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Two results are presented concerning the consistency of the k-nearest
neighbor regression estimate . We show that all modes of convergence in
L1 (in probability, almost sure, complete) are equivalent if the regression
variable is bounded . Under the additional condition k/logn -> oo we also
obtain the strong universal consistency of the estimate .

1 . Introduction. Let (X1 , Y1), . . . , (Xn , Yn) be independent observations of
an Rd x R-valued random vector (X, Y) . Denote the probability measure of X
by ~i. The regression function m(x) = E( Y X = x) can be estimated by the
kernel estimate

(x) _ >i=1 YiKh(x - X1)mn
>i'=iKh(x - Xi)

where h > 0 is a smoothing factor depending upon n; K is an absolutely in-
tegrable function (the kernel) ; and Kh(x) = K(x/h) [Nadaraya (1964, 1970),
Watson (1964)] . Alternatively, one can use the k-nearest neighbor estimate,

n

m(x) =

	

Wni(x ; X1 , . . . , Xn)Yi,

i 1

and Wni(x; X1 , . . . ,Xn) is 1/k ifXi is one of the k nearest neighbors of x among
X1, . . . , Xn , and Wn i is zero otherwise . Note in particular that I' 1 W,1 = 1. The
k-nearest neighbor estimate was studied by Cover (1968) . For a survey of other
estimates, see, for example, Collomb (1981, 1985) or Gyorfi (1981) .

We are concerned with the L1 convergence of mn to m as measured by
Jn - f ~mn (x) - m(x)' (dx), where ,u is the (unknown) probability measure
for X. This quantity is particularly important in discrimination based on the
kernel rule [see Devroye and Wagner (1980) or Stone (1977)] . Stone (1977) first
pointed out that there exist estimators for which Jn --* 0 in probability for all
distributions of (X, Y) with E(Y( < oo . This included the nearest neighbor and
histogram estimates . For example, for the k nearest neighbors, it suffices to
ask that

(1)

	

k --* oo,

	

k/n --* 0,
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provided that ties among points at equal distance from x are adequately taken
care of. These conditions are the best possible. Devroye and Wagner (1980) and,
independently, Spiegelman and Sacks (1980) showed that this is also the case
for the kernel estimate with smoothing factor h provided that K is a bounded
nonnegative function with compact support such that, for a small fixed sphere
S centered at the origin, inf x E s K(x) > 0, and that

(2)

	

lim h = 0,

	

lim nhd = oo .
n~oo

	

n~oo

These results were extended and complemented by Greblicki, Krzyzak and
Pawlak (1984), Krzyzak (1986) and Krzyzak and Pawlak (1984) .

Interestingly, it turns out that the conditions for the "in probability" conver-
gence of Jn are also sufficient for the strong convergence ofJn , thus rendering
all modes of convergence equivalent . Difficulties arise when theX-variable does
not have an absolutely continuous distribution . We summarize what is known
in this respect :

1 . For the k-nearest neighbor estimates, Jn --* 0 almost surely under condition
(1) wheneverX has a density and Y is bounded [Devroye and Gyorfi (1985),
Chapter 10, and Zhao (1987)] . Beck (1979) showed this result earlier under
the additional constraint that m has a continuous version .

2 . For the k-nearest neighbor estimate, J n --* 0 almost surely for all distribu-
tions of (X, Y) with Y bounded, provided that k/n --* 0 and k/log log n --* o0

[Devroye (1982)] . The unnatural condition on k arises from the proof method :
the convergence ofJn to 0 is obtained by first establishing the pointwise con-
vergence (i .e ., mn - m --* 0 almost surely) at almost all x(i) and then moving
on to L1 convergence via a result of Glick (1974) .

3 . Devroye and Gyorfi (1983) obtained the equivalence for all distributions of
(X, Y) with ~Y) < M < oo for the histogram regression estimate . Gyorfi (1991)
has pointed out that Jn --p 0 almost surely for a modification of partitioning
estimates whenever E~YI < oo, provided that a bin width condition similar
to (2) [with the additional condition nhd/ log(n) --* oo] is satisfied .

4. Assuming that Y is uniformly bounded, the kernel estimate is strongly con-
sistent if (2) holds, K is a Riemann integrable kernel and K > a15, where
a > 0 is a constant and S is a ball centered at the origin that has a positive
radius [Devroye and Krzyzak (1989)] .

The purpose of the present paper is twofold. First we explain a simple tech-
nique based upon exponential martingale inequalities for proving the equiv-
alence of all modes of convergence of Jn for the k-nearest neighbor estimate
under no conditions on the distribution of (X, Y) other than the boundedness of
Y. Thus, Stone's conditions on the relative sizes of k and n are strong enough
to imply complete and almost sure convergence . Our other result is the strong
universal convergence ofJn , that is, we can replace the boundedness assump-
tion by the natural condition E Y) < oo . Here we need the additional condition
k/logn --* oo on k .



where

(i : lix - xi II < Rn (x)

(X(1) ,Y(1) ), . . . , (X(n)~ Y(n))
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Before we can state the main results, we have to take care of the messy prob-
lem of distance ties (Mx -Xi _ ~x -X~ ) . The exponential inequality used here
and in Devroye and Krzyzak (1989) is basically useful whenever the removal
of one data point has a limited effect on the error. Also, our covering lemma
requires some sort of duality that states that ifXi is one of the near neighbors
ofX~, then roughly speaking X~ should be one of the near neighbors ofX1 . Next
we list three of the possible tie-breaking methods :
1. Tie breaking by indices . IfXi and X~ are equidistant from x, then Xi is de-

clared "closer" if i < j . This method has some undesirable properties . For
example, if X is monoatomic, then X 1 is the nearest neighbor of all XD's,
j > 1, butX3 is only the (j - 1)st nearest neighbor of X 1 . The influence of X1
in such a situation is too great, making the estimate very unstable and thus
undesirable. In this case, Devroye and Gyorfi [(1985), Chapter 10] pointed
out that, when Y is not degenerate and > 0 is small enough,

P

	

~mn(x) - m(x)~~i(dx) >

	

> exp(-ck),

for some c > 0 . This is in contrast to Theorem 1(a) below, where m (x) is the
k-nearest neighbor regression estimate defined by tie breaking by indices .

2. Stone's tie breaking . Stone (1977) introduced a nearest neighbor rule which is
not a k-nearest neighbor rule in a strict sense, for his estimate, in general,
uses more than k neighbors . If we denote the distance of the kth nearest
neighbor to x by R(x) (note that it is unique), then Stone's estimate is the
following :

fin(x)

(3)

	

1
k

k - #{i : Mx - xi II < Rn(x)}
#{i: Ilx-x

j	
ll =Rn

(
x)}

	

i:llx - x~II=Rn(x) YL

3. Tie breaking by randomization . This is the method that we will consider . We
assume that (X, Z) is a random vector independent of the data, where Z is
independent of X and uniformly distributed on [0,1] . The latter assumption
may be replaced by the weaker assumption that Z has a density ; however,
as it is up to us to generate Z, we may as well pick a uniform random variable .
We also artificially enlarge the data by introducing Z 1 , Z2, . . . ,Z,, where
the Zi's are i .i .d. uniform [0,1] as well. Thus, each (Xi , Z i ) is distributed as
(X, Z) . The probability measure induced by (X, Z) is denoted by v . Given
(x, z), we define

mn(x, z) k
i=
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is a reordering of the data according to increasing values of ~~x -X( i) M . In case
of distance ties, we declare (Xi , Zi ) closer to (x, z) than (X3 , Z~) provided that

~Zi - zI< ~Zj - zL

The criterion is

Jn = E{ I mn(X, Z) - m(X)) IX1 ,Zi,Yi , . . •

	

,Xn , Zn, Yn
1

_

	

~mn(x, z) - m(x)~,u(dx) dz =

	

~mn(x, z) - m(x)) v (d(x, z)) .
0

The main difference between Stone's tie-breaking policy and the one based
on randomization is that Stone's method takes into account all points whose
distance to x equals that of the kth nearest neighbor, while the method based
on randomization picks one of these randomly and neglects the others . We will
see in the proof of Theorem 1 that EJn cannot be smaller than the expected
L1-error of Stone's estimate. It should be stressed that if ,u has a density, then
tie breaking is needed with zero probability and becomes therefore irrelevant .

2. The equivalence theorem . The purpose of this section is to prove the
following result .

THEOREM 1 . Let mn(x, z) be the k-nearest neighbor estimate defined above .
Then the following statements are equivalent :

(a) For every distribution of (X, Y) with IIY< M < oo and > 0, there is a
positive integer no such that, for n > no ,

P{Jn > ~} < exp -n~ 2 /(8M2 -y2) ,

where the constant 'yd is the minimal number of cones centered at the origin of
angle 7r/6 that cover R° .

(b) For every distribution of (X, Y) with IIY< M < oo,

Jn --* 0 with probability 1 as n --* oo .

(c) For every distribution of (X, Y) with IIY< M < oo,

Jn --* 0 in probability as n --* oo .

(d) limn

	

k = oo and limn

	

k/n =0 .

REMARK 1 (A curiosity) . It is interesting that we can find sequences k for
whichJn --* 0 almost surely for all distributions of (X, Y) with bounded Y, yetmn
does not tend to m in the almost sure pointwise sense [take k N log log log(n ),
and note that k/log log(n) --* oo is necessary for the almost sure pointwise
convergence of the kernel estimate whenever X has a density and m is twice
continuously differentiable with m" 0; Devroye (1982)1 .
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REMARK 2 (Necessity of the conditions) . It is not true that, when Jn --p 0
in probability for one distribution of (X, Y), the conditions (1) on k follow : just
consider the case that Y = 0 with probability 1 . Of course, the implication is
true for "most" distributions of (X, Y) .

REMARK 3 (General estimates). We will not consider smoothed versions
of the k-nearest neighbor method here . For example, as in Devroye (1982),
one might consider attaching weight Uni to the ith nearest neighbor, where
Unl ~ Un2 ~ ~ Unn > 0 and the weights sum to 1 for every n. Such methods
were first proposed by Royall (1966) .

REMARK 4 (Other references) . For other results on k-nearest neighbor con-
vergence, see, for example, Collomb (1979, 1980), Mack (1981), Devroye (1978,
1981, 1982), Stute (1984) and Bhattacharya and Mack (1987) .

REMARK 5 (Random k) . If k is replaced by a random variable K that is in-
dependent of the data and satisfies K/n --* 0 and K --p oo almost surely, then
Jn --* 0 almost surely. Such data-based choices can be obtained by splitting the
data, for example.

REMARK 6 (Discrimination). The conditional probability of error, of the
k-nearest neighbor rule in discrimination, given the data [Cover and Hart
(1967)], converges completely and strongly to the Bayes probability of error as
n -+ oo for all distributions of the data whenever (1) holds . This result strength-
ens the universal weak convergence results of Stone (1977) and Devroye and
Wagner (1980) .

REMARK 7 (Lp-consistency) . By the boundedness of Y it is easy to see that
the LP -error

1

	

1/P
J,= ( / / ~mn (x, z) - m(x)~P i(dx) dz

	

for 1 < p < oo
0

converges to zero if and only if the L1-error Jn does; therefore the results of
Theorem 1 remain valid for LP-errors .

REMARK 8 (Inequalities). The inequality of Theorem 1(a) is less useful in
practice, as it is only valid for n > n o , where n o depends upon ~ .

PROOF OF THEOREM 1 . Clearly, (a) implies (b) and (b) implies (c) . Part (c)
implies that EJn --* 0; therefore, by Jensen's inequality,

EJn = E

	

~mn(x,z) - m(x)) b(d(x,z))

> E f E

	

mn(x,z)dz Xl,Yl , . . .,Xn,Yn - m(x) µ(dx)

= E

	

Ii(x)

	

n - m(x)I/c(dx) --* 0,

where )nn is Stone's estimate defined by (3) ; but this implies (d) by the results
of Stone (1977) . The novelty in this paper is the proof that condition (d) implies
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(a) . We begin with an exponential inequality generalizing inequalities due to
Hoeffding (1963) . The generalization due to Azuma (1967) [see Stout (1974)] has
led to interesting applications in combinatorics and the theory of random graphs
[for a survey, see McDiarmid (1989)] . We have used it in density estimation
[Devroye (1988, 1991)] .

LEMMA 1 [McDiarmid (1989)] . Let X1 , . . . ,Xn be independent random vari-
ables taking values in a set A, and assume that f : An --* R satisfies

sup

	

1 < i < n .
xl, . . .,xn

xl , . . ., xn E A

Then

-2t2 l
P{~f(X1i . . .,Xn)-Ef(X1, . . .,Xn)) > t} G 2expC

	

/n
~i= a

The other tool needed for our proof is exploiting some geometric properties
of the "metric" defined by the tie-breaking rule . In order to make it more trans-
parent, we recall Lemma 10.1 from Devroye and Gyorfi (1985), which was used
in the proof of complete consistency of k-nearest neighbor estimates if ,u has a
density. Let Sx , r and Sx , r denote the open and closed balls of radius r centered
at x, respectively.

LEMMA 2 [Devroye and Gyorfi (1985)] . Let ,u be an absolutely continuous
probability measure on ~d . Define

Then, for all x E
Rd

Ba(x) _ {x' : /~ ('sx' ,
II x - x' I I ) C a} .

µ(Ba(x)) < 'Yda .

Since Devroye and Gyorfi assumed the existence of a density, they did not
have to worry about tie breaking. In order to generalize Lemma 2 to our case, we

dneed some notation. For x e ~Z let C(x) C R be a cone of angle it/6 centered at
x. The cone consists of ally with the prdperty that either y = x or angle(y - x, s)
< it/6, where s is a fixed direction. Ify, y' E C(x) and II x - y I I < I) x - y' I I, then
l y- y' I I< I Ix - y' I I • Furthermore, if I I x - y I i <- I i x- y' I I, then I ly- y' I I< I I x - y'

This follows from a simple geometric argument in the vector space spanned by
x, y and y' .

For (x, z) E ~d x [0, 1] define Co(x, z), C1(x, z), S(x, z),(r, b) C R x [0, 1] as

C0(x, z) = C(x) x [0, z] ,
C1(x, z) = C(x) x [z,1]



and
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and
S(x, z), (r, b) = Sx, r x [0,1] U {(,) :xzII-xIIx

	

=r, II-zI <b} .

Clearly, Rd x [0,1] can be covered by 2'-yd sets of type Co(x,z) and C1(x,z) .
The property that we need is the following .

LEMMA 3. Let
Ba(x,z)- {(x',z') : v(S(XI,z1),(Ilx-x'll,Iz-z'1))

	

a} .

Then for all (x, z) E Rd x [0,1]

V (Ba(x, z)) < 2'yda .

First of all, we prove a covering lemma, the key property of the "cones" C0 (x, z)
and Ci(x, z) .

LEMMA 4. I f (x', z') E C0(x, z), then

CU(x,z) f1 S(x, 2 ),(Ilx-x'11, Iz-z'I) C S(x',2'),(Ilx-x'll, Iz-z'I),

and if (x', z') E C 1(x, z), then

C1(x,z) f1 S(x,2),(Ilx-x'11, Iz-z'I) C S(x',2'),(Ilx-x'll, Iz-z'I)~

PROOF. Because of symmetry it is enough to prove one of the statements .
We have to show that (x, z) E Co (x, z) f1 S(x, z), (I1x - x' II, Iz - z' I) implies (x, z) E

S(x',z,),(Ilx-x'll,lz-z'I) .

If x E C(x) f1 Sx, IIx - x' II , then from the well-known property of the cone
x e Si ', IIx - x' II follows, so it is enough to deal with pairs (x, z) where IIx - xII =

IIx - x' II . Since x E C(x), the only case when x Si', IIx - x' II is if
IIx-xII=IIx-x'II=IIx'-xII .

Denote the set of suchxs by H . Thus, it is enough to deal with pairs inH x [0,1] .
Intersecting this set with the left- and right-hand sides of the statement, we get

H x [0,1] f1 Co (x,z) f1 S(x,z), (IIx-x'II, Iz -z'1)

= H x ([0,z] n {z: Iz - z I < Iz - z' } = H x [z', z]

H x [0,1] flS(x',z'),(Ilx-x'I1,lz-z'1) =H x {z: Iz -

respectively. Clearly, however,

[z', z] C {z: Iz - z' I < Jz - z' I } ,

which completes the proof. J

z'J

	

Iz-z'I}),
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PROOF OF LEMMA 3 . The proof is similar to that of Lemma 2 . Let C1 , . . .,
C2-rd

be a collection of sets of form C o (x, z) and C1(x, z) that cover Rd x [0,1] . Then

2-yd
v (Ba(x, z)) <

	

v (Cs f1Ba (x, z)) .
s=1

Let (x', z') E Cs nBa (x, z) . Then from Lemma 4 we have

v (C5 n S(xz), (~~x - x' (~, ~z - z' () f1Ba(x, z)) < v(s(x', z'), (~~x - x' (~, ~z - z' ~))

	

a,
where we used the fact that (x', z') E Ba (x, z) . Since (x', z') was arbitrary,

v (Cs f1 Ba(x, z)) < a,

which completes the proof of the lemma. J

Now we are equipped to prove that (d) implies (a) in Theorem 1 . Set rn
= rn(x, z) and bn = bn (x, z) to satisfy

b
v (S(x, Z), (rn , bn)) _ -n

Note that the solution always exists, by the absolute continuity of the distribu-
tion of Z and its independence from X . Also define

1 n
mn x z

	

YjI{(x1, z E,S(x , z), (rn, bn)I

Obviously,

~m(x) - mn(x, z) ~ < Im(x) - E (mn(x, z ) )(4)
+ IE (mn(x, z)) - mn(x, z) I + ~mn(x, z) - mn (x, z)J .

The first term on the right-hand side is a deterministic "bias"-type term, whose
integral will be shown to converge to zero. The second and third terms are
random; they can be considered as "variation" terms . We will obtain exponential
probability inequalities for these terms that are valid for large n's .

The condition b/n -f 0 implies that rn(x, z) -f 0, so for the first term we have,
by Lebesgue's density theorem [see Wheeden and Zygmund (1977)], that

1

	

[
Jv (S x ,( z), (rn, bn) ) "S(x, z), (rn, b n )

-~ E (Y (X, Z) _ (x, z)) = m(x)

for almost all x mod µ . By the boundedness of Y, the dominated convergence
theorem implies that

E (mn(x, z))

J I
m(x) - E (mn(x, z)) I v (d(x, z)) ~ 0 .

E (Y (X, Z) _ (x', z')) v (d(x', z'))



xl,yl,zl, • • • , xn,yn,zn,xi,zi,yt

and, by Lemma 1,

P{

(5)

	

- E

	

Emn(x, z) - mn(x, z)I v (d(x, z))

< 2e' 212 .-yd)

So we have to show that
E ~Emn(x, z) - mn(x, z)Jv(d(x, z)) -~ 0 .

However, using the Cauchy-Schwarz inequality, we have

E IEmn(x, z) - mn(x, z)Iv(d(x, z))

<

	

/EJEm(x,z)

	

n- mn(x, z)Izv (d(x, z))

=

	

1n Var(YI

	

v d(x z)f k 2

	

{(X, Z) E S(x, z) > (rn , 6 n ) } ) (

	

~

	

)

M2
<

	

2 nv(S(x, z), (rn, bn)) v (d(x, z))k
f /nM2 b
J V k n ,u(dx)
/M2

= v --- o
.
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Turning to the second term in (4), first we get an exponential bound for

f E (mn(x, z)) - mn(x, z) I v (d(x, z)) - E IE (mn(x, z)) - mn(x, z) I v(d(x, z))

by Lemma 1. Fix the data and replace (xi , zi, y i ) by (xi , zi, yi), changing the value
of mn(x, z) to mni(x, z) . Then

f E (mn(x, z)) - mn(x, z) v (d(x, z)) - f IE (mn(x, z)) - mni(x, z) v (d(x, z))

<

	

m(x,z) - mni(x,z)fv(d(x,z)) ;

but ~mn(x, z) - mni(x, z) is bounded by 2M/k and can differ from zero only if
(xt , zt•) E S(, z), (rn , b) or (, tx z•) E S(, z), (rn , b) . Observe that (xi, z) E Sx n

	

t

	

x n

	

i

	

( x, z), (rn , b n )
if and only if v(S(x , z), (Ilx _ xl II, I z - ztl ))

	

k/n . However, the measure of such (x, z)
pairs is bounded by 'ydk/n, by Lemma 3; therefore,

m* x z- m n* x z v d x z

	

2M'Ydk _ 2M~yd
p

	

n( , )

	

t ( , )~ ( ( , ))su

	

- k n

	

n

f Emn(x, z) - mn(x, z) v (d(x, z))
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Finally, denoting Rn = X(k) -x M I andBn = ~Z(k) -z, write the third term in (4) as

mn(x, z) - mn(x, z)I

<

n

J

n

II{(Xj, Zj) E "S(x, z), (rn , bn)}k j=1

n

YjI{(Xj, Zj) E "S(x, z), (rn , b n )}

	

YjI{(Xj , Zj ) E "S(x, z), (Rn , Bn )}

n

I{(Xj, Zj) E "S(x, z), (rn , bn )}
j 1

= MJfii (x, z) - Emn(x, z)J,

where mn is defined as mn with Y replaced by the constant random variable
Y = 1. Therefore the bound of (5) applies for the third term, too, and the proof
is complete . o

3. Strong universal consistency . In this section we demonstrate that
the k-nearest neighbor regression estimate is consistent even if Y is not
bounded, if k is chosen to satisfy k/log(n) -~ oo and k/n -~ 0. More precisely,
we prove the following theorem .

THEOREM 2 . I f

lim k/log(n) = oo and lim k/n = 0,
n -~ oo

	

n -~ o0

then Jn -~ 0 with probability 1 for all distributions of(X, Y) satisfying E ~Y~ < oo .

Gyorfi (1991) gave conditions for the strong universal consistency of a regres-
sion estimate. Translating his result to our case, we get the following lemma .

LEMMA 5 [Gyorfi (1991), Theorem 2] . Consider the k-nearest neighbor re-
gression estimate m n(x, z). Then the L 1 -error of the estimate Jn converges to zero
almost surely for all distributions of (X, Y) satisfying E ~Y~ < oo if the following
two conditions are satisfied :

(a) Jn -~ 0 almost surely for all distributions of (X, Y) with bounded Y.
(b) There is a constant c > 0 such that, for all distributions o f (X , Y) satisfy-

ing E~Y~ <00,

j=1

{(4 Zj) E "S(x, z), (Rn , B n ) }

1

1lim sup kn -~ o0
f1 f IYL,x,Z~Iu(dx)dz < cEJY~ a .s.

Clearly, condition (a) is satisfied by Theorem 1, 50 we only have to check (b) .
In order to do so, we need some notation . Let A i be the collection of all (x, z)
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that are such that (Xi, Zi) is one of its k nearest neighbors . Here, we use some
geometric arguments similar to those in the proof of Theorem 1 . Similarly, let us
define a cone C(x, 8, s), where x defines the top of the cone, s is a vector indicating
a direction in Rd and 8 E (0, 7r) is an angle . The cone consists of all y with the
property that either y = x or angle(y - x, s) < 8. For any fixed 8, there exists a
finite collection S of directions such that

U C(x, B, s) = Rd
sES

regardless of how x is picked . The cardinality of this set is denoted by ~SI and
depends upon both B and d. If 8 <7r/6 and if y, y' E C(x, B, s) and ~~x - y~~

-

	

, then ~~y -

	

< ~~x -

	

. Furthermore, if Ilx - yll

	

-

	

, then
Ilv - - y~ II • We fix B E (0, 7r/6) and S as indicated above . In the space
Rd x [0, 1], define the sets

C1 , 5 = C(X1, 8, s) x [0,1] .

Let Bi , S be the subset ofC1 , 5 consisting of all (x, z) that are among the k nearest
neighbors of (Xi, Zi) in the set

{(Xi,Zi), . . .,(X1_i,Z1_i),(X1+i,Z1+i), . . .,(Xn,Zn),(x,z)}flC1,5

when distance tie breaking is done in the described fashion . [If C1 , 5 contains
fewer than k -1 of the (Xi, Z1 ) pairs i j, then Bi, s = Ci, s •] Equivalently, Bi, s
is the subset of C1 , 5 consisting of all (x, z) that are closer to (Xi, Zi) than the kth
nearest neighbor of (Xi, Zi) in C 1 , 5 , when distance tie breaking is done by the
described fashion.

LEMMA 6 . If (x, z) E A1 , then (x, z) E US E S Bi, s, and thus

v(A 1 ) <

	

(Bi , s ) .
sES

PROOF . To prove this claim, take (x, z) E Ai . Then locate an s E S for which
(x, z) E C1 , 5 . We have to show that (x, z) E Bi , s to conclude the proof. Thus, we
need to show that (x, z) is one of the k nearest neighbors of (Xi , Zi) in the set

{ (Xl, Zl ), • • . , (Xi - l, ~i -1), (Xi + l, Zi + 1), • • . , (Xn, Zn ), (x, z) } n Ci, s

when distance tie breaking is done appropriately. Take (X1, Z~) closer to (Xi, Zi)
than (x, z) in Ci, S . If ~~X; - Xi ~~ < ~~x - Xi ~~, we recall that by the property of our
cones ~~x -X~ < ~~x -Xi , and thus (X~,Z~) is one of the k -1 nearest neighbors
of (x, z) in Rd . If on the other hand X1 - Xi _ ~x - Xi , and z is further from
Zi than Z~, then by the property of the cone, ~x - X1 < ~x - Xi , which shows
again that (X1, Z1 ) is one of the k -1 nearest neighbors of (x, z) inRd. This shows
that in C1 , 5 there are at most k -1 points (X~, Z~) closer to (Xi, Zi) than (x, z) .
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Thus, with the same tie-breaking policy, (x, z) is one of the k nearest neighbors
of (Xi , Zi) in the set

{(Xl , Zl), . . . , (Xi - 1, Zi - 1), (Xi + 1 ~ Zi + 1), . . . , (Xn, Zn), (x, z)} n Ci, S

This concludes the proof of the claim . o

LEivtivtn 7 (An inequality for binomial random variables) . LetB be a binomial
random variable with parameters n and p . Then

P{B > e} < exp [~ - np - elog(e/nP)],

	

~ > np,

P{B < e} < exp [e - np - e loge/n )] ,

	

e < np .

PROOF . We proceed by Chernoff's exponential bounding method [Chernoff
(1952)] . In particular, for arbitrary A> 0,

P{B > e} < E{exp(AB - AE)}

= eXP(-Ae)((exp A )p + 1 -p)'1

exp [-Ae + np ((exp A) - 1)] .

The right-hand side is minimal for A = log(elnp) . Resubstitution of this value
gives the first bound. The proof of the other bound is similar . o

LEMMA 8 [Property of v(B1 , S )] . If k/log(n) -~ oo and k/n -~ 0, then
nlim sup k max v(Bi , s) < 2 as.

n -~ oo

	

i

PROOF . We prove that, for every s E S,

P
n max v(Bi , s) > 2 < oo .
kn

In order to do this we give a bound for

P{v(B1,s)>~~X1,Z1} .

If v(C1 , S) < ~, then, since Bi , S C C, 5 , we have P{v(B1 , S) > lXi , Z1} = 0; therefore
we assume that v(Ci, s) > €. Fix Xi and Z1 . The distance-ordering and tie-
breaking method induces a total ordering of all (x, z) with respect to closeness to
(Xi , Zi) . Find a pair (x, z) E C1 , 5 such that ifB e is the collection of all (x', z') E C1 , s
that are nearer to (Xi, Zi) than (x, z), then v(B e ) _ € . By our method of tie break-
ing, such a pair (x, z) exists. We have the following dual relationship :

P{v(B1 ,s) > X1 ,Z1 }
= P{Be captures fewer thank of the points CK, Z~), j i I Xi .Zi } .



If we can show that

(6)

1hm sup
n -*00 n

n

i=1

so we have to prove (6) . However, by Lemma 6,

sES

therefore, Lemma 8 implies that (6) is satisfied with c = 2)S), so the proof of the
theorem is complete . 0
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However, ifB is a binomial (n -1, €) random variable, then the last probability
is equal to

P{B <k} < exp k - (n - 1)e - k log (	 k 	if k < (n - 1)E .(n - 1)e

Finally, with

	

2k/n we have k <(n -1)E, therefore

P max v(B1, S ) > €} < nP{ v(B1s ) > ~}
1<i<n

< n exp k - (n - 1)E- k log	(n - 1)e

= n exp k - 2k(n~ 1) - k1ogC2 (nn 1)

< n exp (_b +
2k + k log 2n

which is summable in n when k > [2/(1- log 2)] log n . 0

PROOF OF THEOREM 2 . By Lemma 5 and Theorem 1, it is enough to prove
that there is a constant c > 0 such that

1 k

	

1
11m sup -

	

ff ~Y(i, x, z) I i(dx) dz < cE Y~ as .
n->00 k

i=1

Observe that

n -*00

nlim sup
k
max v(A 1 ) < c as .,

n --~ o0

for some constant c > 0, then, by the law of large numbers,

n

	

1 n

Y(i)
k

max v(A) < lim sup c-

	

~Y( i) = cE Y~ a.s .,n
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