
The Annals of Statistics
1990, VoL 18, No. 3, 1496-1499

NO EMPIRICAL PROBABILITY MEASURE CAN CONVERGE
IN THE TOTAL VARIATION SENSE FOR ALL

DISTRIBUTIONS'

BY Luc DEVROYE AND LASZL6 GYORFI 2

McGill University and Hungarian Academy of Sciences
For any sequence of empirical probability measures {p) on the Borel

sets of the real line and any 6 > 0, there exists a singular continuous
probability measure µ such that

inf sup µn(A) - µ (A) I > 2 - 6 almost surely .
n A

We consider a probability measure µ on the Borel sets of the real line, from
which we draw an i .i .d. sample X1 , . . ., X, . An empirical probability measure
µ
n is a probability measure on the same Borel sets and for a fixed set A, µ(A)

is a measurable function of the data X 1 , . . ., Xn
. In particular, we are inter-

ested in the total variation

Tn 4 suPll-t n
(A)

A

	

-(A)I,

where the supremum is over all the Borel sets . By considering suprema over
left infinite intervals only, it is easy to see that Tn > supx IFn(x) - F(x)I, the
Glivenko-Cantelli norm, where Fn and F are the distribution functions
corresponding to µ and µ, respectively. The standard empirical measure,
defined by

0 1
µn( A) -

	

~ I[Xl E AJ ,

is atomic in nature . Hence, whenever µ is continuous, we have Tn =- 1 almost
surely for all n. This is in stark contrast with the Glivenko-Cantelli norm,
which is known to converge to zero almost surely as n --~ oo (by the
Glivenko--Cantelli theorem) . If µ is atomic, it is quite obvious that Tn --~ 0
almost surely as n --~ 0. In order for Tn to be small when µ is nonatomic, we
should not use the standard empirical measure . For example, for absolutely
continuous µ (with density f), SchefF 's lemma [SchefF (1947) states that

Tn

n

n L=i

2 fIfn
- f l ,
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when µ n is an absolutely continuous empirical measure with density f, .. But it
is very easy to construct density estimates f7z with the property that for all f,

f Ifn - f I -~ 0 almost surely : It suffices to take for fn the kernel estimate
1

	

n

	

i
f(x)-

	

K (x	
-X

nh l _ 1

	

h
[Parzen (1962) ; Rosenblatt (1956)], where K is an arbitrary fixed density and
h = h n is any sequence of random variables, possibly dependent upon the
data, for which hn --~ 0 almost surely and nh n --~ oo almost surely [see Devroye
and Gyorfi (1985), Chapter 6, and the references therein]. Other estimates,
such as the histogram estimate, share the same universal consistency prop-
erty. In summary, Tn is rather sensitive to the nature of the underlying
probability measure µ and for discrete and absolutely continuous µ, it is
possible to construct empirical measures for which Tn --~ 0 almost surely . The
same is obviously true for mixtures of discrete and absolutely continuous
measures; it suffices to consider appropriate mixtures of the two empirical
measures introduced above, where for the discrete part, we only take into
account those Xi 's for which X3 _- Xi for some j i . The question thus
arises: Can we construct an empirical measure that is weakly or strongly
consistent (in the total variation sense) for all µ?

We have to answer this question in the negative, simply because a univer-
sally consistent empirical measure does not even exist for all singular continu-
ous µ . Indeed, in the space of all probability measures on the Borel sets of the
real line, the atomic and absolutely continuous measures can be considered as
two miniscule islands in a vast ocean of singular continuous measures . No
finite sample can possibly be large enough to identify one of these singular
continuous probability measures .

THEOREM . Let {µ n } be a sequence ofempirical probability measures and let
S be a positive constant . Then there exists a probability measure µ such that

inf sup I,L(A)

	

n - µ( A) I >_ 2 - S almost surely .
n A

The theorem shows that for any sequence of empirical measures, there
exists a singular continuous µ for which Tn > 2 - 6 almost surely, for all n .
In other words, consistent empirical measures can only be constructed for
certain specific subclasses of measures µ .

If in the statement of the theorem, , we omit inf,n , a standard minimax
statement is obtained. However, the bad probability measure that is singled
out in supµ is now allowed to vary with n, whereas in the theorem, the same µ
is to be used for all n . In fact, in the minimax format, it is possible to replace
the phrase "singular continuous" by "absolutely continuous" or "atomic"
[Devroye (1983)] . For certain subclasses of absolutely continuous probability
measures, lower bounds for individual µ and all n were obtained by Devroye
(1983) and Birge (1985, 1986) .

Finally, the constant 2 in the theorem can undoubtedly be replaced by the
constant 1 at the expense of a more involved proof .
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PROOF OF THE THEOREM. The proof borrows some arguments from Devroye
(1983) and Renyi (1959) . First, we need a rich family of singular continuous
probability measures . The family of probability measures considered here is
parametrized by a number b E [0,1] with binary expansion b =0.b(l)b(2)b(3).
b(i) E {O, 1) . Choose an integer m > 1/(2) .8 Let the random variables
Y 1) , Y 2) , . . . be i .i .d. and uniformly distributed on {0,1, . . ., m - 1}. We define
the random variable X = X (Y, b) by setting X =0.X(l)X(2)X(3)... in the
m-ary radix system used for Y = 0 .Y1 )Y(2 ) . . . , where

0 (0,

	

if b(k) = 0,
X(k)

Y(k)'

	

if b(k) - 1

Let µ b denote the probability measure of X = X (Y, b) . If in the binary
expansion of b there are finitely many (L) zeros, then µ b is absolutely
continuous and distributes its mass uniformly on a set of Lebesgue measure
m

-L • If there are finitely many (L) ones, then µ b is discrete and puts its mass
uniformly on a set of cardinality mL . In the other cases, µ b is singular .

We write X (Y1 , b ), . . . , X (Y,, b) to denote a sample drawn from the distri-
bution of X (Y, b) . We will replace b at a crucial step in the argument by a
uniform [0,1] random variable B, which is independent of Y1 , . . . , Y, . Let j n
be the empirical measure based upon X (Y1 , b), . . ., X(Yfl , b) . Put

A k = {0 .x(1)x(2)

	

x(i) E {0, . . ., m - 1) for all i ; x(k ) = 0} .

Then

Then,

µ'b(Ak) -

1,

	

if b (k) = 0,

1

	

if b (k) = 1 .m
Let us now define b n = 0. b n 1 b n 2 . . . by its binary expansion with bits

1 + 1 /m
b = 0, if µn(Ak) >

	

,
nk

	

2
1, otherwise .

1-1/m
I µ'n( Ak)

	

µ'b(A k) I

	

I[bnk # b (k)] .2
Therefore,

sup inf sup I µ n ( A) - µ b ( A) I > sup inf sup I µ n ( A k) - µ b ( A k ) I
b n A

	

b n k
1 - 1 /m

> sup inf sup

	

2

	

I[bnk # b(k)]
b n k

Replace b by B and the resulting bn k by Bnk . Then
1-1/m

sup inf sup I µn ( A) - µb( A) I > inf sup

	

Bnk # B(k)]
b n A

	

n k

	

2

1 - 1 /m .
2

	

inf Zn .0



lim P

	

[Bflk B(k) ] = 1 .
Nom°° -1

But P( U k 1[ B n k B ( k )]) is the error probability of the decision (B n i, . . . , B n N )
on (B (1) , . . ., B(N) ) for the observations X1 , . . . , X, . For this decision problem
the Bayesian decision is

U

Thus,

P( ZNn

'ink
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Our theorem is proved if we can show that Zn = 1 almost surely for all n . Put
ZNn = I[ Uk 1[Bnk # B(k)]] • Then ZNn T Zn = I[ U k=1[Bnk # B(k)]] • Therefore, it suffices
to show that

lim P(ZNn = 1) = 1

or equivalently,

N

= 1) = P U [ Bnk # B (k)]
=1

1

0
1,

(1

N

if X (k) = 0 for all i
otherwise .

1 N
2m' ) T 1 .

=1 , . . .,n,

N

> P( I U [$
~k=1

nk
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