

= 2 +a-aP(INI >a) -2

	

dt
o

2(1

	

a -a2/2 )
= 2 + aP(I N I < a) -

	

,

which was to be shown .
In the remainder of this section, T is an arbitrary interval, [-r, r] is the

support of K, K* is an upper bound for K, and T * is defined as {x : I x - y I < hr
for some y E T}. Thus, T * depends upon h. Also, c is the constant of Lemma 2,
B(x) = E(fn(x)) - f(x) is the bias at x, V(x) = fn(x) - E(fn(x)) is the variation
at x, and c(x) = E(Vn(x)) is the variance at x. We define C by inf > (u)/u i15 .

LEMMA 3 .

I E( I fn(x) - f(x) I )

	

on(x)y'( I B(x) I /o(x)) I

	

cK*/nh,

for all densities Ksatisfying (2) .

PROOF of LEMMA 3 . Apply Lemma 2 to the random variables
Yi = (1/h)K((X1- x)/h) - E((1/h)K((X1- x)/h)),

and use a = Bn(x)/Qn(x) . We obtain an error term in Lemma 2 of the form
E(IYi 1 3)

	

cK*

c nE(Yr) - nh

LEMMA 4 . Let T be a bounded interval. Then, for all h > 0 and all densities
K,

Ir -

	

I f*Kh
	 t	nhf

	

f i X(T)

	

a JT -
~n

JT

	

f If
	 *Kt -	

fi X(T)a
where Kt - K2/f K2 . Also, ST I Qn (nh/a) - f I = o(1) as h ~, 0.

PROOF OF LEMMA 4 . We first note that for bounded sets, we always have
fT ff< oo . We have ~n(x) = a(x) + b(x) where

a(x) = a2f(x)/(nh)
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and

b(x) _ (f
*K - f)« 2/(nh) - (f*)2/n

Clearly, a(x) > 0. Thus, Ja(x) + b(x) <-

	

+ ,lb+(x), and Ja(x) + b(x) >
- Eli b(x) I . Integrating over T and applying the Cauchy-Schwarz inequality

gives

and

(6)

IT tin ~ n I f ~+ f ./
I
f*K~- fIl

\

	

/

n (f ~+`lf If*K~-fl
x
(T)/,

i

T	a f ~ - Jflf*x~ - flA(T)-n n T of
The first half of Lemma 4 follows easily from this. The last statement of Lemma
4 follows if fT Ji b(x) I = o(1) . But this is a consequence of h = o(1), A(T) < oo
and f I f *K - f I = o(1) (see Lemma 1) .

LEMMA 5. Let f be a density in g let K satisfy (2), and let lim n h =0. Then
the quantity

qn(x) = I B(x) - (f3l2)h 2f"(x)
satisfies qn(x) = o(h 2 ) for all x, and f qn(x) dx = o(h 2) .

PROOF . Taylor's expansion with remainder gives

(y	f(y) = f(x) + (y - x)f'(x) +	f„(x)
2

x)2

y

+ x (y - z)f"(z) dz -
(y	

_ x)2

f"(x)2

Thus,

E(fn(x)) - f(x)

= 1 K y x

h

	

h (f(y)_f(x)) dy

h 22 f„(x) f y2K(y) dy

f 1 y-x

x

y

	

(y-x)2
+

	

hK h

	

(y - z)f „(z) dz -

	

2

	

f (x) dy.
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Clearly, qn(x) is equal to the absolute value of the last term of (6) . But q(x)/h 2

does not exceed

J h\y h x)(y h
x)2 sup i y_x i <ch I f "(y) f "(x) I dy

	

/3o(1) .

Thus, f qn(x) dx = o(h 2) if we can find an integrable function dominating
q(x)/h 2 . But clearly, q(x)/h 2 <_ /3 supx I f "(x) I on T * , and q(x)/h 2 = 0 on T*c ,

and A(T*) = O(A(T)) < ~, which concludes the proof of Lemma 5 .0

NOTE. 1f f does not have compact support, then fT qn(x) dx = o(h 2 ) for all
bounded T.

LEMMA 6 . For all f E ; B(f) = B*(f ), and ,B(f) > 1. Also, for all f,
B*(f) ? 1 .

PROOF. We start by noting that (f *q h)" = f "*5 h , and that f I f "*~h I <_

f I f " I (which shows that B(f) ? B * (f) ) . Also, B(f) <_ B * (f) because the
integrability off" implies that f I f "*4 h I - f If" I as h J, 0 (see Lemma 1) .

To prove that B (f) > 1 for f E ; we, note that f ' (y) - f ' (x) = fx f "(z) dz .
Thus, using ( )+ and ( )_ for the positive and negative parts of a function, we
have

5
+00

(f "( y))- dy_ f ' (x) <_

	

(f "(y))+ dy, all x,

and

(f"(y))+ dy +

	

(f "( y) )- dy

so that we may conclude that
1

sup I f' (x) I < -

	

I f"(y) I dy.2 -~

But we also have 1 f f <_ sup f f V . Combining these inequalities shows that
B(f) 5 ? sup I f '(x) I /sup f 2(x) . Clearly, by a geometrical argument,

1= f f(x) dx>_5

0,

sup f2(x)
(sup f(x) - I y I sup I f (x) I )+ dy = supi f'(x) I'

and the proof of B(f) > 1 is complete .
To prove that B*(f) > 1 for all f, we can assume without loss of generality

that f

	

< oo . Then, observe the following :

A .

	

5

	

_ 5 *& ; 5 (~*4~a) Sup( ~ J *4~a) >
5 (~*4~a) 2 i
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and, by Fatou's Lemma and Lemma 1,

lim infa~p f (V J *&)2 >
f

lim infa ~p(V f* 'Na) 2 =

B. Because f *4a has two bounded continuous derivatives, has a Lipschitz first
derivative and an integrable second derivative,

sup I (f*4) F I SI (f*)" 1/2 .
C. 1 ~ sup(f*Y~a) 2/Sup I (f* ) F 1
Combining A, B and C gives for all a > 0,

4	 sup(f*~Ya) 2
B*(f) >

	

( b1 *4'a)2

	

* 4sup(

	

~a)
By Jensen's inequality, (V*

4,
,)a)2 <- f *4 a . Thus,

B * ( f) - lim infa~o

	

(J*~a)2 =1. 0

PROOF OF THEOREM 1 . We have

f=1

(7)

	

infhE(Jn) > min(infhJ l E(Jf), infh./ l E(Jn )) .

Consider a sequence h such that E(J) infhE(Jn) . It is clear that E(J) -~ 0
for all f, because (3) is sufficient for E(J) --~ 0 (Devroye, 1983a) . But because
E(J) > f I f*Kh - f I , we must have h --~ 0 (Devroye,1983a). We will now treat
each infimum in (7) separately.

First, if h is such that h > 1/J, all n, and E(J) infh,c> lE(Jn ), then by
what we mentioned above, h --~ 0 . Also, nh -~ 00, and in fact, nh/n2/5 --~ 00. Now,
let T be a bounded interval, and a > 0 be an arbitrary constant . We have for
such h the following lower bound for E(Jn ) :

T
E(I - f I) >

T
~

	

fT 1B
n

n
I-

cK*
A Tfn

	

n

	

nh ( )fT

(By Lemma 3, the convexity of and Jensen's inequality)
4/5

	

1/5
> C

	

Qn

	

I B n I

	

- o(n-2/5 ) (Definition of C)
T

	

T

-

	

4/5 ~

	

1/5 i)
(Cn 2/5 a

T

	

-
T

I ( f
*

Yea)
,/

I

	

(see below)
2

4

	

1/5
n-2/5CA(K 1

	

f

	

*,~) 2

	

f

	

I (f ~a)" I
T

	

T

(Definition of A(K)) .

(8)
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Here we used the definition of C = inf o iJ'(u)/u 1/5, and the fact that

I Bn I =

	

I f*Kh - Il ?

	

If*4a*Kh - f *4 I (all a > 0, Lemma 1)
T

	

T

h2
> 2 iT I (f*~a)" I (1 + o(1)) (Lemma 5) .

Next, let h be a sequence such that h <
i/J for all n, and E(J)

infh,r< 1E(Jn) . From Devroye (1983a), we have nh -~ 00 . Also,

E(J) lE

	

I - *Kn_ 2

	

fn f h i

By Fatou's lemma,

lim inf n215E(J) ? f 1 lim inf n215E( I f

	

*Kn

	

n

	

2

	

n

	

n - f hi)~

and the right-hand side of this is 00 when for almost all x with f(x) > 0,
lim inf n215E( I fn - f* Kh I) = o0 . To show this, we will use the Berry-Esseen
central limit theorem used in Lemma 2. Let o~(x) = Var(Kh(X1 - x)) and let M
be an arbitrarily large positive number. Let Z be a normal (0,1) random variable .
Then,

n 215E( I fn - f*Kh I )

MP(I f - f *K >M =MP I f - f *Khn

	

h I n2/5

	

n

	

h I O

	

N n2/5
n

	

~n

~

	

~ Mn i/ io
- M P( I Z i- N

	

) 2c&~3n-112E( I Kh(Xi - x)
-

E(Kh(Xi - x)) 1 3 )
o.n

By inspection of the proof of Lemma 4 and by Lemma 1, it is easy to see
that ~n(x) a2f (x)/h for almost all x, as h -~ 0. Also, by the cTinequality and
Lemma 1,

E( I Kh(X1 - x) - E(Kh(X1 - x)) 1 3 )

<_4E h-3K3
Xi

x +4(E(Kh(X1 -x)))3=4h-2f*(K3)h +4(f *K) 3

h4h

	

h

-2f(x) f K3 + 4f(x) 3 4h-2f(x) f K3 , almost all x.

Because n1110/o n (x) n1/1oJi/a < 1/(n3/20a ) -~ 0 for almost all x with
f(x) > 0, we have

2/5

	

- *

	

-

	

4 fK3
n E(I fn f Kh I) ? M 1 (2c+0(1))

= M(1-~ o(1) ), almost all x with 1(x) > 0 .
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Since M was arbitrary, we have shown that
lim infn~~infh,r<1 n2/5E(J) _ 00

and this, together with (8), the definition of B*(f) and the monotone convergence
theorem implies

lim infn~ Oinfh n2/5E(Jn)
4/5

	

1/5

sups>O,boundedTCA(K)
T

	

(51 (f *Y,ba)"
1

	

21/5

= CA(K)E*(f) .

This concludes the proof of Theorem 1 . D

We need one last technical lemma before we can attack Theorem 2 .

LEMMA 7 . For nonnegative numbers u, v, w, z, we have

u~CU -w~u

	

w

u1i(u) - w~/ w
J

Iv - zi + 2 Iu-wI .

PROOF OF LEMMA 7 . We verify first that 0 < /'(u) <_ 1, all u > 0, and that
for all v > 0, I (u (v/u))' I < 2 . Thus,

u~(u) - u~~u
J

<- Iv-zI + 2 Iu-wI . D

PROOF OF THEOREM 2 . Theorem 2 has several components . First, we assume
that f E .~ and that f has compact support contained in a bounded interval T.
Take T so large that for every x in the support off, the interval [x - a, x + a] is
contained in T, where a is a number sufficiently large so that Kh(u) = 0 for all n
and all I u I > a .

We will begin with the inequality of Lemma 7 applied in the following manner :

u~GCu~ - w~/ w
J

Now,

I v - z I = o(h2 ) (Lemma 5)
T

and

u := 6n(x) ; v := I B(x) I ; w

IT

;
nh

I u - w I = o((nh)-1/2) (Lemma 4) .

z .- ~ h2
If

" x	- 2 ( ) I
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Thus, combining this into the inequality of Lemma 3 gives

E(If~`fl)-J(n,h)
T

fE(If_fI)_f( B )n

	

On

*
<cK A(T) +o(h 2 ) +o((nh-112),

nh

	

)

where we used the fact that J(n, h) = fT w!/'(z/w) .
The inequality involving J(n, h) follows from '(u) < u + 2

J(n, h) = w~
z

<_
T

	

Z z + 2
T
w .

w

Let us turn now to all densities f having compact support and let us denote the
quantity supa,o f I (f*)" appearing in the definition of B*(f) by L. Again,
from Lemma 3 and the inequality '(u) <_ u + 2 , we obtain*

T
E(If-fi)<_

T

	

nh
o + BI+ cK a(T)'n

	

l n

	

~I

and by Lemmas 4 and 5, this is further bounded from above by
*

	5

	

,+

	

f if*K - fIA(T) + h 2L + cK
X(T)

nh

	

nh

	

2

	

nh

where Kt is the density defined in Lemma 4 . The second term is o((nh) -112 )

where h = o(1) (Lemma 1). The last term is o((nh)_
112) when nh --~ 0° . This

proves the first upper bound for general f. If we take the value of h given in the
statement of the Theorem (i.e ., the value that minimizes the main term in the
upper bound), then

,~-a

	

+ 2L C*A(K)B*(f)
f 2 h

	

n2'5

	

,
n

and this concludes the proof of Theorem 2 . El
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