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Let (X, Y ) be an Rd_R-valued regression pair, where X has a density and
Y is bounded. If n i.i.d. samples are drawn from this distribution, the Nadaraya�
Watson kernel regression estimate in Rd with Hilbert kernel K(x)=1�&x&d is shown
to converge weakly for all such regression pairs. We also show that strong
convergence cannot be obtained. This is particularly interesting as this regression
estimate does not have a smoothing parameter. � 1998 Academic Press
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1. INTRODUCTION

Let (X1 , Y1), ..., (Xn , Yn) be independent observations of an Rd_R-
valued random vector (X, Y ). Denote the probability measure of X by +.
The regression function m(x)=E(Y | X=x) can be estimated by the kernel
estimate,

mn(x)=
�n

i=1 Y iKh(x&Xi)
�n

i=1 Kh(x&Xi)
,
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where h>0 is a smoothing factor depending upon n, K is an absolutely
integrable function (the kernel), and Kh(x)=K(x�h) (Nadaraya, 1964,
1970; Watson, 1964).

We are concerned with the pointwise and L1 convergence of mn to m,
where the latter is measured by Jn=� |mn(x)&m(x)| +(dx). This quantity
is particularly important in discrimination based on the kernel rule (see
Devroye and Wagner, 1980, or Stone, 1977). Stone (1977) first pointed
out that there exist estimators for which Jn � 0 in probability for all
distributions of (X, Y ) with E |Y|<�. In 1980, Devroye and Wagner, and
independently, Spiegelman and Sacks, showed that the kernel estimate with
smoothing factor h has the same property provided that K is a bounded
nonnegative function with compact support such that for a small fixed
sphere S centered at the origin, infx # S K(x)>0, and that

h � 0, nhd � �

as n � �. These results were extended and complemented by Greblicki,
Krzyz* ak, and Pawlak (1984) (who allowed bounded but possibly non-
integrable kernels), Krzyz* ak (1986), and Krzyz* ak and Pawlak (1984).
Weak pointwise convergence at almost all x and for all distributions of
(X, Y ) with E |Y|<� was first obtained by Devroye (1981).

Interestingly, it turns out that the conditions for the ``in probability''
convergence of Jn are also sufficient for the strong convergence of Jn , thus
rendering all modes of convergence equivalent. Assuming that Y is
uniformly bounded, the kernel estimate is strongly consistent (Jn � 0
almost surely) if the above condition on h holds, K is a Riemann integrable
kernel and K�aIS , where a>0 is a constant, and S is a ball centered at
the origin that has a positive radius (Devroye and Krzyz* ak, 1989).

In this note, we study the Nadaraya�Watson estimate with Hilbert
kernel

K(x)=1�&x&d.

The name refers to the related Hilbert transform in real analysis. This
kernel is neither integrable nor bounded, so that none of the papers cited
above covers its behavior. Interestingly, the regression function estimate
becomes independent of h due to cancellation in numerator and
denominator:

mn(x)=
�n

i=1 Y i �&x&Xi&d

�n
i=1 1�&x&Xi&d .

No parameter is picked in this estimate! Because it is the only kernel with
this invariance property, it occupies a special place, and we take the liberty
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to call the regression estimate the Hilbert estimate. Interestingly, this
estimate is universally consistent in a sense made precise in the next
theorem.

Theorem. Let mn be the Hilbert regression estimate. Let X have any
density f on Rd and let Y be bounded. Then:

(i) at almost all x with f (x)>0, mn(x) � m(x) in probability as
n � �;

(ii) � |mn(x)&m(x)| f (x) dx � 0 in probability as n � �;

(iii) there exists a distribution of (X, Y ) on [0, 1]_[&1, 1] such
that for all x with f (x)>0, mn(x)�% m(x) almost surely as n � �.

We make no claims about the convergence when X does not have a
density.

2. PROOFS OF PARTS (i) AND (ii) OF THE THEOREM

Note that (ii) follows from (i) by a standard argument (Devroye, 1981,
p. 1316). Let S(x, r) denote the closed ball in Rd of radius r centered at x.
We will show (i) for all Lebesgue points for f and m, that is, for all x for
which f (x)>0 and for which at the same time

lim
r a 0

�S(x, r) f ( y) dy
�S(x, r) dy

= f (x)

and

lim
r a 0

�S(x, r) m( y) f ( y) dy
�S(x, r) f ( y) dy

=m(x).

As f is a density and � |m| f<�, we know that almost all x satisfy the
properties given above (Wheeden and Zygmund, 1977, p. 189; see also
Devroye, 1981, Lemma 1.1). Let x be such a point.

Fix = # (0, 1) and find $>0 such that

sup
0<r�$ }

�S(x, r) f ( y) dy
�S(x, r) dy

& f (x)}�=f (x)

and

sup
0<r�$ }

�S(x, r) m( y) f ( y) dy
�S(x, r) f ( y) dy

&m(x)}�=.
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Define p=�S(x, $) f. Let Vd be the volume of the unit ball of Rd, and let F
be the univariate distribution function of W =

def &x&X&d Vd . Note that F
has a density and that if u�Vd $d,

F(u)=P[Vd &x&X&d�u]

=P[X # S(x, (u�Vd)1�d)]

=|
S(x, (u�Vd )1�d )

f ( y) dy

# [(1&=) f (x) u, (1+=) f (x) u].

Define Wi=Vd &x&Xi&d, 1�i�n, and let W(1)< } } } <W(n) be the
order statistics for W1 , ..., Wn . If U(1)< } } } <U(n) are uniform order
statistics, we have in fact the representation

U(i) =
L F(W(i)), W(i) =

L F inv(U(i))

jointly for all i. Thus,

(1&=) f (x) W(i)�U(i)�(1+=) f (x) W (i) ,

provided W(i)�Vd $d. Put differently, under the latter condition,

U(i)

(1+=) f (x)
�W(i)�

U(i)

(1&=) f (x)
.

The Hilbert estimate mn(x) may be written as

mn(x)=
�n

i=1 Y i �Wi

�n
i=1 1�W i

.

Thus

|mn(x)&m(x)| � }�
n
i=1 (Yi&m(X i))�Wi

�n
i=1 1�Wi }+�n

i=1 |m(Xi)&m(x)|�Wi

�n
i=1 1�Wi

=
def I+II.

We show that I and II tend to zero in probability. We will repeatedly use
the following special form of the Hajek�Re� nyi inequality (see Chow and
Teicher, 1978).
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Lemma 1. If X1 , X2 , ... are i.i.d. zero mean random variables with
variance _2 and =>0, then

P {.
�

i=n _}
� i

j=1 Xj

i }�=&=�
2_2

n=2 .

Part I. We may assume without loss of generality that |Y|�1 (so that
|m|�1, as well). Given X1 , ..., Xn (and thus, W1 , ..., Wn), we have
Y1 , ..., Yn conditionally independent, and thus,

E[I 2 | X1 , ..., Xn]� :
n

i=1
\ 1�Wi

�n
j=1 1�Wj +

2

� max
1�i�n

1�Wi

�n
j=1 1�Wj

=
1�W(1)

�n
j=1 1�W( j)

�
(1+=) f (x)�U(1)

�k
j=1 (1&=) f (x)�U ( j)

+IW(k)>Vd $d

�\1+=
1&=+

1�U(1)

�k
j=1 1�U( j)

+IW(k)>Vd $d .

Recall that all of this assumes that the Ui 's are related to the Xi 's by the
probability integral transform given above. By Lemma 2 below, if k is the
largest integer satisfying W(k)�Vd $d, E[I 2 | X1 , ..., Xn] � 0 in probability.
This implies EI2 � 0, and thus, I � 0 in probability. K

Lemma 2. Let U(1)< } } } <U(n) be uniform order statistics. Let $>0 be
arbitrary, and let k be the largest integer such that W(k)�Vd $d. Then

Z =
def 1�U(1)

1�U(1)+ } } } 1�U(k)

� 0 in probability

as n � �.

Proof. We may use a well-known connection between uniform samples
and Poisson point processes. If E1 , E2 , ... are i.i.d. standard exponential
random variables, then

(U(1) , ..., U(n)) =
L \�1

i=1 Ei

�n+1
i=1 Ei

, ...,
�n

i=1 Ei

�n+1
i=1 Ei +
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(see, e.g., Chap. 8 of Shorack and Wellner, 1986). Thus,

Z =
L 1�E1

1�E1+1�(E1+E2)+ } } } +1�(E1+ } } } +Ek)
.

Clearly, it suffices to show that the denominator of this expression tends to
� in probability. By the Hajek�Re� nyi inequality,

P {.
�

i=l
_E1+ } } } +Ei

i
�2&=�

2 Var[E1]
l

=
2
l

,

and hence,

P {1�E1+1�(E1+E2)+ } } } +1�(E1+ } } } +En)� :
n

i=l

1
2i=�1&

2
l

.

Therefore, we are done if we can show that k � � in probability. It is a
trivial exercise to show, in fact, that there exists an =>0 such that
P[k<=n] � 0. This concludes the proof of Lemma 2. K

Part II. We first show that

An =
def � i�%n 1�W (i)

�n
i=1 1�W(i)

� 1 in probability

as n � � for all fixed % # (0, 1). As An�1, we need only be concerned with
a lower bound. If B=[W(w%nx)�Vd $d] holds, then

(1&=) f (x)
U(i)

�
1

W(i)
�

(1+=) f (x)
U(i)

for all i�%n. For larger i, we have in any case 1�W(i)�1�W(w%nx) . Therefore,
if =<1, and using the inequality a�(a+b)�(a&b)�a, valid for a, b>0,

An IB �
(1&=) f (x) � i�%n 1�U(i)

(1+=) f (x) � i�%n 1�U(i)+n�W(w%nx)

�1&
2=f (x) � i�%n 1�U(i)

(1+=) f (x) � i�%n 1�U (i)
&

n�W(w%nx)

(1+=) f (x) � i�%n 1�U(i)

�1&
2=

(1+=)
&

n�W(w%nx)

f (x) � i�%n 1�U(i)
.

The middle term is as small as desired by our choice of =, while the last
term will be shown to tend to zero in probability. This follows from
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Lemma 3 below, and the fact that P[W(w%nx)�q] � 0, where q is the %�2-
quantile of W1=Vd &x&X&d.

To complete the proof of Part II, let =>0 be fixed. First, we find $>0
so small that

sup
r�$

�Sx, r
|m( y)&m(x)| f ( y) dy

�Sx, r
f ( y) dy

<=2.

Let A=[ y: |m( y)&m(x)|>=]. By Markov's inequality,

sup
r�$

�Sx, r & A f ( y) dy

�Sx, r
f ( y) dy

�sup
r�$

�Sx, r & A |m( y)&m(x)| f ( y) dy

= �Sx, r
f ( y) dy

�
=2

=
==.

Choose % # (0, 1) small enough so that R[&X(w%nx)&x&>$] � 0. We set
Zi=1�Wi for convenience, and note the following:

�n
i=1 |m(Xi)&m(x)| Zi

�n
i=1 Zi

�
2 � i: Xi � Sx, $

Zi

�n
i=1 Zi

+
� i: Xi # Sx, $

|m(Xi)&m(x)| Zi

�n
i=1 Zi

=
2 � i: Xi � Sx, $

Zi

�n
i=1 Zi

(I&X(w%nx)&x&�$+I&X(w%nx)&x&>$)

+
� i: Xi # Sx, $

|m(Xi)&m(x)| Z i

�n
i=1 Zi

�
2 � i: Xi � Ss, $

Zi

�n
i=1 Zi

I&X(w%nx)&x&�$+2I&X(w%nx)&x&>$

+
� i: Xi # Sx, $ & Ac |m(Xi)&m(x)| Zi

�n
i=1 Zi

+
� i: Xi # Sx, $ & A |m(X i)&m(x)| Zi

�n
i=1 Zi

�
2 � i>%n Zi

�n
i=1 Zi

+2I&X(w%nx)&x&>$+=+
� i: Xi # Sx, $ & A Zi

�n
i=1 Zi

.

=V1+V2+V3+V4 .

Clearly, V1 � 0 in probability, as An � 1 in probability. As noted above,
V2 � 0 in probability by choice of %. Also, V3 can be made as small as
desired by choice of =. To show that V4 � 0 in probability, we note that the
Zi 's are decreasing random variables if we reorder the Xi 's according to
distance from x: &X1&x&�&X2&x&� } } } . Set !i=IXi # Ac & Sx, $

, where X i is
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the i th furthest point from x. Define Di=Zi&Z i+1 , where we formally set
Zn+1=0. Thus, Zi=�n

j=i D j . Therefore,

V4=
�n

i=1 ! i Zi

�n
i=1 Zi

=
�n

i=1 !i �n
j=1 Dj

�n
i=1 Zi

=
�n

j=1 Dj � j
i=1 !i

�n
i=1 Zi

�
�n

j=1 Dj (2=j+MIj�M)

�n
i=1 Zi \if :

j

i=1

! i�2=j, all j�M+
�2=

�n
j=1 jDj

�n
i=1 jDj

+
MZ1

�n
i=1 Zi

�2=+
M�W1

�n
i=1 1�W i

.

The last term tends to 0 in probability by Part I of the proof, while the
first term can be made as small as desired by choice of =. Thus, V4 � 0 in
probability if

lim
M � �

P { .
j�M _� j

i=1 !i

j
�2=&==0.

Fix j. Then � j
i=1 ! i is stochastically not greater than a binomial ( j, p)

random variable, where

P�sup
r�$

P[X1 # A & Sx, r | X1 # Sx, r]

(this follows by removing the order of the Xi 's again and conditioning on
the j th furthest point from x). But, as noted earlier, p�=. Therefore,

P { .
j�M _� j

i=1 ! i

j
�2=&=� :

�

j=M

P {binomial( j, =)
j

�2==
� :

�

j=M

e&2 j=2
=o(1)

as M � �, where we used Hoeffding's inequality (Hoeffding, 1963). K
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Lemma 3. Let U(1)< } } } <U(n) be uniform order statistics, and let
% # (0, 1) be fixed. Then

Z =
def 1

n
:

i�%n

1
U(i)

� � in probability,

as n � �.

Proof. As in the proof of Lemma 2, we use the representation of a
uniform sample in terms of exponentials. Thus,

Z =
L 1

n
:

i�%n

E1+ } } } +En+1

E1+ } } } +Ei

=
E1+ } } } +En+1

n
_ :

i�%n

1
E1+ } } } +Ei

=
def III_IV.

By the law of large numbers, III � 1 in probability. By the strong law of
large numbers (see Lemma 1) for every $>0 there exists l=l($) such that
with probability >1&$, for all i�l,

E1+ } } } +Ei�2i.

Thus, with probability >1&$,

IV= :
i�%n

1
E1+ } } } +Ei

� :
l�i�%n

1
2i

and the lower bound diverges with n. K

We note that in fact Z�log n � 1 in probability.

3. PROOF OF PART (iii) OF THE THEOREM

Here we construct a simple example in which strong pointwise con-
vergence occurs nowhere, so that the mode of convergence in the theorem
cannot be improved. Let X be uniform on [0, 1], and let Y be independent
of X and take the values 1 and &1 with probability 1�2 each. Clearly,
m#0. If we define the event

Bn=_1�|x&Xn |>2 :
n&1

i=1

1�|x&Xi |& ,
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then it is clear that on Bn ,

|mn(x)|= }Yn�|x&Xn |+�n&1
i=1 Y i �|x&X i |

1�|x&Xn |+�n&1
i=1 1�|x&Xi | }

= } 1+�n&1
i=1 YiYn |x&Xn |�|x&X i |

1+�n&1
i=1 |x&Xn |�|x&Xi | }

�
1&�n&1

i=1 |x&Xn |�|x&Xi |
1+�n&1

i=1 |x&Xn |�|x&Xi |
�1�3.

Therefore,

Bn �[|mn(x)|�1�3].

Let Fn denote the _-field generated by (X1 , Y1), ..., (Xn , Yn). Then it is well
known that

P[Bn i.o.]=1

if

:
�

n=1

P[Bn | Fn&1]=� almost surely

(see, e.g., Chow and Teicher, 1978, p. 245). The last condition is equivalent
to

:
�

n=1

P { 1
|x&Xn |

>2 :
n&1

i=1

1
|x&Xi | } Fn&1==� almost surely

and by the uniformity of X, this in turn is equivalent to

:
�

n=1

1
�n

i=1 1�|x&Xi |
=� almost surely.

It is easy to see that this is true if for an i.i.d. uniform [0, 1] sequence
U1 , U2 , ..., we have with probability one

:
�

n=1

1
�n

i=1 1�Ui
=�.

This is shown in Lemma 5. All this thus implies that at every x # [0, 1],
|mn(x)|�1�3 infinitely often with probability one, and thus, mn does not
converge strongly to m at any such x (while it converges weakly to x at all
such x).
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Lemma 4. Let V1 , V2 , ... be a sequence of ( possibly dependent) positive
random variables. Let an be a sequence of positive numbers with �n an=�.
If limn � � P[Vn<an]=0, then

:
�

n=1

Vn=�

almost surely.

Proof. Define the event AN, k=[��
n=N Vn<1�k], where N and k are

integers. We will show that P[AN, k]=0. This implies that

P {.
N

.
k

AN, k==0,

and thus that

P { :
�

n=1

Vn<�==0.

For fixed k, note that P[AN, k] is nondecreasing in N. Assume P[AN, k]=
p>0. Note that if Bn=[Vn�an] and Bc

n is its complement,

1
k

�E {IAN, k
:
�

n=N

Vn=
�E {IAN, k

:
�

n=N

Vn IBn=
�E {IAN, k

:
�

n=N

anIBn=
�E { :

�

n=N

an(IAN, k
&IBc

n
)=

= :
�

n=N

an(P[AN, k]&P[Bc
n])

� :
�

n=N

anP[AN, k]�2 (for all N large enough)

=�,

which is a contradiction. Therefore, for all N, k, P[AN, k]=0. K
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Lemma 5. Let U1 , U2 , ... be i.i.d. uniform [0, 1] random variables. Then,
with probability one, we have

:
�

n=1

1
�n

i=1 1�Ui
=�.

Proof. Define Vn=1��n
i=1 1�U i and an=1�(4n log n). Lemma 5 now

follows from Lemma 4 if we can show that P[Vn<an] � 0, or equivalently, if

lim
n � �

P { :
n

i=1

1
Ui

>4n log n==0.

By the representation of a uniform sample as a function of independent
exponentials E1 , E2 , ..., we see that

:
n

i=1

1
Ui

=
L

:
n+1

i=1

Ei_ :
n

i=1

1
� i

j=1 Ej
=
def I_II.

Clearly, by the law of large numbers, I�n � 1 in probability. Thus, it
suffices to show that P[II>3(1+log n)] � 0. By the strong low of large
numbers for every $>0, there exists l=l($) such that with probability
>1&$ for all i�l,

E1+ } } } +Ei�i�2.

Thus, with probability >1&$,

II�
l

E1

+ :
n

i=l

2
i
�

l

E1

+2(1+log n).

Therefore,

P[II>3(1+log n)]�$+P[l�E1>1+log n]�$+
l

1+log n
,

which can be made as small as desired by letting n tend to � and picking
$ small enough. K

4. INCONSISTENT GENERALIZATIONS

One may consider a generalization of the Hilbert kernel regression
estimate as follows: take a>0 and define

mn(x)=
�n

i=1 Y i �&x&Xi&ad

�n
i=1 1�&x&Xi&ad .
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This estimate is not universally consistent unless a=1. The simple example
given in this section should drive home our point. For simplicity, we
assume d=1, and draw X uniformly in [0, 1]. Assume first that a>1.
Hints for the case a<1 will be given alter. We take Y independent of X
and Bernoulli ( p). We have

mn(x)=
�n

i=1 Y i �&x&Xi&a

�n
i=1 1�&x&Xi&a .

It really suffices to study the behavior at x=0. We let the U(i) 's be as in
Lemma 3, and note that

mn(0) =
L Z =

def �n
i=1 Yi �U a

(i)

�n
i=1 1�U a

(i)

.

Note from the proof of Lemma 3 that jointly for all i,

U(1)

U(i)
=
L E1

E1+ } } } +Ei

and that by the Hajek�Re� nyi inequality,

P {.
n

i=l

[E1+ } } } +Ei�i�2]=�
4
l

.

Thus, with probability large than 1�2, we have jointly E1+ } } } +E9�20
and E1+ } } } +Ei�i�2 for all i�10. On the latter event, we have, if
C=9+40a�(a&1) 9a&1,

Z�
Y1

�n
i=1 (U (1) �U(i))

a

�
Y1

9+�n
i=10 (40�i)a

�
Y1

9+��
9 (40�x)a dx

�
Y1

9+40a�(a&1) 9a&1

=
Y1

C
.

Hence, P[Z�1�C]�p>0, so that Z�% p in probability if 1�C>p.
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The case a>1 leads to inconsistency because the contribution of
far-away data pairs is too large. Without formally constructing the
counterexample, it is helpful to note that the weights of the (Xi , Yi) pairs
now ordered according to increasing values of &Xi&x& are roughly
proportional to 1�i. If Hn=�n

i=1 1�i, then the Hilbert regression estimate is
roughly a weighted nearest neighbor regression function estimate

:
n

i=1

wniYi ,

where wni=1�(iHn), 1�i�n. Note in particular that the wni 's form a prob-
ability vector, and that maxi wni � 0. Furthermore, for any =>0,
�i<=n wni � 0 as n � �. The latter two conditions on general weights were
obtained by Devroye in 1982 as necessary and sufficient conditions for
weak convergence almost everywhere of nearest neighbor type regression
function estimates. If we take weights proportional to 1�ia normalized to
one, as in the generalization suggested above, then the maximal weight
does not tend to zero when a>1, and the =n tail of the sum of the weights
does not tend to zero when a<1. The counterexamples are thus identical
to those given by Devroye (1982).

5. UNIVERSAL CONSISTENCY

The Hilbert kernel estimate is also not universally consistent, i.e., the
condition that X has a density cannot be removed in general. This is easily
seen from examples such as the following. The Hilbert kernel regression
estimate with d=2, a=1 is considered when X is uniformly distributed on
[0, 1]_[0], and Y is Bernoulli ( p) and independent of X (as in the
previous section), then mn behaves as in a one-dimensional example in
which X is uniform on [0, 1]. Indeed, both estimates would be statistically
indistinguable. But the Hilbert kernel for d=1 has a=2 and is thus not
consistent, as proved in the previous section.

6. TRUE INTERPOLATION

Remarkably, the estimate provides true interpolation as mn(Xi)=Yi : the
regression estimate passes through all data points (Xi , Yi). This obviously
introduces unnecessary noise, but at the same time, except for immediate
regions around the data points, the estimate feels and behaves like a true
kernel smoother. One could, of course, introduce various devices to get rid
of the noisy peaks, but that will not be attempted in this short note.
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FIG. 1. The generalized Hilbert kernel regression estimate with (the inconsistent choice)
a=4.

FIG. 2. The Hilbert kernel regression estimate with a=1.
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FIG. 3. The generalized Hilbert kernel regression estimate with (the inconsistent choice)
a=1�2.

FIG. 4. The generalized Hilbert kernel regression estimate with (the inconsistent choice)
a=1�4.
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7. APPLICATION IN DISCRIMINATION

The early motivation for the Hilbert regression estimate comes from the
field of pattern recognition and discrimination, where the data are i.i.d.
Rd_[0, 1]-valued random vectors (Xi , Yi), 1�i�n, and one needs to
estimate Y, given X, where (X, Y ) is distributed as (X1 , Y1). The kernel
discrimination rule gn(X ) is defined as

gn(X )={1, if �n
i=1 (2Yi&1) K(X&Xi)�0,

0, otherwise.

This is equivalent to gn(X )=Imn(X )�1�2 . In particular, we have

P[gn(X ){Y ]� inf
g: Rd � [0, 1]

P[g(X ){Y ]+2E[ |mn(X )&m(X )|],

so that Bayes risk consistency of the discrimination rule follows from L1

consistency of the corresponding regression estimate (see Devroye, Gyo� rfi,
and Lugosi, 1996, p. 16, for the inequality, and elsewhere in the book for
a survey and references). This paper thus solves Exercise 10.22 of Devroye,
Gyo� rfi, and Lugosi (1996). Kernels that come close to the Hilbert kernel
may be found in the Russian ``potential function'' literature (Bashkirov,
Braverman, and Muchnik, 1964) and in early books on learning
(Sebestyen, 1962).

8. EXTENSIONS

The results of this note may be repeated for other kernel regression
function estimates without smoothing factor. We may, for example, replace
all Hilbert kernels outside a unit ball by zero or a finite constant without
affecting the consistency result. Hilbert kernels multiplied with slowly
varyingfunctions are also easy to deal with. It is an interesting question to
characterize all kernels for which one obtains consistency. So, consider the
general estimate

mn(x)=
�n

i=1 Y iK(x&Xi)
�n

i=1 K(x&Xi)
.

The unboundedness of K is essential it seems, as a necessary condition for
the estimate to converge in probability at almost all points is that either K
is not bounded or K � L2(+), where + is the probability measure of X. To
see this, note that
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|mn(x)&m(x)|� }�
n
i=1 (m(Xi)&m(x)) K(x&Xi)

�n
i=1 K(x&Xi) }

& }�
n
i=1 (Yi&m(Xi)) K(x&Xi)

�n
i=1 K(x&X i) } =

def I&II.

Denote Ki=K(x&Xi). If K is bounded or K # L2(+) then

E[II 2 | X1 , ..., Xn]� :
n

i=1
\ Ki

�n
j=1 Kj+

2

�
�n

i=1 K 2
i

nEK 2

(nEK)2

(�n
i=1 Ki)

2

nEK 2

n2E2K
.

By the law of large numbers the right side converges in probability to the
same limit as EK2�nE2K which is 0 if K is bounded or K # L2(+). On the
other hand I � |E(m(X )&m(x)) K |�|EK |{0 in probability (by the law of
large numbers), so we do not have consistency.
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