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Abstract

Let X be an Rd-valued random variable with unknown density f. Let X1; : : : ; Xn be i.i.d. random variables drawn
from f. We study the pointwise convergence of a new class of density estimates, of which the most striking member is
the Hilbert kernel estimate

1
Vdn log n

n∑
i=1

1
‖x − Xi‖d ;

where Vd is the volume of the unit ball in Rd. This is particularly interesting as this density estimate is basically of the
format of the kernel estimate (except for the log n factor in front) and the kernel estimate does not have a smoothing
parameter. c© 1999 Elsevier Science B.V. All rights reserved
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1. Introduction

Let X; : : : ; Xn be independent observations of an Rd-valued random vector X with unknown density f. The
classical kernel estimate of f is

fn(x) =
1
n

n∑
i=1

Kh(x − Xi);
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where h¿ 0 is a smoothing factor depending upon n, K is an absolutely integrable function (the kernel), and
Kh(x) = (1=hd)K(x=h) (Akaike, 1954; Parzen, 1962; Rosenblatt, 1956). Observe that for the kernel K(u) =
1=‖u‖d, the smoothing factor h is cancelled and we obtain

fn(x) =
1
n

n∑
i=1

1
‖x − Xi‖d :

One may wonder what happens in this situation, now that the smoothing factor is absent. Unfortunately, in
its unaltered form, we have fn(x)→∞ in probability at almost all x (f). But a mere renormalization yields
a consistent estimate of f. We formulate this as our introductory theorem:

Theorem 1. The Hilbert estimate

fn(x) =
1

Vdn log n

n∑
i=1

1
‖x − Xi‖d ;

where Vd is the volume of the unit ball in Rd; is weakly consistent at almost all x; that is; fn(x)→f(x) in
probability at almost all x.

We use the name Hilbert estimate because of the related Hilbert integral with a similar kernel. There is
also a Hilbert kernel regression function estimate, introduced and studied by Devroye et al. (1998). The �rst
part of this paper is used to prove the consistency theorem. The shape of the Hilbert estimate is not useful
for visualization purposes, as there are in�nite peaks at all Xi’s. Furthermore,

∫
fn =∞ for all n, so that

the density estimate itself is not a density. For these reasons, modi�cations are proposed that have fewer
disadvantages.

Connection with the nearest-neighbor estimates. The k-nearest-neighbor density estimate of Fix and Hodges
(1951) and Loftsgaarden and Quesenberry (1965) is

gk; n(x)
def=

k
nVd‖x − X(k; x)‖d

where X(k; x) is the kth nearest neighbor of x among X1; : : : ; Xn. Its properties are well-understood (Moore and
Yackel, 1977; Devroye and Wagner, 1977; Mack, 1980; Bhattacharya and Mack, 1987; Mack and Rosenblatt,
1979). For example, at almost all x, we have gk; n(x)→f(x) as n→∞ if k =o(n) and k→∞. If we replace
log n by the harmonic number Hn =

∑n
i=1 1=i in the de�nition of fn, then we have

fn(x) ≡
n∑
k=1

1
kHn

gk; n(x):

Thus, the Hilbert kernel estimate is a harmonically weighted nearest-neighbor estimate! One could deduce the
weak convergence results for fn from those of gk; n, but this is not the route we will follow. We will also not
deal with the generalized weighted nearest neighbor-estimate

n∑
k=1

wnkgk; n(x);

where wnk ; 16k6n, is a probability vector. The kth nearest-neighbor estimate corresponds to wnj=Ij=k . There
is indeed a problem of the selection of the best weight vector, but that will not be dealt with here.
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Relation with variable kernel estimates. Through the thesis of Udina (1998), we came across an interesting
and useful relationship with ordinary kernel estimates. Assume the kernel is the uniform density on [−1; 1],
and the variable kernel estimate is given by

gn(x) =
1
n

n∑
i=1

I|x−Xi|6hi=2
hi

;

where the hi’s are positive bandwidths. Regardless of how these bandwidths are chosen – a di�cult problem
indeed – , we have

sup
h1 ;:::; hn

gn(x)6
1
2n

n∑
i=1

1
|x − Xi| = log nfn(x);

where fn is the Hilbert kernel estimate. Modulo the logarithmic factor, our estimate is a uniform overbound
of all variable kernel estimates. In other words, regardless how the bandwidths are picked individually and
as a function of n, our results will imply that gn(x) = O(log n) in probability at almost all x, so catastrophic
oscillations are unlikely.

Smart estimates. One of the reasons we considered Hilbert estimates, was that we thought that it might be a
good candidate for a universally consistent density estimate whose expected performance (L1, L∞, pointwise)
is monotone in n for all densities. Unfortunately, this is not the case. To date, we have not found one such
density estimate!

2. The behavior of the estimate

It should be noted that the Hilbert density estimate scales perfectly. That is, no special adjustments are
needed when all data are transformed by a linear transformation. For the multivariate kernel estimate to have
a similar property, one should have a data-dependent smoothing factor that is somehow sensitive to such
linear transformations. It is also noted that while fn is not integrable, we can construct modi�ed estimates
(see below) that are in Lp for all p¿ 1.

3. A new class of density estimates

The estimates we propose to avoid the in�nite peaks at the data points are symmetric in the data (for
otherwise they would be suboptimal). We let ‖ : ‖ denote the L2 metric on Rd. Furthermore, we pick a �xed
integer k ¿ 0. Then de�ne the Hilbert density estimate of order k by

fn(x) =


 2k

V kd kVk
( n
k

)
log n

∑
A⊆{1;:::; n}:|A|=k

1
(
∑

i∈A ‖x − Xi‖2d)k=2



1=k

;

where Vd and Vk are the volumes of the unit balls of Rd and Rk . For k¿2, the density estimate is almost
surely bounded (for �xed n), and

∫
fsn ¡∞ for all s¿ 1. In other words, fn ∈ Ls for all s¿ 1. As these

nice properties hold for all k ¿ 1, the simplest case k = 2 looms as the most important one. For k = 1, we
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Fig. 1. The Hilbert kernel density estimate with k = 1.

will simply speak of the Hilbert density estimate. For k = 2, the estimate reduces to

fn(x) =

√
4

V 2d�n(n− 1)log n
∑

16i¡j6n

1
‖x − Xi‖2d + ‖x − Xj‖2d :

Because of the similarity with the multivariate Cauchy density, this will be dubbed the Cauchy density estimate.

Other metrics. We may analyze estimates similar to the Hilbert density estimate of order k by replacing ‖ : ‖
by the Lp norm ‖ : ‖p on Rd, and by using an Lq norm for summing, thus obtaining

fn(x) =


C(k; d; p; q)( n

k

)
log n

∑
A⊆{1;:::; n}:|A|=k

1

(
∑

i∈A ‖x − Xi‖qdp )k=q



1=k

;

where C is a certain function of the parameters. However, this generalization would unnecessarily clutter the
paper without adding substantial new information, and so we will not study it here.

Bootstrapped estimates. Note that the computation of the density estimate grows at least as nk unless special
data structures are used to reduce the complexity. Fortunately, we may bootstrap the estimates by picking a
subclass B of all the sets A of cardinality k. This sort of estimate will not be studied here.

4. Shape of the estimates

In Figs. 1 and 2, we show the Hilbert density estimate for d= 1, k = 1 and d= 1, k = 2 with the same
16-point data set.

5. Weak pointwise consistency

In the next few sections, we prove the main consistency theorem:

Theorem 2. For any k¿1, we have at almost all x, fn(x)→f(x) in probability.
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Fig. 2. The Hilbert kernel density estimate with k = 2.

6. A basic lemma

Lemma. Let U1; : : : ; Un be i.i.d. uniform [0; 1] random variables, let k ∈N, and let Vk = �k=2=�(k=2 + 1)
denote the volume of the unit ball in Rk . Then

1( n
k

)
log n

∑
A⊆{1;:::; n}:|A|=k

1
(
∑

i∈A U
2
i )k=2

→ kVk
2k

in probability:

The proof of the Lemma requires a bit of care, as it does not su�ce to apply standard results on U -statistics.
Indeed, the summands have such large tails that the extra normalization factor 1=log n is needed in front of
the average. We may proceed in a variety of ways, but the one that we will follow uses the order statistics
of the Ui’s, denoted by U(1)¡ · · ·¡U(n). We may use a well-known connection between uniform samples
and Poisson point processes. If E1; E2; : : : are i.i.d. standard exponential random variables, then

(U(1); : : : ; U(n))
L=

(∑1
i=1 Ei∑n+1
i=1 Ei

; : : : ;
∑n

i=1 Ei∑n+1
i=1 Ei

)

(see, e.g., Ch. 8 of Shorack and Wellner, 1986). Let � ∈ (0; 1). For integer l¿k, de�ne the event

Bl =

[ ∞⋃
i=l

[ ∣∣∣∣E1 + · · ·+ Ei
i

− 1
∣∣∣∣¿�

]]
:

By the H�ajek–R�enyi inequality,

P{Bl}62Var{E1 + · · ·+ El}
l2�2

=
2
l�2
:

Now, the complement Bcl implies Al, which is the event

Al
def=

[
n⋂
i=l

[
(n+ 1)U(i)

i
∈
[
1− �
1 + �

;
1 + �
1− �

]]]
:
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The subsets A⊆{1; : : : ; n} of size |A| = k may be partitioned according to the cardinality of {1; : : : ; l} ∩ A,
which we denote by cA. Now note that on the event Al,

1( n
k

)
log n

∑
A⊆{1;:::; n}:|A|=k

1
(
∑

i∈A U
2
i )k=2

6
1( n

k

)
log n

k∑
j=0

∑
A⊆{1;:::; n}:|A|=k;cA=j

1
( jU 2

(1) + ((1− �=1 + �))2
∑

i∈A; i¿l(i=(n+ 1))2)k=2

6
(
1 + �
1− �

)k 1( n
k

)
log n

k−1∑
j=0

∑
A⊆{1;:::; n}:|A|=k; cA=j

1
(
∑

i∈A; i¿l(i=(n+ 1))2)k=2

+
1( n

k

)
log n

∑
A⊆{1;:::; n}:|A|=k; cA=k

1
kk=2Uk

(1)

and

1( n
k

)
log n

∑
A⊆{1;:::; n}:|A|=k

1
(
∑

i∈A U
2
i )k=2

¿
(
1− �
1 + �

)k 1( n
k

)
log n

∑
A⊆{1;:::; n}:|A|=k; cA=0

1
(
∑

i∈A(i=(n+ 1))2)k=2
:

As P{Al}¿ 1 − 2=(l�2), we can for every � make Al as likely as desired by the choice of l¿k. As � is
arbitrary, it remains to prove the following facts:
(A) 1=

( n
k

)
log n

∑
A⊆{1;:::; n}:|A|=k; cA=0 1=(

∑
i∈A(i=(n+ 1))

2)k=2→ kVk=2k ;
(B) 1=

( n
k

)
log n

∑
A⊆{1;:::; n}:|A|=k; cA=k 1=k

k=2Uk
(1)→ 0 in probability;

(C) 1=
( n
k

)
log n

∑k−1
j=1

∑
A⊆{1;:::; n}:|A|=k; cA=j 1=(

∑
i∈A; i¿l(i=(n+ 1))

2)k=2→ 0.

Proof of part B. Note that nU(1)
L→ E where L→ denotes convergence in distribution and E is an exponential

random variable. But |{A⊆{1; : : : ; n} : |A|= k; cA = k}|=
(
l
k

)
, and therefore,

1( n
k

)
log n

∑
A⊆{1;:::; n}:|A|=k;cA=k

1
kk=2Uk

(1)

6
O(1)

log n (nU(1))k
→ 0 in probability:

Proof of part A. As k is �xed, it su�ces to show the following:
k!
log n

∑
A⊆{1;:::; n}:|A|=k;cA=0

1
(
∑

i∈A i2)k=2
→ kVk

2k
:

Let Ak; n be the class of vectors (i1; : : : ; ik) of k elements drawn from {1; : : : ; n} (with duplicates allowed).
This class has nk members. Then, if � denotes an arbitrary number between 0 and kk ,

1
log n

∑
(i1 ;:::; ik )∈Ak; n:min16m6k im¿l

1

(
∑k

m=1 i
2
m)k=2

=
k!
log n

∑
A⊆{1;:::; n}:|A|=k; cA=0

1
(
∑

i∈A i2)k=2
+

�
log n

k∑
j=1

(
k
j

) ∑
(i1 ;:::; ij)∈Aj; n:min16m6j im¿l

1

(
∑j

m=1 i
2
m)k=2

:

In view of part C (which will be proved below), it su�ces to show that

L def=
1
log n

∑
(i1 ;:::; ik )∈Ak; n:min16m6k im¿l

1

(
∑k

m=1 i
2
m)k=2

→ kVk
2k
:
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Consider the continuous approximant given by

L′ def=
1
log n

∫
[l; n]k

‖x‖−k dx;

where x denotes a vector of Rk . Assume k¿2. Clearly,

06 L′ − L

6
1
log n

∫
[l; n]k

(‖x‖−k − ‖x + 1‖−k) dx

(where 1 is a vector of k ones)

=
1
log n

∫
[l; n]k

(‖x + 1‖k − ‖x‖k
‖x‖k‖x + 1‖k

)
dx

6
1
log n

∫
[l; n]k

(
(k=2)‖x + 1‖k−2(‖x + 1‖2 − ‖x‖2)

‖x‖k‖x + 1‖k
)
dx

=
1
log n

∫
[l; n]k

(
(k=2)(2

∑k
i=1 xi + k)

‖x‖k‖x + 1‖2
)
dx

6
k
log n

∫
[l; n]k

(
1

‖x‖k+1
)
dx +

k2

2 log n

∫
[l; n]k

(
1

‖x‖k+2
)
dx

6
k
log n

∫
r¿l

(
kVkrk−1

rk+1

)
dr +

k2

2 log n

∫
r¿l

(
kVkrk−1

rk+2

)
dr

(by polar coordinate transforms)

= O
(

1
log n

)
:

It is trivial to verify L′ − L=O(1=log n) for k = 1 as well. As L′ − L→ 0, it su�ces to study L′. By simple
bounding and polar coordinate transformation, we have

L′6
1

2k log n

∫
n
√
k¿r¿l

(
kVkrk−1

rk

)
dr =

kVk
2k log n

∫
n
√
k¿r¿l

(
1
r

)
dr

=
kVk log(n

√
k=l)

2k log n
→ kVk

2k
:

By similar methods, a lower bound may be obtained, and we conclude that L′ → kVk=2k . This concludes the
proof of part A.
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Proof of part C. Fix j ∈ {1; : : : ; k − 1}, and assume k ¿ 1. Thus, by arguments as in the proof of part A,

1( n
k

)
log n

∑
A⊆{1;:::; n}:|A|=k; cA=j

1
(
∑

i∈A; i¿l(i=(n+ 1))2)k=2

=
1( n

k

)
log n

(
l
j

) ∑
A⊆{l+1;:::; n}:|A|=k−j

1
(
∑

i∈A(i=(n+ 1))2)k=2

∼
k!
(
l
j

)
log n

∑
A⊆{l+1;:::; n}:|A|=k−j

1
(
∑

i∈A i2)k=2

6
k!lj

log n

∫
[l; n]k−j

‖x‖−k dx

6
k!lj

log n

∫
r¿l

(k − j)Vk−jrk−j−1
rk

dr

=
k!lj(k − j)Vk−j

log n

∫
r¿l

1
rj+1

dr

=O
(

1
log n

)
:

This concludes the proof of part C and thus of the Lemma.

7. Proof of Theorem 2

Let S(x; r) denote the closed ball in Rd of radius r centered at x. We will show the convergence result for
all Lebesgue points of f, that is, for all x for which f(x)¿ 0 and for which at the same time

lim
r↓0

∫
S(x; r) f(y) dy∫
S(x; r) dy

= f(x):

As f is a density, we know that almost all x satisfy the properties given above (Wheeden and Zygmund,
1977, p. 189; see also Devroye, 1981, Lemma 1:1). Let x be such a point.
Fix � ∈ (0; 1) and �nd �¿ 0 such that

sup
0¡r6�

∣∣∣∣∣
∫
S(x; r) f(y) dy∫
S(x; r) dy

− f(x)
∣∣∣∣∣6�f(x):

De�ne p =
∫
S(x; �) f. Let F be the univariate distribution function of W def= ‖x − X ‖dVd. Note that F has a

density and that if u6Vd�d,

F(u) =P{Vd‖x − X ‖d6u}= P{X ∈ S(x; (u=Vd)1=d)}

=
∫
S(x; (u=Vd)1=d)

f(y) dy ∈ [(1− �)f(x)u; (1 + �)f(x)u]:

De�ne Wi = Vd‖x − Xi‖d, 16i6n, and let W(1)¡ · · ·¡W(n) be the order statistics for W1; : : : ; Wn. If
U(1)¡ · · ·¡U(n) are uniform order statistics, we have in fact the representation

U(i)
L=F(W(i)); W(i)

L=F inv(U(i))
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jointly for all i. Thus,

(1− �)f(x)W(i)6U(i)6(1 + �)f(x)W(i)
provided W(i)6Vd�d. Put di�erently, under the latter condition,

U(i)
(1 + �)f(x)

6W(i)6
U(i)

(1− �)f(x) :

The Hilbert estimate fkn (x) may be written as follows:

fkn (x) =
2k

Vk−1
( n
k

)
log n

∑
A⊆{1;:::; n}:|A|=k

1
(
∑

i∈A W
2
i )k=2

:

Let B be the set of indices i6n with Wi6Vd�d, and let Bc = {1; : : : ; n} − B. Then, if � denotes an arbitrary
random variable with values in [(1− �)k ; (1+ �)k ], and � denotes a random variable with value in [0; 1], then

fkn (x) =
2k�(f(x))k

Vk−1
( n
k

)
log n

∑
A⊆ B:|A|=k

1(∑
i∈A U

2
i

)k=2 + 2k�
Vk−1

( n
k

)
log n

∑
A⊆{1;:::; n}:|A|=k;|A∩Bc|¿0

1
(�2d)k=2

:

The last term is obviously O(1= log n) and thus does not matter. We thus have fkn (x)→fk(x) if

2k

Vk−1
( n
k

)
log n

∑
A⊆ B:|A|=k

1
(
∑

i∈A U
2
i )k=2

→ 1 in probability:

Set p = F(Vd�d), and note that given Ui ¡p, Ui is distributed as Zip, where Zi is uniform [0; 1]. Thus,
conditional on N =

∑n
i=1 IUi¡p, we have

2k

Vk−1
( n
k

)
log n

∑
A⊆ B:|A|=k

1
(
∑

i∈A U
2
i )k=2

=
2k

Vk−1pk
( n
k

)
log n

∑
A⊆{1;:::; N}:|A|=k

1
(
∑

i∈A Z
2
i )k=2

:

If N→∞ in probability, we have by the lemma,

2k

Vk−1
(N
k

)
logN

∑
A⊆{1;:::; N}:|A|=k

1
(
∑

i∈A Z
2
i )k=2

→ 1 in probability:

Thus, it remains to show that N→∞ in probability and N=(pn)→ 1 in probability, so that we may conclude.
But clearly, N is binomial (n; p), and p¿ 0 (as x is a Lebesgue point), so that the Theorem is proved.

8. Lack of strong convergence

For all f, it is true that at almost all x with f(x)¿ 0, the Hilbert estimates of order k cannot possibly
converge to f in a strong sense. Rather than to prove the full-blown universal theorem, we restrict ourselves
to the uniform density and show the following result.

Theorem 3. Let f be the uniform density on [0; 1]d and let k¿1 be arbitrary. Then; for any x ∈ [0; 1]d;
P{fn(x)¿(log log n)1=k i:o:}= 1; so that there is no strong convergence at any point in the support.

Proof. We cut the sequence of indices into sections, with the ith section consisting of {2i−1 + 1; : : : ; 2i}. Let
n= 2i. Then, for �xed x ∈ [0; 1]d, we say that Xj is near x if

Vd‖x − Xj‖d6 1
n(a log n log log n)1=k

;
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where a¿ 0 is an arbitrary number. In the ith section, the number of Xj’s near x is binomial (n=2; pn) with

1
n(a log n log log n)1=k

pn¿
1

2dn(a log n log log n)1=k
:

In particular, the probability that this section has exactly k points near x is at least(
n=2
k

)
pkn(1− pn)n=2−k ∼

(npn)k

2kk!
(as npn→ 0)

¿
1

2dk2kk!a log n log log n
∼ 1
2dk2kk!ai log i log 2

:

By the Borel–Cantelli lemma and independence of the sections, the number of sections with k points near x
at times n= 2i is in�nite with probability one if and only if the probabilities of these events sum to in�nity,
which is the case here as

∑
i 1=(i log i) =∞. Now, if a section has k points near x at time n= 2i, then, if C

is a constant depending upon k and d only (as in Theorem 2), then

fn(x)¿

[
C( n

k

)
log n

1

kk=2
(
V kd n

ka log n log log n
)−1
]1=k

:

Adjust a to conclude that

P{fn(x)¿ (log log n)1=k i:o:}= 1:
This concludes the proof of Theorem 3.

Rate of convergence. The poor rate of convergence of the estimate is best seen by considering points outside
the support of f. If x is at least distance s away from the support of f, then fn(x)¿c=(sd(log n)1=k) for some
constant c only depending upon k and d.
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