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Abstract. LetT, denote the set of triangulations of a convex polygowith n sides. We
study functions that measure very natural “geometric” features of a triangulatioi,,

for example A (7) which counts the maximal number of diagonals iimcident to a single
vertex of K. It is familiar thatT, is bijectively equivalent td,, the set of rooted binary
trees withn — 2 internal nodes, and also Ry, the set of nonnegative lattice paths that start
at 0, make B — 4 stepsX; of size+1, and end aX; + - - - + Xon_4 = 0. A, and the other
functions translate into interesting properties of treeB,jnand paths ir,, that seem not

to have been studied before. We treat these functions as random variables under the uniform
probability onT, and can describe their behavior quite precisely. A main result igthat

very close to log (all logs are base 2). Finally we describe efficient algorithms to generate
triangulations inT,, uniformly, and in certain interesting subsets.
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1. Introduction and Summary

Consider a convex polygdd with n sides. We label the vertices=i,i =0,...,n—

1, in clockwise order. A triangulation is a set of— 3 noncrossing diagonals v;
which partitionsK into n — 2 triangles. You can imagine constructing a triangulation
recursively: taking the polygon edgev,_; as base, just choose the apex of the triangle
of T that it belongs to, say;, 0 < i < n — 1, and now continue in the same way on the
two polygonsuy, . .., v; with vov; as base and;, ..., v,_; with vjv,_1 as base (Fig. 1
hasn = 8 andv; = 2, 4, and 5, respectively). This shows thatthe number of such
triangulations, satisfies

th = toth_1 +tatho + - - - +th_1lo h=t3=1,

the recursion of the Catalan numbers. Therefore

1 /2n-4
tn:cn_z:n—l(n—Z) (0)

is the size ofT,, the set of triangulations df.

It is natural to consider certain “geometric” features of a triangulatienT,. Letd;
denote thalegreeof vertexv;, the number of diagonals afincident withv;. It is easy
to see [10] that is characterized by this sequence of degrees. In this paper we study

An(t) =maxd, i =0,...,n—1), D

the maximal degreeof the verticesA,, = 2 whent is azigzagandn — 3 when itis a
fan(d, = n — 3 for some vertex), as in Fig. 1.

Define the length of a diagonalv; withi > j to be|lviv;|| = min(i — j,n—i+ ),
the (fewest) number of successive edgek difetween the endpoints. Another geometric
feature ofr that we look at is

An(T) = max(|lvivj || vy €t), )

thelength of the longest diagonaln the triangulation. It is clear tha/3 < An < n/2.

1, afan T, a zig-zag 7

Fig. 1. Three triangulationsAg = 5, 2, and 3, respectivelyg = 4, 4, and 3, respectively.
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To see how these functions behave across the family of triangulations we treat them
as random variables under the uniform probabilityTonBy symmetry, each; has the
same distribution, but they are not independent becausedgig-; - +dn_1 = 2(n—3).
In view of the fact that the expected degree of eadk 2(1 — 3/n), it may be somewhat
surprising thatA, is close to logn (all logs are base 2). The main result is

Theorem1l. Asn— oo,
E(An)/logn — 1.

In fact A, is strongly concentratedror all ¢ > 0,as n— oo,
Prol{|An(r) — logn| < (1+c¢)loglogn} — 1.
The upper bound is based on computing the distributicd .of

Lemma 1. For each vertex;, the probability that its degree is k is given by

k .
Prob(d, = k) = (k; 1) <2nn__15) n-2-1 @3
i=1

Remark 1. Since Prold = k) < (k + 1)2-®*D whenn > 3 (which we assume
throughout), this says that has tails that decrease geometrically fast. Theorem 1 in-
dicates that their maximum is logarithmic, like the maxnoindependentgeometric
random variables (see also Final Remark 1). The proof makes these connections more
explicit. It is interesting to wonder about the varianceAgf Simulation indicates that it

could be constant.

The key fact about the longest diagonal is

Lemma 2. The distribution of the length of the longest diagonal is given by

NGk 1 <2
Probi, =k) = —— Yy Cik-1Cn_i 1, 4
n-2 j=n—k
where (x) means “multiply the summand b’éywhen i=2k and i = n— Kk, unless

3k = n, when we multiply by ”
This enables us to find the limit distribution bf.

Theorem 2. For each xe (3, 1), as n— oo, Prol(x, < nx) — to the distribution
with density

w(X) = %x‘z(l —X)72(Bx — 1)(1—2x)" V2,



108 L. Devroye, P. Flajolet, F. Hurtado, M. Noy, and W. Steiger

In addition E(An)/n — «, where

/3 +1_ log(2++/3)
T 3 T
0.4654615104...

A motivation for the present work—along with deep curiosity about how typical
triangulations look—is the inherent interest of binary trees. It is familiar Thais
bijectively equivalent toB,, the set of rooted binary trees with— 2 internal nodes,
each triangulatiom € T, corresponding to a particular trbér) € B,. The two features
of triangulations that we study translate into interesting and natural properties of the
corresponding trees. For exampte,(t) measures a property bfr) that we call the
external-node separatiory,(b(t)): this is the maximal distance in the tree between
successive external nodes,(t) measures a property ofr) that we call thenearly
half measureH,(b(r)): it is the size of the largest subtree with not more than half the
external nodes. Though trees have been studied intensively (e.g., [3], [4], [8], [11], and
[12]), we are unaware of any previous work on these two features. Theorems 1 and 2
and Lemmas 1 and 2 thus appear to express interesting, new facts about trees, as well as
about triangulations. In Section 2 we translate the functidpsndi, into the context
of binary trees. We also exploit the correspondence betWgand nonnegative lattice
pathsP,; we interpret our functions in this set as well, to help with the proofs, which
appear in Section 3.

In Section 4 we describe some linear-time algorithms to generate elemefts of
randomly. In addition leT,, (k) denote the subset of triangulationsTinwith A, (7) = k.

We show how to generate quickly triangulations restricted,i&). Finally, if d = 0,

the vertexwy; is calledan ear of the triangulation. We show how to generate quickly
triangulations with a given number of ears. This may be of some interest because ears
of T correspond to leaves bf7).

Remark 2. If we regard the trees iB, as binary-search trees generated by per-
mutations of 1...,n — 2, each permutation being equally likely, the bijection gives
the (binary-search tree) probabilif§, on T,. Trees inB, are well studied in this
model (e.g., [4], [6], [11], and [13]). In contrast to the situation in the uniform dis-
tribution, the vertex degrees in this model are not identically distributed. Actually
Eg(dy) = Eg(dh_1) = ©(logn) as is familiar from [4] and [6]. We can prove that
in this distributionA,/logn — ¢ > 1 in probability. It seems difficult to analyze, in

this model.

2. Preliminaries

We first describe the explicit correspondences between triangulations, trees, and paths
that we use. The standard way to associate a tree with a triangulation uses the dual graph
of T € T,. This gives a binary tree with — 2 internal nodes, one for each trianglerof
adjacent triangles of correspond to nodes joined by an edge of the tree. The triangle
with edgevov,_1 is associated with the root of the treeuvilfis the apex of this triangle in

7, label the root withi. The left subtree has— 1 internal nodes (the number of vertices
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(6,5)

6.4)

<>7

0 On Q0 @0 (6,0)

Fig. 2. Atriangulation ofK and two equivalent representations.

of K betweerwg andv;) and corresponds to the triangulation of subpolygen . ., v;
in 7; the right subtree has— 2 — i internal nodes and corresponds to the triangulation
of subpolygon;, ..., vn_1 in T, and now continue recursively in the two subpolygons
(subtrees). Once thre— 2 internal nodes are placed, external nodes are added so internal
nodes have outdegree 2. Call this (binary-search)i¢eg It hasn — 1 external nodes
whoseinorder traversal corresponds to the edggsivi, i = 1,...,n — 1. The root
misses an external node correspondinggg,_;. We label thenx;,i = 1,...,n—1,
and the missing external nodeg,(see Fig. 2). This scheme defines a bijecfigr B,.

For t € T, construct a pathp(r) € P, as follows (we think of elements d?,
as upright rectilinear paths joining points in the integer lattic&®fncontained in the
triangle bounded by the-axis,x = n — 2, andy = x). Paths start atl, 0) and end at
(n — 2, n — 3). Suppose hasjy internal diagonals incident ta; then the path moves
right jo steps. In general, lef; denote the number of diagonals framto a higher
number vertex. We are currently at vertgx\We move clockwise ik to the next vertex
vi with jj > 0. The path movespto the liney = i and then movesght for j; steps.
It is easy to see that this procedure gives a patRjimnd that every such path comes
from a distinct triangulation. These bijections are frequently exploited when studying the
combinatorics in one of these sets (see especially [15]), and also for the task of randomly
generating elements from one of the sets (e.g., [2], [5], and [13]).

To understand whah,, says about trees, imagine the diagona| in r as directed
from the smaller numbered vertex &f to the larger one. Take & i < n— 1 and
move counterclockwise along the circumference of a sufficiently small circle centered at
vertexv; from edgev; _1v; to edgev; v ;. First we meet diagonals (if any) coming from
lower verticesnto v; and then we meet diagonals (if any) goiogt fromv; to higher
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vertices. This shows that the degreevpfn t is the number of nodes ib(r) between
X; anda, and the number of nodes betwegn, anda, o being the root of the smallest
subtree containing; andx;1; thus it is the path distance (z) (number of internal
nodes) fronk; to x; 11, minus 1. Similarly, and becauggis missing from rooted binary
trees,dy andd,_; count the number of internal nodes between the rootarahd the
root andx,_1, respectively.

Given arooted binary treewith n— 2 internal nodes and external nodes. . . , Xn_1,
tack an external node, (= Xp) onto the root and define tlexternal-node separatidoy

Xn(b) - max(”XiXH-l” ) I - 07 ceey n— 1)7 (5)

where| X X;+1]| counts the path distance minus 1 between the external nodes. We just
argued that

Lemma 3. Givent € T,, An(t) = xn(b(7)).

It is more difficult to interpretA, on paths. From the construction p€r) the width
ji of the step alony =i is the outdegree of vertax,i =0, ...,n— 3 (jy = 0 means
the path has no step at levgl The outdegrees af,_, andv,_; are zero. Similarly,
the indegrees ofip andv; are zero. The other indegrees are more complicated, except
for vh_1, where the indegree equals_1, and both count the number of times the path
meetsy = X, fromx = 1tox = n — 3. Also bothd,_, and the indegree af,_, can be
determined from the intersections of the path wite= x — 1. However, in generatj
seems not to be an easily “seen” feature of the path.

Given a pathp € PR, define its step-width by

S(p) = max(j,i =0,...,n=3), (6)
wherej; is the width of the step op at heighty = i. Sinced; > jj,
Lemma 4. Given atriangulationr € T,, An(t) > Si(p(1)).

Therefore probabilistic lower bounds for step-width imply lower bounds for the maxi-
mum degree.

It is straightforward to interpret,. From the construction db(z) from t, each
internal node in the tree other than the root corresponds to the partasitricted to
some subpolygon;, ..., vj,i < j — 1. Thereforg|v; vj || corresponds to the number of
external nodes in the subtree rooted at that particular internal node. Giverbastrigg
denote its nonroot internal nodes yyand defing|v; || as the number of external nodes
in the subtree rooted at. The “nearly-half measure” df is defined by

Hn(b) = max(min(flvi [, n—[vil), i =1,....,n—=3). (7

Its the size of the largest subtree with not more than half the external nodes. Because
An(t) = Hn(b(z)), Lemma 2 gives the distribution of this random variable on trees.
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3. Proofs

We sketch the proofs of the results mentioned previously. A main tool is the ballot
theorem (see p. 73 of [7]) which says that the number of lattice paths that S@r0gat
makei unit steps to the right, < i unit steps up, and preserye< x is

i1+l
N”_i+1+j( j ) ©

Proof of Lemmal. Since the degrees are identically distributed, we only have to con-
sider vertexvo. If dy = kin , the corresponding path (a good path) must sta.ad),

pass througltk 4+ 1, 0) and thenk + 1, 1), and finally continue tgn — 2, n — 2). The
number of ways a path can continue throggh- 1, 1) to(n —2,n — 2) is

N — k+1 2n—-5-—k
2n-5-k\ n-2 )’
by the ballot theorem. Since there is only one way a path,ican get from(1, 0) to

(k + 1, 0), N is also the number of good paths. Therefore Rdgh= k) = N/Cp_».
Simplification gives (3). O

We prove Theorem 1 in two steps. For the upper bound we want to deterrkine a
so ProljA, > k) — 0. Observe that PrghA,, > k) = Prot(Ui“;Ol{di > k}) which, by
Bonferroni’s inequality [7, p. 110] is bounded byProl(dy > k). Lemma 1 shows

Prob(An, > k) < n(k + 1)27K

which— 0 fork > logn + cloglogn, ¢ > 1.
The lower bound is

Lemma5. Foranyc> 0, ProfA, < k) — Ofork <logn — (14 c)loglogn.

Proof. This is the only tricky part, because tbeare dependent. From Lemmaa,
is larger than the size of the largest horizontal stgpin the corresponding path, so we
just need to determinleso that ProbA(t) < k) < Prob(s,(p(t)) < k) — 0.

Let Uy, ..., U4 be a sequence of i.i.d. uniform random variables oril][0We
describeXm, Ym), the coordinates of a point on a random pat®inafterm < 2n — 4
steps of size 1, each up or right, starting fréin0) = (X, Yp). Of theC,_, paths in
Pn, Cn—3 pass througlfl, 1), the rest througli2, 0). Therefore, lettings denote the
indicator of A, if

X1 = lu,<c, s/Co 2l
Y1=2- Xy,

(X1, Y1) will be (1, 1) or (2, 0) with the correct probabilities. Next suppoSé&y, Ym) =
@i, j)isapointonp afterm =i+ j — 1 < 2n — 5 steps from(1, 0). By the ballot
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theorem there are

N et et S R el
T on—3—i—j\ n—1—j

continuations from(i, j) to (n — 2,n — 2), of which Ni;1; go through(i + 1, j).
Therefore the probability that the path(@¢,, Ym) = (i, j) moves right at stem is

Ni+1j i+2—j n—2-—i )
= - = 9
P Ni, (i+1—j)(2n—4—i—j ’ ©)

which is 0 wheri = n — 2, and 1 when = j, as required. If we define

XmJFl = Xm + I[Um+15 Pm] s

Ym+l - Ym + (1 - |[Um+1§pm])

our path will move fron(, j) to (Xm + 1, Yn) or (Xm, Ym + 1) with the correct proba-
bilities. We usem =i + j — 1 in the equation fopy, and simplify to seg, >

1 1+m-—2j 1 1+m 1 14+m*
[ e L e [ LN | [ R 10
2<1 2n—5—m>22<1 2n—5—m)22(1 2n—5—m*)’ (10

wherem* > mis a bound on the number of steps taken.
Disregarding truncations we defike= logn — (1 + ¢)loglogn, ¢ > 0, m* =

n/(2logn), and
1 1 1
P=3 3logn /"’

With this choice ofm* the right-hand side of (10) is at leggtif n is large enough.

Consider the Bernoulli sequeng, Z,, ..., whereZ; = ljy,<p, 1 <i < m*, and
let Ly, Lo, ... be the lengths of its runs of consecutive ones. EAck- 0 ends such a
run and sincey; . ) impliesZ; = 0, A, > maxL;, i < m*. Therefore

Prob(A, < K) /3

IA

Prob( ﬂ (L < k)) = [ProbL; < k)]™/3 < (1- pY)

i<m*/3

< e pkm*/3 _ g (logn)y°

for some constant > 0. O
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Proof of Lemm&. First observe that there af&_1C; _x_1Cn_j_1 triangulations in
T, containingAwvgukvj, i > k. To count the number of triangulations wity = K,
supposeyuk is a diagonal inc (its length isk) and thatv; is the apex of its triangle.
If n —k < i < 2k neither|vguvi| nor |vjvk| exceedsk. So we sum the products
Ck-1Ci _k-1Cn_i_1 overi, from n — k to 2k, and multiply this sum by to reflect the
fact that the longest diagonal could as welkhey, 1, vovkio, . . ., vh_1vk_1. Finally the
*in X, in (4) means “multiply the summand bl;ywheni =2k and when =n —k
(these triangles have two edges of lenigdmd would be counted twice), unleds 3 n,
when we multiply bys.” This counts each good triangulation only once. O

Proof of Theoren?. The first observation is that sum (disregarding the meaning of (*))
in (4) has the closed form

o o (n-20@+1-m) (2K (20— 4k
i;k Ik ”"‘1_(n—k)(n—k—1)(2n—4k—1)(k)(n_2k)’

which can be verified easily. Multiply this sum Cc_1/Cn_», approximate(2™) by
4™/ /mm, and observe thab(x) is the limit ask andn — oo, withk/n — x € (3, ).
The use ofX in place ofX,, has no effect on this analysis. The constawirises from

direct evaluation of
1/2
/ Xw(X) dX.
1,

/3
It is also possible to compute higher moments exactly. O

The proofs of the statements in Remark 2 are omitted.

4. Algorithms

There already exist algorithms for the uniform generation of elemenis, &, and P,

and which have complexit@ (n) in the RAM model of computation. In this section we
give a new, extremely simple algorithm, based on the proof of Theorem 1, to generate
elements of?, uniformly. From a random path it is then straightforward to obtain the
corresponding trangulation ify, and tree inB, in O(n) time. Using this as a building
block we can uniformly generate triangulations with maximum diagonal of a given length
and triangulations with a given number of ears, both in linear time. Throughout we use
“uniform” to mean “generate a uniform [@] random number” and “uniform[i +

1,..., j]"to mean “generate an integer in [], each being equally likely.”

4.1. Generating Paths
Givenn, the following algorithm generates a random path frdn0) to (n — 2, n — 3)

which is described byo, ..., jn-3, ji giving the width of the step made by the path at
levely =i,andjo+---+ jn.3=n—3.
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Algorithm 1. Rand-Path(n; jo, ..., jn_3).

1. (initialize:)m < 0; (Xm, Ym) < (1,0);i < 0;jj < 0
2. Pt < [Km +2 = Ym)(N = 2= Xm)]/[Xm — L = Ym)(@N — 4 — X — Y]
3. Umyyr < uniform; X mi1 < X + I[Um+1§pm+1]
Ymir < Ym+ (11— |[Um+1§pm+l])
4, IFYmi1>YmTHEN (i < i+ 1; jj < 0 ELSEj; < ji+1
5 m<«<m+1 IFm <2n-5, — 2

The algorithm is correct Step 2, given thatXm, Ym) = (i, j), computespm,1 as
in (9). Therefore( Xmy1, Ymy1) is either(Xy + 1, Ym) or (Xm, Ym + 1), each with the
correct probability. By the remark immediately following (9), this gives a path,irBy

induction each path has equal probability.

The algorithm is @n).  Since eactpy, is computed in constant time, tha 2 5 steps
take linear time. Sincg, is the outdegree of vertax in the triangulationr that corre-
sponds to the path just generated, it is straightforward now to obtairinear time,
described, for example, by the list of its- 3 diagonals. We refer to the process of generat-
ing a path and then obtaining its corresponding triangulatidRdnyd-Tri( vo, . . . , vn_1).
Algorithm 1 is similar to the method of Arnold and Sleep [1] that is mentioned in [5].
A different approach for generating triangulations, paths, or trees appears in [2].
Letk > (n—3)/2. Suppose we taka = 0, (Xo, Yo) = (k+1, 1), jo <« k,i < 1,and
begin the path algorithm with Step 2, terminating when the path regohe®, n — 3).
The generated path corresponds to a random triangulatiomyith k and whose max-
degree vertex isg. To randomize the max-degree vertex we choose integeiformly
in [0, n — 1] andRotate(l ), whereRotate(j) means “change the vertex labeling kf
SOV — V(i+jymoan. WE Now have a random triangulation with max-dedtgeach one
being equally likely. It is not clear how to do this efficiently for smaker

4.2. Triangulations with Fixed.

Let T,(k) C T, denote the triangulations whose longest diagonal has ldggt)i3 <

k < n/2. The proofs of Lemma 2 and Theorem 2 suggest an approach for fast uniform
generation of triangulations ifj, (k). Suppose thatyvy is the diagonal of max length

k) in the desired triangulation. We generate the ap@fits triangle, withi € [n—k, 2K]
chosen according to the correct probability. The counting argument used for Lemma
2 shows thaty; should be chosen with probabilit@; _1Cn_i_1/Sx«, where S, =
Z}“znfk Cj_k-1Cn—j—1. Finally, using Rand-Tri we randomly triangulate the polygons
defined by(vo, ..., v), (v, ..., vi), and(vi, ..., vg), and then rotat&k so diagonal

vj vj 4+« has probability Xnto be the longest, =0, ..., n— 1.

Algorithm 2.  Random-max-diag(k; vo, . .., Vh_1).

1. U <« uniform

2. i< min(j:§ > UxSy)

3. Rand-Tri(vg, ..., Vvk); Rand-Tri(vy,...,Vi); Rand-Tri(vi,..., Vo).
4, | < uniform(,...,n—1)

5. Rotatgl)
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4.3. Triangulations with k Ears

Fork e [2,[n/2]] let TX c T, denote the triangulations df with exactlyk ears.
We give anO(n) algorithm to generate these triangulations uniformly. The algorithm
is based on a combinatorial proof of the following formula for the numbek-eér
triangulations (see [9]):

n n—4
|Tnk| — E2r1—2k< )Ckz.

n — 2k
Lett be atriangulation ok having ears atvertices,, .. ., vj,, andfixj; = 0. Obviously
lji — Ji+al = 2.7 hasn — 3 diagonalsncludingvj _1vj 41,1 = 1..., k. Wecollapser

by removing (in any order) every edge Kfthat is not incident to an ear @f n — 2k
edges in all. When edgg v, 1 is removed from, say; vr+1vq, we identifyv, 1 with v
and note that the two diagonalgv, andvqur 41 become one, sp — 2k of the diagonals
of T have also been removed, leavirig-2 3.

Let K’ be the resulting collapsed polygon atidts triangulation. Sinc&’ is a k-
gon andz’ hask ears, there ar€_, different possibilities forr’; k of its diagonals
(one for each ear) form a convéxgon whose interior ha€y_» distinct triangulations.
To count the number of triangulationsthat collapse to the same triangulationkof,
order then — 3 diagonals of, for example, s@;vj precedes v, for diagonals where
i < J < r andvjv; precedesy vs for diagonals wheré < r exceptd = voun_1 IS
always lastd remains inc” butn — 2k of the othen — 4 are eliminated when collapses
to 7’ (see Fig. 3). There al((ﬁ‘_*z“k) choices for which diagonals are eliminated, each of
which corresponds to a triangulation that collapses té-inally, suppose the diagonal

) (i)

Fig. 3. (i) An example of collapse with=13 andk=5. The dotted diagonals efdisappear in the collapse.
(i) Two distinct ways the predecessorgh; could be removed in collapse, or preceglg in insertion.
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immediately preceding;vj in t is eliminated in the collapsing. There are two distinct
ways this can arise for each eliminated diagonal (see Fig. 3), and t‘hﬁfé(gz“k) distinct
triangulations collapse to each triangulatiatof K’. Finally the ternn/k comes from
the fact thatvy was made to be an ear; every one of theertices could play this role
but then each triangulation would be counketimes, once for each ear.

This argument underlies the following simple linear-time algorithm to generkte a
ear triangulation.

Algorithm 3.  Rand-ears(k; vo, ..., Va_1).
1. Rand-Tri(vo, ..., Vk-1)

2. t' < Addkears

3. S< uniform (“5;", %) ; label ¢’ with S
4. 1 < insertdiagonals from §

5. | < uniform(,...,n—-1)

6. Rotatel)

To sketch some details, Step 1 randomly triangulategian. In Step 2 renumber —
vaiv, 1 = 1,...,k, add verticesvy, i = 1,...,k, and diagonal, _qvyi41, i =
1,...,k; this puts ears at thie even number vertices af,, the other diagonals being
random. In Step 3 diagonajvy_; is labeledn — 3, the others are labeled by j; <

<o+ < jokeq < N—4, the X —4 elements ir§, randomly chosen from,1.., n—4. Step

4 is done bymerging Sinto SU (n — 3). If the current element € S is larger than the
currentelemerg € S, we advance to the next elemen®0Dtherwise an edgeisserted
into " immediately preceding = vivj, i < j. Specifically, ifU <« uniformis less
than 0.5 we create a new vertex betwegn andv; and the corresponding diagonal to
vj; otherwise a new vertex appears betwegn andv; and the corresponding diagonal
from v; (see Fig. 3). The details are easily manage@®in).

5. Final Remarks

This paper studied the behavior of two properties of a random triangulation of a convex
n-gon: (1) A,, the maximal degree; (2),, the length of the longest diagonal. The
functionsA,, andi, correspond to interesting features of binary trees and our results on
triangulations give new information about random trees. Some other points are:

1. Following the idea in Remark 1, as— oo,
Prob(di = k) — (k + 1)2-¢+2

the distribution ofG,, the sum of two independent geomet@ fandom vari-
ables. It is interesting to wonder whethty converges in distribution to the limit
distribution of the maximum ofi independent copies @..

2. According to Remark 2E(di) = 2(1 — 3/n) for uniform triangulations but
Eg(do) = Eg(dh_1) = ©(logn) in search-tree probability, a real difference be-
tween the two distributions. At the same time, howe¥&(A,/logn) — 1 in
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the uniform case and o > 1 in the other. For the purpose of comparison, some
known properties of random binary trees in the two distributions are:
(a) Height h,, the maximal depth of a nod&(hy) is asymptotic to 2/ n in the
uniform case [8] and concentrated abolB¥L07 Inn in the other [4].
(b) Leaveslinthe limitone expects/4 leaves for uniform trees amg 3 for binary
search trees (see [14]).
3. We note that it is easy to generate random triangulations in the search-tree proba-
bility. When constructing the triangulation as in the opening paragraph, just choose
vi uniformly from 1, ..., n — 2, etc. The complexity i©(n).
4. An outstanding question concerns the B&K) of triangulations of a se of n
points not necessarily in convex position. As opposed to (0), it is not known how
to count or even to approximaf€ (K)]|.
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Note added in proof Gao and Wormald (preprint) recently proved the conjecture in
point 1 of the Final Remarks (Section 5) and sharpened the statements in Theorem 1.



