
SQUARISH k-d TREES∗

LUC DEVROYE† , JEAN JABBOUR† , AND CARLOS ZAMORA-CURA†

SIAM J. COMPUT. c© 2000 Society for Industrial and Applied Mathematics
Vol. 30, No. 5, pp. 1678–1700

Abstract. We modify the k-d tree on [0, 1]d by always cutting the longest edge instead of
rotating through the coordinates. This modification makes the expected time behavior of lower-
dimensional partial match queries behave as perfectly balanced complete k-d trees on n nodes. This
is in contrast to a result of Flajolet and Puech [J. Assoc. Comput. Mach., 33 (1986), pp. 371–407],
who proved that for (standard) random k-d trees with cuts that rotate among the coordinate axes,
the expected time behavior is much worse than for balanced complete k-d trees. We also provide
results for range searching and nearest neighbor search for our trees.

Key words. k-d trees, partial match query, range search, expected time, probabilistic analysis
of algorithms, data structures

AMS subject classifications. 68P05, 68Q25, 60C05

PII. S0097539799358926

1. Introduction. The k-d tree, or k-dimensional binary search tree, was pro-
posed by Bentley (1975). In this paper, we propose a modification, the squarish k-d
tree, and analyze its expected time performance for partial match queries, orthogonal
range searching, and nearest neighbor search under the standard random model for
the input (n points independently and uniformly distributed on the unit hypercube).
We point out its superiority over the standard k-d tree for this model.

Bentley’s k-d tree is a binary search tree that generalizes the 1-d tree or ordinary
binary search tree to R

k. A partition of space into hyperrectangles is obtained by
splitting alternating coordinate axes by hyperplanes through data points. Figure 1
shows the partition and the corresponding k-d tree. Insertion and search are imple-
mented as for the standard binary search tree algorithms. These trees are used for
a variety of other operations, including orthogonal range searching (report all points
within a given rectangle), partial match queries (report all points whose values match
a given k-dimensional vector with possibly a number of wild cards, e.g., we may search
for all points with values (a1, ∗, ∗, a4, a5, ∗), where ∗ denotes a wild card). Addition-
ally, nearest neighbor searching is greatly facilitated by k-d trees. For orthogonal
range searching, a host of particular data structures have been developed, such as
the range tree and variations or improvements of it (for surveys, see Bentley and
Friedman (1979); Bentley (1979); Yao (1990); Samet (1990a), (1990b); and Agarwal
(1997)). However, the k-d tree offers several advantages: it takes O(kn) space for
n data points, it is easily updated and maintained, it is simple to implement and
comprehend, and it is useful for other operations besides orthogonal range search.

Bentley’s orthogonal range search algorithm simply visits recursively all subtrees
of the root that have a nonempty intersection with the query rectangle. In Figure 1,
for example, the left and right subtrees of the root are visited. Note that each node in
the tree represents both a point of the data and a rectangle in the partition, namely,

∗Received by the editors July 20, 1999; accepted for publication (in revised form) April 26, 2000;
published electronically November 28, 2000. This paper was sponsored by NSERC grant A3456 and
by FCAR grant 90-ER-0291.

http://www.siam.org/journals/sicomp/30-5/35892.html
†School of Computer Science, McGill University, 3480 University Street, Montreal, Canada H3A

2K6 (luc@cs.mcgill.ca, jabbour@cs.mcgill.ca, czamora@cs.mcgill.ca). The second author was on leave
from the Department of Mathematics, Université de Versailles, France. The third author received a
DGAPA-UNAM Scholarship.

1678

SQUARISH k-d TREES 1679

0

1 2

3 4

5 6

7 8

9

11

14 16

17 18

0

1

2

3

4

5

6

7

8

9

11

14

16

17

18

Fig. 1. The query rectangle is shaded.

the rectangle split by that point. Leaf regions thus have no points strictly in their
interior. The query time for orthogonal search depends upon many factors, such as the
location of the query rectangle and the distribution of the points. One may construct
a median k-d tree off-line by splitting each time about the median, thus obtaining a
perfectly balanced binary tree, in which ordinary point search takes Θ(logn) worst-
case time, and a partial match query with s coordinates specified takes worst-case
time O(n1−s/k+N), where N is the number of points returned (see, for example, Lee
and Wong (1977)).

For on-line insertion, balancing is notoriously difficult. If we assume that the
data are independent and have a common distribution, then the expected query time
is clearly of interest. For standard random binary search trees, it is known (Knuth
(1997); Pittel (1984); Devroye (1986), (1987); Mahmoud (1992)) that most properties
of balanced search trees are inherited: the expected depth of a randomly selected
node is about 2 logn and the expected height is O(log n). One would hope that the
random k-d tree, constructed by consecutive insertion of n data points, would also
have a performance close to that of the median (off-line) k-d tree. Assuming that the
data points are drawn from the uniform distribution on the unit k-cube, Flajolet and
Puech (1986) showed that a random partial match query (carried out with s values
also drawn uniformly and independently on [0, 1] so there are k − s wild cards) has
expected time performance Θ(n1−s/k+θ(s/k)), where θ(u) is a strictly positive function
of u ∈ (0, 1), with maximum not exceeding 0.07. Thus, random k-d trees behave a
bit worse than their balanced counterparts, the median k-d trees. Surveys of related
known probabilistic results are provided by Vitter and Flajolet (1990) and Gonnet
and Baeza-Yates (1991).

We propose a minor modification of the insertion procedure, namely, each time
a rectangle is split by a newly inserted leaf point, the longest side of its rectangle
is cut, that is, the cut is a (k − 1)-dimensional hyperplane through the new point
perpendicular to the longest edge of the rectangle. It was shown by Chanzy, Devroye,
and Zamora-Cura (1999) that elongated rectangles explain the poor performance of
random k-d trees. In this paper, we show to what extent the proposed k-d trees have

1680 LUC DEVROYE, JEAN JABBOUR, AND CARLOS ZAMORA-CURA

more squarish-looking rectangles, and we will therefore call these trees squarish k-d
trees. For the probabilistic model of Flajolet and Puech, it will be shown that the
expected time for a partial match query is Θ(n1−s/k), just as for random median
k-d trees. Furthermore, the expected complexity of any orthogonal range search in
median k-d trees is asymptotically equivalent to that for the simple squarish k-d trees
proposed here.

In the last part of the paper, we deal with orthogonal range search in general
when the query rectangles may have dimensions that depend upon n in an arbitrary
fashion. The proofs are probabilistic, rather than analytical, and do not offer explicit
constants for expected times but only Θ(·) results. However, they are short and
explain many of the phenomena at work. Interestingly, very little probability beyond
Hölder’s inequality is needed. We conclude the paper by showing that a natural
nearest neighbor search (with a randomly selected probe point) takes O(log n log log n)
expected time in any dimension.

We should note that there are indeed more sophisticated data structures for some
of the subproblems dealt with here. For example, if one is just interested in partial
match queries, then one could just make j-d trees for each of the 2k − 1 nonempty
subsets of size j of the k coordinates separately, so that search in the proper tree is
just a point search, taking expected worst-case time O(log n), while the space used is
still O(n2k). However, these would not be helpful for general orthogonal, simplex, or
convex range searches. For an analysis of range search based on multiattribute trees
see Gardy, Flajolet, and Puech (1989).

2. The random processes. In this section, we will try to explain the differ-
ences between alternating cuts and longest-edge cuts in sequences of randomly cut
rectangles. To explain the processes at work, we consider the following simplification
of our problem: in R

2, start with a rectangle with one vertex permanently pegged
at the origin and the opposite one at (1, 1), and let (Un, Vn) denote the coordinates
of the top right vertex after n iterations, with (U0, V0) = (1, 1). The rectangle will
be reduced in size, first by alternating uniform cuts, that is, if Z1, Z2, . . . are inde-
pendently and identically distributed (i.i.d.) uniform [0, 1] random variables, then we
set

(Un, Vn) =

{
(ZnUn−1, Vn−1) if n is odd;
(Un−1, ZnVn−1) if n is even.

If we denote by
L
= equality in distribution, clearly, at time 2n, we have

U2n
L
=V2n

L
=
n∏
i=1

Zi
L
= e−

∑n

i=1
Ei

L
= e−Gn ,

where the Ei are independent exponential random variables, and Gn denotes a gamma
random variable with parameter n. As Uk and Vj are independent of each other for
all k, j, we see that the ratio

U2n

V2n

L
= eGn−G′

n ,

where Gn, G
′
n are i.i.d. gamma random variables. By the central limit theorem, it is

easy to see that

1√
n
log

(
U2n

V2n

)
L→ N −N ′,

SQUARISH k-d TREES 1681

Fig. 2. Two random k-d tree partitions clearly show the elongated rectangles.

a difference of two independent standard normal random variables. Thus, the raw
ratio behaves asymptotically like exp(

√
n(N − N ′)), and thus exhibits wide swings.

In fact, if we stop at a large value for n, the rectangle will look very skinny indeed
(see Figure 2).

Since we would like to preserve squarish rectangles, we may opt instead to always
cut the longest side of the rectangle. More formally, with notation as above, (U0, V0) =
(1, 1), we have

(Un, Vn) =

{
(ZnUn−1, Vn−1) if Un−1 > Vn−1;
(Un−1, ZnVn−1) if Un−1 < Vn−1.

In case of equality Un−1 = Vn−1, which only occurs at n = 1, we flip a perfect coin
and pick an edge to cut at random.

Lemma 1. With the longest-edge cutting method, the sequence Un/Vn, n ≥ 1,
is identically distributed. The common distribution is that of Z1/Z2, the ratio of two
independent uniform [0, 1] random variables.

Proof. Clearly, U1/V1 is distributed as Z1 with probability 1/2 and as 1/Z1 other-
wise. It is easy to verify that this has the required density 1/(2max(z, 1))2, z > 0. By
induction, we need to show that if Z1, Z2, Z are i.i.d. uniform [0, 1] random variables,
then the random variable ZZ1/Z2IZ1>Z2 + Z1/(ZZ2)IZ1<Z2 is in turn distributed as
Z1/Z2. This can be done by standard calculations, or even the method of characteris-
tic functions. However, by far the quickest way to see this is by embedding. We note
that Z1/Z2 is distributed as the random variable ZS4 where S = 1 and S = −1 with
equal probability, and Z4 is another uniform [0, 1] random variable. The case Z1 > Z2

corresponds to S = −1, and thus we see that ZZ1/Z2IZ1>Z2 + Z1/(ZZ2)IZ1<Z2

is distributed as (Z4/Z)
S , which was to be shown, as S is independent of Z and

Z4.
Lemma 1 shows that cutting the longest edge is extremely stabilizing. Never-

theless, as Un/Vn has Cauchy-like tails, its mean does not exist, and we will often
see skinny rectangles, although by and large the rectangles will be rather squarish
(see Figures 3 and 4). The above observations explain why the squarish k-d trees are
useful. Our analysis is of course more involved, as rectangles participate in an evolv-

1682 LUC DEVROYE, JEAN JABBOUR, AND CARLOS ZAMORA-CURA

0 100 200 300 400

0

10

20

30

-10

-20

-30

log (U
n
/V

n
)

n

Fig. 3. For the two processes above, log(Un/Vn) is plotted versus n. The alternating cuts
process wanders off just as a random walk. The largest edge cut strategy induces a sequence Un/Vn

that hovers near one and remains stationary.

Fig. 4. For the two processes above, let Ln and Sn be the long and short dimensions of a leaf

rectangle in the 2-d partition. The values
√

Ln/Sn are plotted versus
√
LnSn (normalized so that

the largest value is one) for the two k-d trees. For squarish k-d trees (on the right), there are many
more rectangles in which Ln and Sn are close. And nearly all big rectangles are squarish. For the
ordinary random 2-d tree (on the left) most rectangles have very small edge ratios.

ing collection of rectangles, with very intricate dependencies. As soon as a rectangle
becomes too small, it is unlikely to be picked again soon, and thus, the ratio of the
sides of the rectangles must be considered in conjunction with the sizes. For this, we
introduce a few new analysis methods.

3. Notation and preliminaries. In k-d trees, nodes represent rectangular re-
gions. Bentley’s algorithm for orthogonal range search and partial match queries starts
at the root of a k-d tree and recursively visits all subtrees that have a nonempty over-
lap with the rectangular regions of the children, and reports all points that fall in
the search region. Let u1, u2, . . . , un, n ≥ 1, denote the nodes in the k-d tree, and
let U1, . . . , Un denote the data points, which are i.i.d. and uniformly distributed on

SQUARISH k-d TREES 1683

[0, 1]k. Thus, Ui is the data point corresponding to ui. The rectangle split by ui is
Ri. Thus, R1 = [0, 1]k. Let |Ri| denote the volume of rectangle i. The n + 1 leaf
rectangles (the dangling edges in Figure 1) are also denoted Ri, with the index i now
running from n + 1 to 2n + 1. The collection of rectangles is denoted by Rn. The
collection of the indices of the n + 1 final rectangles is Fn. We will denote by T the
k-d tree constructed by inserting successively u1, u2, . . . , un into an initially empty k-d
tree. Given a node u in T , we will denote by Tu the subtree of T rooted at u. With
rotating coordinate cuts, such a tree is called a random k-d tree. With our method of
cutting the longest edges, it will be called a random squarish k-d tree.

The dimensions of rectangle Ri are Xij , 1 ≤ j ≤ k. For 2-d trees, we will use
the lighter notation Xi, Yi for the x and y dimensions of Ri. The query rectangle
Q is Z + [−m1,m1] × · · · × [−mk,mk], mi ≥ 0 for all i, where the mi’s are fixed
(that is, they may depend upon n only) and Z is uniformly distributed on [0, 1]k and
independent of (U1, . . . , Un). Bentley’s range search applied to Q is called a random
orthogonal range search. Note that a node ui is visited by the range search algorithm
if and only if the query rectangle Q intersects Ri. Any rectangle Ri is visited if and
only if it intersects Q. Let Nn be the time complexity of Bentley’s orthogonal range
search. Then,

Nn =

2n+1∑
i=1

1[Ri∩Q�=∅],

where 1[A] is the characteristic function of the event A. This quantity will be analyzed
further on for random squarish k-d trees.

In a random partial match query, we specify a subset of s dimensions, j1, . . . , js,
and perform an orthogonal range query with the ith interval in the rectangle either
{Zi} (a uniform random number on [0, 1]) if i ∈ {j1, . . . , js}, or (−∞,∞) otherwise.
It is assumed that the Zi’s are independent, and independent of (U1, . . . , Un). In this
paper, we first study random partial match queries for random squarish k-d trees and
obtain results that should be compared against the following result for random k-d
trees.

Theorem 1 (Flajolet and Puech (1986)). For a random k-d tree and a random

partial match query, in which s of the k fields are specified with k > s ≥ 0, let N
(s)
n be

the number of comparisons that Bentley’s orthogonal range search performs. Define

α(u) = max
0≤t≤1

{
t+ 2

(
1− t
1− u

)1−u(
t

u

)u
− 2

}
, 0 < u < 1,

and note in particular that α is decreasing on (0, 1), α(0) = 1, and that 1 − u <
α(u) < 1.07− u, 0 < u < 1. Then, the expected value of N

(s)
n is such that

E
{
N (s)
n

}
= (c+ o(1))nα(s/k),

where c is a constant depending on the indices of the s fixed coordinates.
The following proposition is useful in relating partial random partial match queries

to the range search problem.
Proposition 1. Given is a random k-d tree based on i.i.d. random variables

U1, . . . , Un, distributed uniformly on [0, 1]k. Consider a random partial match query,

in which s ≥ 0 of the k fields are specified. Let N
(s)
n be the number of comparisons that

1684 LUC DEVROYE, JEAN JABBOUR, AND CARLOS ZAMORA-CURA

Bentley’s orthogonal range search performs. Let S be the set of specified coordinates.
Then

E
{
N (s)
n

}
= E




2n+1∑
i=1

∏
j∈S
Xij


 ,

where Xij , 1 ≤ j ≤ k, are the lengths of the sides of rectangle Ri in Rn.
Proof. Let Q be the query rectangle. Note that P {Q ∩Ri �= ∅ |U1, . . . , Un} =∏

j∈S Xij . Thus we have

E
{
N (s)
n

}
= E

{
2n+1∑
i=1

1[Q∩Ri �=∅]

}
=

2n+1∑
i=1

P {Q ∩Ri �= ∅} = E



2n+1∑
i=1

∏
j∈S
Xij


 .

The next observation is important. It follows immediately by considering the
random growth of our k-d trees, and, of course, it implies that the joint distribution
of the ordered volumes of the n + 1 leaf rectangles is identical for both random k-d
trees considered here!

Lemma 2. Consider a random k-d tree or a random squarish k-d tree. Then,
the volumes of the rectangles in Fn are distributed as the set Vn of the consecutive
spacings between the order statistics of n i.i.d. random variables, uniformly distributed
on [0, 1].

4. Random partial match queries with squarish 2-d trees. In a vertical
random partial match query on a 2-d tree, we take a uniformly distributed value Z
and visit all nodes in the tree whose rectangle cuts the vertical line at Z. Horizontal
partial match queries on 2-d trees are defined in an analogous manner. The probability
of hitting a rectangle with dimensions Xi × Yi is of course Xi, so that the expected
number of nodes visited, and hence the expected time for a partial match query,
is simply E{∑2n+1

i=1 Xi}, where the sum is taken over all 2n + 1 rectangles in the
partition. A similar formula holds, of course, for horizontal partial match queries. In
this section, we prove that a random partial match query in a random squarish 2-d
tree takes expected time Θ(

√
n) as opposed to Θ(n0.5616) for random 2-d trees (see

Theorem 1).
Theorem 2. For random squarish 2-d trees,

√
πn

3
≤ E

{
2n+1∑
i=1

Yi

}
≤ 180

√
n.

The same result holds for E{∑2n+1
i=1 Xi}. Hence, the expected time for a random

partial match query is Θ(
√
n).

Of course, no attempt was made to optimize the constants. A few technical results
will be needed in what follows. In particular, the next lemma is valid for squarish k-d
trees in arbitrary dimension.

Lemma 3. For random squarish k-d trees, let p ≥ 0, n ≥ 1; then

(
1

1 + p

)�p�+1
Γ(p+ 1)

np−1
≤ E

{∑
i∈Fn

|Ri|p
}

≤ 4Γ(p+ 1)

np−1

for all n.

SQUARISH k-d TREES 1685

Proof. Let V1, . . . , Vn+1 be the spacings induced by n independent uniformly

distributed random variables on [0, 1]. It is known that Vi
L
=Beta(1, n). Thus, by

Lemma 2, with B(s, t) = Γ(s)Γ(t)
Γ(s+t) ,

E

{∑
i∈Fn

|Ri|p
}

= E

{
n+1∑
i=1

V pi

}
=

n+1∑
i=1

∫ 1

0

vp
(1− v)n−1

B(1, n)
dv

= (n+ 1)
B(p+ 1, n)

B(1, n)
= Γ(p+ 1)

Γ(n+ 2)

Γ(p+ n+ 1)
.

Now, Γ(x+1) = xΓ(x) for any x > 0, and for any natural number n and any s ∈ [0, 1],
n1−s ≤ Γ(n+ 1)/Γ(n+ s) ≤ (n+ 1)1−s (see Mitrinović (1970)). Thus,

E

{∑
i∈Fn

|Ri|p
}

= Γ(p+ 1)(n+ 1)
Γ(n+ 1)

(n+ p) · · · (n+ p− �p�)Γ(n+ p− �p�)

≤ Γ(p+ 1)(n+ 1)2−p+�p�

n�p�+1

=
Γ(p+ 1)

np−1

(
n+ 1

n

)2+�p�−p

≤ 4Γ(p+ 1)

np−1
,

as 2 + �p� − p ≤ 2. Now, for the lower bound, note that

E

{∑
i∈Fn

|Ri|p
}

= Γ(p+ 1)(n+ 1)
Γ(n+ 1)

(n+ p) · · · (n+ p− �p�)Γ(n+ p− �p�)

≥ Γ(p+ 1)

np−1

n�p�+1

(n+ p) · · · (n+ p−�p�)

≥ Γ(p+ 1)

np−1

(
n

n+ p

)�p�+1

≥ Γ(p+ 1)

np−1

(
1

1 + p

)�p�+1

.

Lemma 4. In a random squarish 2-d tree constructed from the insertion of
U1, . . . , Un independent and uniformly distributed random vectors on [0, 1]2 we have
that for every q ≥ 1,

E

{∑
i∈Fn

Y qi

}
≤




8
1−q/2n

1−q/2 for q ∈ [1, 2);

8e log n for 2− 2
logn ≤ q ≤ 2;

5Γ(q/2+1)
q/2−1

(
q
2 − 1

nq/2−1

)
for q > 2,

and for q ∈ [1, 2),

E

{∑
i∈Fn

Y qi

}
≥
(

1

q/2 + 1

)�q/2�+1

Γ(q/2 + 1)n1−q/2.

The same result holds for E
{∑

i∈Fn
Xqi
}
.

1686 LUC DEVROYE, JEAN JABBOUR, AND CARLOS ZAMORA-CURA

Proof. Let r > 1, and define S
(q)
r =

∑
i∈Fr

Y qi . Note that, given U1, . . . , Ur,

S
(q)
r+1 − S(q)

r is distributed as Y q when X > Y and as Y q(Uq + (1 − U)q − 1) when
X ≤ Y , where U is a uniform [0, 1] random variable, and (X,Y) are the dimensions
of the rectangle split when Ur+1 is added. Thus,

E
{
S

(q)
r+1 − S(q)

r

}
= E

{∑
i∈Fr

XiYi
(
1[Xi>Yi]Y

q
i + 1[Xi<Yi]Y

q
i (U

q + (1− U)q − 1)
)}
.

Notice that Uq + (1 − U)q − 1 ≤ 0 for q ≥ 1, and as min{a, b} ≤ √
ab, for a, b ≥ 0,

then by Lemma 3,

E
{
S

(q)
r+1 − S(q)

r

}
≤ E

{∑
i∈Fr

XiYi
(
1[Xi>Yi]Y

q
i

)}

≤ E
{∑
i∈Fr

(XiYi)
q/2+1

}
≤ 4Γ(q/2 + 2)

rq/2
.

By summing the differences, we get

E
{
S(q)
n

}
= E

{
n−1∑
r=1

(
S

(q)
r+1 − S(q)

r

)
+ S

(q)
1

}

≤
n−1∑
r=1

4Γ(q/2 + 2)

rq/2
+ 2

≤ 2 + 4Γ(q/2 + 2)

(
1 +

∫ n−1

1

1

xq/2
dx

)

≤
{
10 + 4Γ(q/2+2)

1−q/2 (n1−q/2 − 1) (q ∈ [1, 2)),

5Γ(q/2 + 2) + 4Γ(q/2+2)
q/2−1 (1− n1−q/2) (q > 2)

≤
{

8
1−q/2n

1−q/2 (q ∈ [1, 2)),
5Γ(q/2+2)
q/2−1

(
q
2 − n1−q/2) (q > 2).

Because 8
1−q/2n

1−q/2, as a function of q, reaches its minimum at q0 = 2(1− 1/ log n),

and E{S(q)
n } is a decreasing function of q, we have that E{S(q)

n } ≤ 8e log n, for q0 ≤
q ≤ 2. The result for E

{∑
i∈Fn

Xqi
}
can be obtained similarly just by replacing the

y-lengths for the x-lengths in the appropriate places.
Now, for the lower bound, note that as the Xi’s and the Yi’s are identically

distributed,

E

{∑
i∈Fn

Y qi

}
=

1

2
E

{∑
i∈Fn

(Y qi +Xqi)

}

≥ E
{∑
i∈Fn

(YiXi)
q/2

}

≥
(

1

q/2 + 1

)�q/2�+1
Γ(q/2 + 1)

nq/2−1
,

by Lemma 3, for q ∈ [1, 2).

SQUARISH k-d TREES 1687

Proof of Theorem 2. Note that the lower bound follows from Lemma 4, as

E
{∑

i∈Fn
Yi
}
is less than E{∑2n+1

i=1 Yi}. For the upper bound we will use the same

technique as in the proof of Lemma 4. Let Sn =
∑2n+1
i=1 Yi. Note that as the sum is

over all the rectangles generated by U1, . . . , Un, we have now that for r ≥ 1, as Xi
and Yi are identically distributed,

E {Sr+1 − Sr} = E
{∑
i∈Fr

XiYi
(
1[Xi>Yi]2Yi + 1[Xi<Yi](YiU + Yi(1− U))

)}

≤ 3E

{∑
i∈Fr

XiY
2
i

}
,

where U
L
=Uniform[0, 1], and independent of all U1, . . . , Un. Let q ∈ (1, 2) and p > 1

such that 1
p +

1
q = 1, then by Hölder’s inequality used twice,

E

{∑
i∈Fr

XiY
2
i

}
≤ E

{∑
i∈Fr

(XiYi)
p

}1/p

E

{∑
i∈Fr

Y qi

}1/q

≤
(
4Γ(p+ 1)

rp−1

)1/p(
8

1− q/2
1

rq/2−1

)1/q

by Lemmas 3 and 4. Take p = 3, q = 3/2, and verify that the upper bound is not
more than 241/3322/3/

√
r < 30/

√
r. By summing the differences we finally obtain

E

{
2n+1∑
i=1

Yi

}
≤ 5

2
+ 90

n−1∑
r=1

1√
r
≤ 5

2
+ 90(2

√
n− 1− 1) ≤ 180

√
n.

The result for E{∑2n+1
i=1 Xi} can be obtained similarly just by replacing the y-lengths

for the x-lengths in the appropriate places.

5. The k-dimensional case. In this section, we obtain the k-dimensional gen-
eralization of the results in the previous section by induction. Given U1, . . . , Un, we
define for each Ri ∈ Rn, X∗

i = maxj=1,...,kXij and j
∗
i as the index j ∈ {1, . . . , n} for

which Xij = X
∗
i . Note that j∗i is unique with probability one. Our main result gen-

eralizes Theorem 2 and establishes the expected time optimality of random squarish
k-d trees.

Theorem 3. Consider a random squarish k-d tree. For - ∈ {1, . . . , k − 1}, there
exist C,C ′ > 0 such that

C ′n1− �
k ≤ E




2n+1∑
i=1

∏
j∈I
Xij


 ≤ Cn1− �

k ,

for any I ⊆ {1, . . . , k} of cardinality - and all n ∈ N. In particular, by Proposition 1
the expected time of a random partial match query with s specified coordinates is
Θ(n1−s/k).

The next lemma complements Theorem 3 when - = k.
Lemma 5. Let U1, . . . , Un be independent uniformly distributed random variables

over [0, 1]k. Let Rn = {R1, R2, . . . , R2n+1} be the hyperrectangles in the partition

1688 LUC DEVROYE, JEAN JABBOUR, AND CARLOS ZAMORA-CURA

defined by the random squarish k-d tree based on U1, . . . , Un. Let Xij be the length on
the jth coordinate of the ith hyperrectangle. Then,

E

{
2n+1∑
i=1

Xi1 · · ·Xik
}

= 2hn+1 − 1,

where hn is the nth harmonic number.

We prove the following lemma that will allow us to prove the lower bound in the
previous theorem.

Lemma 6. Let - ∈ {1, . . . , k}; then for every x1, . . . , xk > 0,


 k∏
j=1

xj




1
k

≤ max
I: I⊆{1,...,k}

|I|=�


∏
j∈I
xj




1
�

.

Proof. Let I∗ be the subset of {1, . . . , k} of cardinality - for which the maximum
above is reached. It suffices to observe that

 k∏
j=1

xj



�

=

k∏
s=1


s+�−1∏
j=s

xj


 ≤

k−1∏
s=0


∏
j∈I∗

xj


 =


∏
j∈I∗

xj



k

,

where the subindice j must be understood as (j mod k), if j > k.

Proposition 2. Let I ⊆ {1, . . . , k} of cardinality - ∈ {1, . . . , k} and p ∈ [1, k�);
then there are positive constants C and C ′ such that

C ′n1−p �
k ≤ E



∑
i∈Fn


∏
j∈I
Xij



p
 ≤ Cn1−p �

k

for all n ∈ N.

Proof. For I ⊆ {1, . . . , k} with |I| = -, we define

SI,pr =
∑
i∈Fr


∏
j∈I
Xij



p

.

We first look at the upper bound. We define recursively the constants Ck(-, p) for
any integer k > 0, - ∈ {1, . . . , k} and real number p ∈ [1, k�) as follows:

Ck(-, p) =

{
4Γ(p+ 1) if - = k;

(k − -)
(

1

1− p�
k

)
Ck(k, q̃)

1/q̃Ck(-+ 1, pp̃-/(-+ 1))1/p̃ + 2 if - < k,

where p̃, q̃ > 1 depend on p, k, and -, they are such that 1
p̃ +

1
q̃ = 1, and 1 ≤ pp̃ ��+1 <

k
�+1 . For the sake of clarity we will choose p̃ later.

For - ∈ {2, . . . , k}, we define the hypothesis H� stating that the upper bound
holds for all n ∈ N, all I ⊆ {1, . . . , k} such that |I| = -, and all p ∈ [1, k�), with
constant Ck(-, p). We will prove H� with an inductive argument. First, note that Hk

SQUARISH k-d TREES 1689

holds by Lemma 3. Assuming that H� is true, we will prove H�−1. Let I ⊆ {1, . . . , k}
such that -− 1 = |I| ≥ 1, and p ∈ [1, k�−1). Then for any integer r ≥ 1, we have

E
{
SI,pr+1 − SI,pr |U1, . . . , Ur

}
=
∑
i∈Fr


 k∏
j=1

Xij




1[j∗i �∈I]


∏
j∈I
Xij



p

+1[j∗i ∈I]


∏
j∈I
Xij



p ∫ 1

0

(xp + (1− x)p − 1)dx


 ,

as we are using the longest-edge cut method. Since
∫ 1

0
(xp + (1 − x)p − 1)dx ≤ 0 for

any p ≥ 1, we can drop the second term above and take expected values so that

E
{
SI,pr+1 − SI,pr

}
≤
∑
t�∈I
E



∑
i∈Fr


 k∏
j=1

Xij


1[j∗i =t]


∏
j∈I
Xij



p
 .

Let us denote by E(t) the expected value of the tth term above. Observe that

1[j∗i =t]Xij ≤ X
�−1
�
ij X

1
�
it . Thus we can bound each E(t) as follows:

E(t) ≤ E



∑
i∈Fr


 k∏
j=1

Xij




 ∏
j∈I∪{t}

Xij




�−1
� p

 .

Now, for any p̃, q̃ > 1 such that 1
p̃ +

1
q̃ = 1, we have by applying Hölder’s inequality

twice that

E(t) ≤ E



∑
i∈Fr


 k∏
j=1

Xij



q̃



1
q̃

E



∑
i∈Fr


 ∏
j∈I∪{t}

Xij




�−1
� pp̃




1
p̃

.

We can apply hypothesis H� to bound the second term above, if we can choose p̃ > 1
such that pp̃ �−1

� ∈ [1, k/-). Note that k
p(�−1) > 1, as p ∈ [1, k�−1). Let us define

p̃ = max
{√
k/p(-− 1), �

(�−1)p

}
, so that p̃ > 1, yet 1 ≤ pp̃ �−1

� <
k
� . This completely

defines the constant Ck(-, p). We can therefore use hypothesis H� and obtain

E(t) ≤
(
Ck(k, q̃)

rq̃−1

)1/q̃ (
Ck(-, pp̃(-− 1)/-)

r
�−1
k pp̃−1

)1/p̃

=
Ck(k, q̃)

1/q̃Ck(-, pp̃(-− 1)/-)
1
p̃

r
�−1
k p

.

We can thus bound the differences as follows:

E
{
SI,pr+1 − SI,pr

}
≤
∑
t�∈I
E(t) ≤ (k − -+ 1)Ck(k, q̃)

1/q̃Ck(-, pp̃(-− 1)/-)1/p̃

r
�−1
k p

.

Since p < k
�−1 , we have that

∑n
r=1

1

r
p
�−1
k

≤ 1
1−p �−1

k

n

n
p
�−1
k

. So, by summing the

differences, we get

E
{
SI,pn

} ≤ [Ck(-− 1, p)− 2]n1−p �−1
k + 2 ≤ Ck(-− 1, p)n1− p(�−1)

k

1690 LUC DEVROYE, JEAN JABBOUR, AND CARLOS ZAMORA-CURA

as E{SI,p1 } ≤ 2, for every p ≥ 1, and any nonempty I ⊆ {1, . . . , k}. Thus, hypothesis
H�−1 is proved.

We now prove the lower bound. As we flip a perfect coin at the beginning of the
process to choose the side of R1 that we cut, all the coordinates Xi1, . . . , Xik of a
hyperrectangle Ri are exchangeable. So, denoting by S the set of all I ′ ⊆ {1, . . . , k}
of cardinality -, all the random variables

∑
i∈Fn

∏
j∈I′ X

p
ij are equally distributed so

that

E



∑
i∈Fn

∏
j∈I
Xpij


 =

1

|S| E


∑
I′∈S

∑
i∈Fn

∏
j∈I′

Xpij


 .

Then, by Lemmas 3 and 6,

E



∑
i∈Fn


∏
j∈I
Xij



p
 ≥ 1

|S| E



∑
i∈Fn


 k∏
j=1

Xij




p�
k


 ≥ C ′ n

n
p�
k

.

We must note that by Lemma 3, if - = k, then for any p ≥ 0, there are positive
constants C and C ′, depending on p such that the previous result holds. We are now
ready to prove Theorem 3.

Proof of Theorem 3. The lower bound follows immediately from the previous
proposition. For any subset I ⊆ {1, . . . , k} of cardinality - ∈ {1, . . . , k− 1}, we define

SIn =

2n∑
i=1

∏
j∈I
Xij .

As we are using the longest-edge cut method we have that

E
{
SIr+1 − SIr |U1, . . . , Un

}
=
∑
i∈Fr

k∏
j=1

Xij


1[j∗i �∈I]2

∏
j∈I
Xij + 1[j∗i ∈I]

∏
j∈I
Xij




≤ 3
∑
i∈Fr

k∏
j=1

Xij
∏
j∈I
Xij .

We choose now p =
√
k/-, q = 1/(1−√-/k), so that 1

p +
1
q = 1, and apply Hölder’s

inequality with these values to get

E
{
SIr+1 − SIr

} ≤ 3E



∑
i∈Fr


 k∏
j=1

Xij



p


1/p

E



∑
i∈Fr


∏
j∈I
Xij



q


1/q

.

Then by Lemma 3 and Proposition 2, there exists a positive constant C depending
upon - and k such that

E
{
SIr+1 − SIr

} ≤ C

r
�
k

.

We add the differences to get

E
{
SIn
} ≤ C

(
n∑
r=1

1

r
�
k

)
+ 2 ≤ C

1− �
k

(
n

n
�
k

)
+ 2.

SQUARISH k-d TREES 1691

Proof of Lemma 5. First, note that for any 1 ≤ i ≤ n, Xi1 · · ·Xik is the volume
|Ri| of the hyperrectangle Ri. Note that if U1, . . . , Ui have already been inserted in
[0, 1]k, and Ui+1 is a new point, then the size of the two hyperrectangles generated by
Ui+1 is equal to the size of the hyperrectangle in the final partition of [0, 1]k in which
Ui+1 falls. Let us denote by R(Ui+1) this hyperrectangle. Thus,

E

{
2n+1∑
i=1

Xi1 · · ·Xik
}

= 1 +

n−1∑
i=0

E {E {|R(Ui+1)| |U1, . . . , Ui}} ,

where the 1 accounts for the root hyperrectangle. We claim that E {|R(Ui+1)|} = 2
i+2 .

Note that the claim is obviously true for i = 0. Now, suppose that U1, . . . , Ui have
already been inserted in the squarish k-d tree, so that there are i+ 1 external nodes.
These external nodes represent the i + 1 hyperrectangles partitioning [0, 1]k. Let
these hyperrectangles be S1, . . . , Si+1, and let the numbering be so that the leaves are
taken from left to right, in order of appearance as leaves in the squarish k-d tree of
U1, . . . , Ui. Then,

E {|R(Ui+1)|} = E
{
E

{
i+1∑
�=1

1[Ui+1∈S�] |S�|
∣∣ U1, . . . , Ui

}}

= E

{
i+1∑
�=1

|S�|P
{
Ui+1 ∈ S�

∣∣ U1, . . . , Ui
}}

= E

{
i+1∑
�=1

|S�|2
}
.

By Lemma 2, (|S1|, . . . , |Si+1|) are jointly distributed as uniform spacings. All these
spacings are identically distributed following a Beta(1, i) distribution. If B is a
Beta(1, i) random variable, then we have E {B} = 1/(i + 1) and E

{
B2
}
= 2/((i +

1)(i+ 2)). Therefore,

E {|R(Ui+1)|} = (i+ 1)E
{
B2
}
=

2

i+ 2
,

and thus

1 +
n−1∑
i=0

E {|R(Ui+1)|} = 1 + 2(hn+1 − 1).

6. Orthogonal range search. In this section, we obtain tight upper bounds for
the expected complexity for Bentley’s range search algorithm. For random orthogonal
range search, the following theorem establishes the standard for comparisons. Theo-
rem 5 below then states that random squarish k-d trees are superior to random k-d
trees for any kind of random orthogonal range search.

Theorem 4 (Chanzy, Devroye, and Zamora-Cura (1999)). Given is a random
k-d tree of size n. Let Q be a random query hyperrectangle of dimensions ∆1×· · ·×∆k
(which are deterministic functions of n taking values in [0, 1]), with center at Z which
is uniformly distributed on [0, 1]k, and independent of the k-d tree. Let Nn be the

1692 LUC DEVROYE, JEAN JABBOUR, AND CARLOS ZAMORA-CURA

number of comparisons that Bentley’s orthogonal range search algorithm performs.
Then, there exist constants γ > γ′ > 0 depending upon k only such that

γ′ ≤ E {Nn}(
log n+

∑
I⊆{1,...,k}
0≤|I|<k

(∏
j /∈I ∆j

)
nα(|I|/k)

) ≤ γ,

where α(·) is the function defined in Theorem 1.
Theorem 5. Given is a random squarish k-d tree of size n. Let Q be a random

query hyperrectangle of dimensions ∆1 × · · · ×∆k (which are deterministic functions
of n taking values in [0, 1]), with center at Z which is uniformly distributed on [0, 1]k,
and independent of the k-d tree. Let Nn be the number of comparisons that Bentley’s
orthogonal range search algorithm performs. Then, there exist constants γ > γ′ > 0
depending upon k only such that

γ′ ≤ E {Nn}(
log n+

∑
I⊆{1,...,k}
0≤|I|<k

∏
j /∈I ∆jn

1− |I|
k

) ≤ γ .

We can rewrite the previous result as

E {Nn} ≤ γ


n

k∏
j=1

∆j +

k−1∑
�=1

n1− �
k

∑
I⊆{1,...,k}

|I|=�

∏
j /∈I

∆j + log n


 ,

and therefore by allowing any r of the ∆j ’s to be zero, the term that will dominate
the previous bound is

n1− r
k

∑
I;|I|=r

∏
j /∈I

∆j .

For example, when k = 2, ∆ = Θ(1/nα), and ∆′ = Θ(1/nβ), then

E {Nn} ≤ γ
(
n1−α−β + n

1
2−α + n

1
2−β + log n

)
.

By looking at the different regions in the α-β plane, we obtain

E {Nn} ≤


Θ(logn) for α ≥ 1/2 and β ≥ 1/2;
Θ(max{n1/2−αn1/2−β}) for α > 1/2, β < 1/2, or α < 1/2, β > 1/2;
Θ(n1−α−β) for α ≤ 1/2, β ≤ 1/2.

Note that if α = 0 and β ≥ 1/2, or β = 0 and α ≥ 1/2, we recover the expected
complexity time of the random partial match query problem (see Figure 5).

Lemma 7. Let U1, . . . , Un be independent and uniformly distributed over [0, 1]
k

random variables; let X∗
i be the largest side of the ith hyperrectangle generated by

U1, . . . , Un. Then, for all n ≥ 0,

E

{∑
i∈Fn

1[X∗
i
> 1

2]

}
≤ 24k−3.

SQUARISH k-d TREES 1693

Fig. 5. The complexity regions for ∆ = Θ(1/nα) and ∆′ = Θ(1/nβ).

Proof. Note that E{∑i∈Fn
1[X∗

i
> 1

2]
} ≤ 2kE{∑i∈Fn

∏
j∈Ii Xij}, where Ii =

{j : Xij >
1
2}. Define Sn =

∑
i∈Fn

(
∏
j:Xij>

1
2
8Xij). We are going to prove that

E {Sn} is decreasing so that for n ≥ 1,

E

{∑
i∈Fn

1[X∗
i
> 1

2]

}
≤ 2k−3

E {Sn} ≤ 2k−3
E {S0} = 24k−3.

To show E {Sn} ≤ E {S0}, we look at the differences once again. Set Pi =
∏
j∈Ii 8Xij .

Then,

Sr+1 − Sr =
∑
i∈Fr

|Ri|1[X∗
i
> 1

2]

{
−Pi + 1[XX∗

i
> 1

2]

(
PiX + 1[|Ii|>1]

Pi
8X∗
i

)

+1[(1−X)X∗
i
> 1

2]

(
Pi(1−X) + 1[|Ii|>1]

Pi
8X∗
i

)

+1[XX∗
i
≤ 1

2 ; (1−X)X∗
i
≤ 1

2]

(
21[|Ii|>1]

Pi
8X∗
i

)}
,

where X
L
=Uniform[0, 1], and it is independent of U1, . . . , Ur. Therefore,

E {Sr+1 − Sr|U1, . . . , Ur} ≤
∑
i∈Fr

|Ri|1[X∗
i
> 1

2]
Pi


−1 +

∫ 1

1
2X∗

i

(
x+

1

4

)
dx

+

∫ 1− 1
2X∗

i

0

((1− x) + 1/4)dx+

∫ 1
2X∗

i

1− 1
2X∗

i

1/2dx




=
∑
i∈Fr

|Ri|1[X∗
i
> 1

2]
Pi

(
1

4X∗
i

− 1

(2X∗
i)

2

)

≤ 0.

1694 LUC DEVROYE, JEAN JABBOUR, AND CARLOS ZAMORA-CURA

Proof of Theorem 5. Let T be the squarish k-d tree constructed from U1, . . . , Un.
Note that a node Ui in T is visited if and only if the query hyperrectangle Q inter-
sects Ri, where Ri is the hyperrectangle in the final partition of [0, 1]k generated by
U1, . . . , Ui−1, in which Ui falls. Thus, the running time of the range search algorithm
is exactly the number of hyperrectangles in Rn that Q intersects

Nn =

2n∑
i=0

1[Ri∩Q�=∅].

Also, given U1, . . . , Un, the probability that Q intersects Ri is the probability that Z
has some coordinate that is within distance ∆j/2 of Ri, and this probability is clearly
bounded by the volume of Ri expanded by ∆j in the jth direction for all j. Therefore,

E {Nn} ≤ E



2n∑
i=1

k∏
j=1

(Xij +∆j)




=
∑

I⊆{1,...,k}

∏
j /∈I

∆j E




2n∑
i=1

∏
j∈I
Xij


+ 1

≤ γ




∑
I⊆{1,...,k}
0≤|I|<k

∏
j /∈I

∆jn
1− |I|

k + log n




for some γ > 0 by Theorem 3 and Lemma 5. For the lower bound we may assume
that ∆j ≤ 1/2 and do the following:

E {Nn} ≥ E
{∑
i∈Fn

1[Q∩Ri �=∅]1[∀j∈{1,...,k}:Xij≤1/2]

}

≥ E


∑
i∈Fn

k∏
j=1

(
Xij +

∆j
2

)
1[∀j∈{1,...,k}:Xij≤1/2]




= E



∑
i∈Fn

k∏
j=1

(
Xij +

∆j
2

)
−E



∑
i∈Fn

k∏
j=1

(
Xij +

∆j
2

)
1[∃j∈{1,...,k}:Xij>1/2]




=
∑

I⊆{1,...,k}

∏
j /∈I

∆j
2
E



∑
i∈Fn

∏
j∈I
Xij




−
∑

I⊆{1,...,k}

∏
j /∈I

∆j
2
E



∑
i∈Fn

∏
j∈I
Xij1[∃j∈{1,...,k}:Xij>1/2]


 .

We can bound the second term above for any given I ⊆ {1, . . . , k} as

E



∑
i∈Fn

∏
j∈I
Xij1[∃j∈{1,...,k}:Xij>1/2]


 ≤ E

{∑
i∈Fn

1[X∗
i
>1/2]

}
≤ 24k−3

SQUARISH k-d TREES 1695

by the previous lemma. Thus, for all n large enough, we can choose γ′ > 0 such that

E {Nn} ≥ γ′




∑
I⊆{1,...,k}
0≤|I|<k

∏
j /∈I

∆jn
1− |I|

k + log n


 .

7. Nearest neighbor search. We consider two natural nearest neighbor search
algorithms. In algorithm A, start with an orthogonal range search with a square box
of size 1/n1/k centered at the query point X. Repeat with boxes of sizes ki/2/n1/k for
i = 0, 1, 2, 3, . . . until i+1, where i is the index of the first nonempty box. Report the
nearest point in the (i + 1)st box. Each orthogonal range search taken individually
(for fixed i) takes expected time O(log n) by Theorem 5. We show in fact that the
total expected time is O(log n log log n).

Theorem 6. Let X be a point uniformly distributed on [0, 1]k. Consider a
squarish k-d tree based on n i.i.d. points on [0, 1]k. Then the expected time of algorithm
A is O(log n log log n).

Proof. Let T be the total time it takes algorithm A to finish. Let Ti be the
running time of Bentley’s range search algorithm on n i.i.d. points on [0, 1]k and a
cube Qi centered at X of length ki/2/n1/k, and let Mi be the number of points in Qi.
Note that

E {T } ≤ O(log n) +E
{
T1 + T2 +

m∑
i=3

Ti1[Mi−2=0]

}
,

where m = � 2
k logk(2

kn)� bounds the maximum number of iterations the algorithms
can perform. Thus, it is enough to prove thatE

{∑m
i=3 Ti1[Mi−2=0]

}
= O(log n log log n).

Let t = � 2
k logk(2

k log n)�; then

E

{
m∑
i=3

Ti1[Mi−2=0]

}
≤ (t+ 1)E {Tt+1}+ 2n

m∑
i=t+2

P {Mi−2 = 0} .

Now, by Theorem 5,

(t+ 1)E {Tt+1}

≤ γ
(
2

k
logk(2

k log n) + 2

)k(t+1)k/2 +

k−1∑
�=1

n1−�/k ∑
I⊆{1,...,k}

|I|=�

∏
j /∈I

k(t+1)/2

n1/k
+ log n




= γ

(
2

k
logk(2

k log n) + 2

)(
k(t+1)k/2 +

k−1∑
�=1

n1−�/k
(
k

-

)
k(t+1)(k−�)/2

n1−�/k + log n

)

= γ

(
2

k
logk(2

k log n) + 2

)(
k(t+1)k/2 + k(t+1)k/2

k−1∑
�=1

(
k

-

)
k−(t+1)�/2 + log n

)

≤ γ
(
2

k
logk(2

k log n) + 2

)(
k(t+1)k/2

(
k−(t+1)/2 + 1

)k
+ log n

)

≤ γ
(
2

k
logk(2

k log n) + 2

)(
kk2k log n

(
1√

k(2k log n)1/k
+ 1

)k
+ log n

)

= O(log n log log n)

1696 LUC DEVROYE, JEAN JABBOUR, AND CARLOS ZAMORA-CURA

for all n ≥ e. Finally, for i ≤ m,

P {Mi−2 = 0} ≤
(
1− k

k(i−2)/2

2kn

)n
≤ e−kk(i−2)/2/2k

,

and therefore P {Mt+2 = 0} ≤ 1/n. Thus,

2n
m∑
i=t+2

P {Mi−2 = 0} ≤ 2m = O(log n).

Theorem 6 is in contrast with the situation for standard random k-d trees, where
algorithm A is shown to take expected time Θ(nρ), where ρ ∈ (0.061, 0.064) depends
upon k only (Chanzy, Devroye, and Zamora-Cura (1999)). In algorithm B, insert X
in the squarish k-d tree, and let Q be the rectangle associated with X. Let X ′ be the
parent of X in the tree (note: X ′ ∈ Q). Perform an orthogonal range search centered
at X with dimensions 2‖X ′−X‖ in all directions. Report the nearest neighbor among
all points returned by this orthogonal range search. We will analyze this algorithm
for k = 2 only.

Theorem 7. Let X be a point uniformly distributed on [0, 1]2. Consider a
squarish 2-d tree based on n i.i.d. points on [0, 1]2. Then the expected time of algorithm
B is O(log2 n).

The bound on algorithm B is a bit worse than that for algorithm A, because
while most rectangles are squarish, a sufficient number of them are elongated. In fact,
for given M > 1, about 1/M of the final (leaf) rectangles or more should have an
edge ratio exceeding M . For edge ratio M , and considering that all rectangle areas
are about 1/n, we see that the orthogonal range search should take about M points.
(The longest edge is about

√
M/n.) The expected number of returned elements is

at least Θ(log n). And the expected number of leaf rectangles visited is of the same
order. But each visited leaf rectangle also induces a visit to all of its ancestors, and
there are about logn of those, hence the claim. The remainder of this section contains
the proof of Theorem 7.

Lemma 8. Let Z,U1, . . . , Un be independent and uniformly distributed random
variables on [0, 1]2. Let Xn(Z) and Yn(Z) be the x-length and y-length of the rectangle
in the final partition (of the squarish 2-d tree) induced by U1, . . . , Un in which Z falls.
Then, both nE

{
X2
n(Z)

}
and nE

{
Y 2
n (Z)

}
are O(log2 n).

Proof. By Lemmas 3 and 4, for any p, q > 1 such that 1
p +

1
q = 1, we have that

E
{
X2
n(Z)

}
= E

{∑
i∈Fn

X3
i Yi

}

≤ E
{∑
i∈Fn

(XiYi)
p

}1/p

E

{∑
i∈Fn

X2q
i

}1/q

≤
(
4Γ(p+ 1)

np−1

)1/p(
5Γ(q + 1)

q − 1

(
q − 1

nq−1

))1/q

=
41/p51/q (Γ(p+ 1))

1/p
(Γ(q + 1))

1/q

(q − 1)1/q
(qnq−1 − 1)1/q

n
.

Let us choose q = 1 + 1
logn , p = log n + 1, and assume n > e. As Γ(p + 1) ≤√

2π
(
p
e

)p
e1/12p (see, for example, Abramowitz and Stegun (1970)), there is c > 0,

SQUARISH k-d TREES 1697

such that (Γ(p+1))1/p ≤ cp = c(log n+1), and there is c′ > 0, such that (Γ(q+1))1/q ≤
c′q ≤ 4c′. Furthermore, (q − 1)−1/q = (logn)

log n
log n+1 ≤ log n, and (qnq−1 − 1)1/q ≤

2e − 1. Therefore nE
{
X2
n(Z)

}
= O(log2 n). The result for nE

{
Y 2
n (Z)

}
follows in

the same manner.
Lemma 9 (see Devroye (1986)). Let Hn be the height of a random binary search

tree of size n; then for any integer k ≥ max{1, log n} we have

P {Hn ≥ k} ≤ 1

n

(
2e log n

k

)k
.

Lemma 10. Let Z,U1, . . . , Un be independent and uniformly distributed ran-
dom variables over [0, 1]2. Let Xn(Z) and Yn(Z) be the x-length and y-length of
the rectangle in the final partition induced by U1, . . . , Un in which Z falls. Then
E{Xn(Z)

∑2n
i=1Xi}, E{Yn(Z)

∑2n
i=1 Yi}, E{Xn(Z)

∑2n
i=1 Yi}, and E{Yn(Z)

∑2n
i=1Xi}

are O(log2 n).
Proof. Let Fn denote the collection of final rectangles in the squarish 2-d tree

T constructed from U1, . . . , Un. For a final rectangle Ri, denote by D(Ri) its depth.

Then
∑2n
i=1Xi ≤

∑
i∈Fn

D(Ri)Xi + 1. Thus if Hn is the height of T ,

E

{
2n∑
i=1

XiXn(Z)

}
≤ E



∑
i∈Fn

D(Ri)Xi
∑
j∈Fn

X2
j Yj


+ 1

≤ E

Hn

∑
i∈Fn

Xi
∑
j∈Fn

X2
j Yj


+ 1

≤ t log nE


∑
i∈Fn

Xi
∑
j∈Fn

X2
j Yj


+ 1

+E


1[Hn≥t log n]Hn

∑
i∈Fn

Xi
∑
j∈Fn

X2
j Yj


+ 1

for any t > 1. Using Lemma 9, we see that

E


1[Hn≥t logn]Hn

∑
i∈Fn

Xi
∑
j∈Fn

X2
j Yj


 ≤ n3P {Hn ≥ t log n} ≤ n2nt log(

2e
t).

We choose t such that t log
(

2e
t

)
< −2 so that

E


1[Hn≥t logn]Hn

∑
i∈Fn

Xi
∑
j∈Fn

X2
j Yj


 = O(1).

We complete the proof by showing that E{∑i∈Fn
Xi
∑
j∈Fn

X2
j Yj} = O(log n). For

this, let Sr =
∑
i∈Fr

Xi
∑
j∈Fr

X2
j Yj , for r = 1, . . . , n− 1. Note that

Sr+1 − Sr =
∑
m∈Fr

XmYm

[
1[Xm<Ym]Xm

∑
j∈Fr

X2
j Yj

+ 1[Xm>Ym]((XXm)
2Ym + ((1−X)Xm)

2Ym −X2
mYm)

∑
i∈Fr

Xi

]
,

1698 LUC DEVROYE, JEAN JABBOUR, AND CARLOS ZAMORA-CURA

where X
L
=Uniform[0, 1], and is independent of all U1, . . . , Un. Now, as (XXm)

2Ym+
((1−X)Xm)

2Ym −X2
mYm ≤ 0, we have that

Sr+1 − Sr ≤
∑
i∈Fr

(XiYi)
3/2

∑
j∈Fr

X2
j Yj .

Note that for any p, q > 1, such that 1
p +

1
q = 1,

E {Sr+1 − Sr} ≤ E
{(∑

i∈Fr

(XiYi)
3/2

)p}1/p

E




∑
j∈Fr

X2
j Yj



q


1/q

,

and again by Hölder’s inequality, and Lemma 3, by choosing q =
√
1.4 and p =

√
1.4√

1.4−1
,

E

{(∑
i∈Fr

(XiYi)
3/2

)p}1/p

≤ E
{
rp/q

∑
i∈Fr

(XiYi)
3p/2

}1/p

≤ 12√
r
.

By applying Hölder’s inequality inside the expected value,

E




∑
j∈Fr

X2
j Yj



q


1/q

≤ E

rq/p

∑
j∈Fr

(X2
j Yj)

q




1/q

≤ r1/p

E



∑
j∈Fr

(XjYj)
qp




1/p

E



∑
j∈Fr

Xq
2

j




1/q



1/q

≤ 46 r1/p

((
1

rqp−1

)1/p(
1

rq2/2−1

)1/q
)1/q

=
46√
r
.

Thus, E {Sr+1 − Sr} ≤ 552/r, and by summing the differences we finally can conclude
that E{∑i∈Fn

Xi
∑
j∈Fn

X2
j Yj} is indeed O(log n). The other expected values can

be bounded in the same way.
Proof of Theorem 7. Given U1, . . . , Un, we define Ln(Z) = 2(Xn(Z) + Yn(Z)).

Note that as the expected height of T is O(log n), the expected time complexity of the
nearest neighbor algorithm is bounded by O(log n) plus the expected time of random
orthogonal range search with query rectangle Q having all sides of length Ln(Z),
and centered at Z. Let Nn be the time complexity of a range search. By the same
arguments followed in Theorem 3, we have

E {Nn} ≤ E
{

2n+1∑
i=1

XiYi

}
+ 2E

{
2n+1∑
i=1

Ln(Z)(Xi + Yi)

}
+ 8nE

{
L2
n(Z)

}
+ 1.

By Lemma 5, E{∑2n+1
i=1 XiYi} = O(log n). For E{

∑2n+1
i=1 Ln(Z)(Xi+Yi)}, Lemma 10

above shows that it is O(log2 n). As nE {Xn(Z)Yn(Z)} = nE
{∑

i∈Fn
(XiYi)

2
}
,

Lemma 3 shows that it is O(1). Finally, by Lemma 8 we have that nE
{
L2
n(Z)

}
=

O(log2 n). Thus the expected running time of algorithm B is O(log2 n).

SQUARISH k-d TREES 1699

8. Further work and open problems.
quadtrees. For quadtree splitting in k dimensions (Finkel and Bentley (1974),

Bentley and Stanat (1975)), it is easy to see that the analysis and thus Theorem 1 are
not valid. In fact, for random quadtrees, the expected performance for partial match
queries was shown to be of the order of that for standard random k-d trees (Flajolet,
Gonnet, Puech, and Robson (1991), (1992)). For orthogonal range search with query
rectangles depending upon n, see Chanzy, Devroye, and Zamora-Cura (1999).

expected worst-case complexity. We conjecture that the expected worst-
case complexity over all range search rectangles of dimensions ∆i (but with worst-case
location of the center) is also bounded from above by the bound given in Theorem 2.
And the expected worst-case time for an s-dimensional partial match query is con-
jectured to be O(n1−s/k) for s < k. (For s = k, the complexity is clearly bounded by
the expected height of the tree, O(log n).)

nonuniform distributions. Finally, we also intend to study the behavior of
squarish k-d trees for nonuniform distributions, although it appears once again that
the upper bound of Theorem 2 remains valid for all distributions with a joint density
on [0, 1]k.

REFERENCES

M. Abramowitz and I. A. Stegun (1970), Handbook of Mathematical Functions, Dover Publica-
tions, New York.

P. K. Agarwal (1997), Range searching, in Handbook of Discrete and Computational Geometry,
J. E. Goodman and J. O’Rourke, eds., CRC Press, Boca Raton, FL, pp. 575–598.

J. L. Bentley (1975), Multidimensional binary search trees used for associative searching, Comm.
ACM, 18, pp. 509–517.

J. L. Bentley (1979), Multidimensional binary search trees in database applications, IEEE Trans.
Software Engrg., SE-5, pp. 333–340.

J. L. Bentley and J. H. Friedman (1979), Data structures for range searching, ACM Computing
Surveys, 11, pp. 397–409.

J. L. Bentley and D. F. Stanat (1975), Analysis of range searches in quad trees, Inform. Process.
Lett., 3, pp. 170–173.

P. Chanzy, L. Devroye, and C. Zamora-Cura (1999), Analysis of Range Search for Random
k-d Trees, Technical Report, School of Computer Science, McGill University, Montreal; Acta
Inform., to appear.

L. Devroye (1986), A note on the height of binary search trees, J. Assoc. Comput. Mach., 33,
pp. 489–498.

L. Devroye (1987), Branching processes in the analysis of the heights of trees, Acta Inform., 24,
pp. 277–298.

R. A. Finkel and J. L. Bentley (1974), Quad trees: A data structure for retrieval on composite
keys, Acta Inform., 4, pp. 1–9.

P. Flajolet, G. Gonnet, C. Puech, and J. M. Robson (1991), The analysis of multidimen-
sional searching in quad-trees, in Proceedings of the Second Annual ACM-SIAM Symposium on
Discrete Algorithms, SIAM, Philadelphia, pp. 100–109.

P. Flajolet, G. Gonnet, C. Puech, and J. M. Robson (1992), Analytic variations on quadtrees,
Algorithmica, 10, pp. 473–500.

P. Flajolet and C. Puech (1986), Partial match retrieval of multidimensional data, J. Assoc.
Comput. Mach., 33, pp. 371–407.

D. Gardy, P. Flajolet, and C. Puech (1989), Average cost of orthogonal range queries in
multiattribute trees, Information Systems, 14, pp. 341–350.

G. H. Gonnet and R. Baeza-Yates (1991), Handbook of Algorithms and Data Structures, Addison-
Wesley, Workingham.

D. E. Knuth (1997), The Art of Computer Programming, Vol. 3: Sorting and Searching, 2nd ed.,
Addison-Wesley, Reading, MA.

D. T. Lee and C. K. Wong (1977), Worst-case analysis for region and partial region searches in
multidimensional binary search trees and quad trees, Acta Inform., 9, pp. 23–29.

H. M. Mahmoud (1992), Evolution of Random Search Trees, John Wiley, New York.

1700 LUC DEVROYE, JEAN JABBOUR, AND CARLOS ZAMORA-CURA

D. S. Mitrinović (1970), Analytic Inequalities, Springer-Verlag, New York.
B. Pittel (1984), On growing random binary trees, J. Math. Anal. Appl., 103, pp. 461–480.
H. Samet (1990a), Applications of Spatial Data Structures, Addison-Wesley, Reading, MA.
H. Samet (1990b), The Design and Analysis of Spatial Data Structures, Addison-Wesley, Reading,

MA.
J. S. Vitter and P. Flajolet (1990), Average-case analysis of algorithms and data structures,

in Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity, J. van
Leeuwen, ed., MIT Press, Amsterdam, pp. 431–524.

F. F. Yao (1990), Computational geometry, in Handbook of Theoretical Computer Science, Volume
A: Algorithms and Complexity, J. van Leeuwen, ed., MIT Press, Amsterdam, pp. 343–389.

