
THE HEIGHT AND SIZE OF RANDOM HASH TREES AND
RANDOM PEBBLED HASH TREES∗

LUC DEVROYE†

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 28, No. 4, pp. 1215–1224

This paper is dedicated to the memory of Markku Tamminen, who died tragically in New York

shortly after he finished his analysis of N-trees and random hash trees.

Abstract. The random hash tree and the N-tree were introduced by Ehrlich in 1981. In the
random hash tree, n data points are hashed to values X1, . . . , Xn, independently and identically
distributed random variables taking values that are uniformly distributed on [0, 1]. Place the Xi’s
in n equal-sized buckets as in hashing with chaining. For each bucket with at least two points,
repeat the same process, keeping the branch factor always equal to the number of bucketed points.
If Hn is the height of tree obtained in this manner, we show that Hn/ log2 n→ 1 in probability. In
the random pebbled hash tree, we remove one point randomly and place it in the present node (as
with the digital search tree modification of a trie) and perform the bucketing step as above on the
remaining points (if any). With this simple modification,

Hn√
2 logn

log logn

→ 1

in probability. We also show that the expected number of nodes in the random hash tree and random
pebbled hash tree is asymptotic to 2.3020238 . . . n and 1.4183342 . . . n, respectively.

Key words. data structures, probabilistic analysis, hashing with chaining, hash tables, N-trees,
random hash trees, expected complexity

AMS subject classifications. 68Q25, 68P10

PII. S0097539797326174

1. Introduction. In this paper, we analyze the height of the random hash tree
(Ehrlich, 1981) defined as follows. We are given X1, . . . , Xn, n independent uniform
[0, 1] random numbers. If n > 1, we partition [0, 1] into n equal intervals of length
1/n each, and place all points in the intervals. Let N1, . . . , Nn be the cardinalities
of the intervals (thus,

∑
iNi = n). Repeat the partition process for every interval

containing at least two points and keep going until no further divisions are possible.
The root node represents [0, 1], and each node represents a given interval. All internal
nodes have at least two of the Xi’s, while all leaf nodes have one or zero of the Xi’s. If
this structure is to be used for storing the data, then two important quantities are the
number of nodes in the tree, Sn, and the height of the tree, Hn. The former quantity
obviously measures the storage, while the latter is the worst-case search time. In
addition, Sn is also proportional to the time needed to construct the hash tree. The
model is appropriate for situations in which a hash function can be constructed that
delivers a uniform [0, 1] random variate. This may be a debatable hypothesis.

The distributive partitioning method invented by Dobosiewicz (1978) led Ehrlich
(1981) to define the N-tree. In N-trees, the Xi’s are unrestricted on the real line,
and given that a node has k ≥ 2 of the Xi’s, it spawns k equal child intervals of
[miniXi,maxiXi]. Note that there are always at least two nonempty subintervals
(the first and the last) so that the size of the N-tree is limited to n(n+ 1)/2. A basic

∗Received by the editors August 18, 1997; accepted for publication (in revised form) March 17,
1998; published electronically March 22, 1999. This research was sponsored by NSERC grant A3456
and FCAR grant 90-ER-0291.

http://www.siam.org/journals/sicomp/28-4/32617.html
†School of Computer Science, McGill University, Montreal H3A 2K6, Canada (luc@cs.mcgill.ca).

1215

1216 LUC DEVROYE

study of N-trees and random hash trees was performed by Tamminen (1983). The
results of Tamminen will be summarized in the next section. However, Tamminen
did not study Hn. Hashing with several levels of buckets has been known since being
introduced by Fagin et al. (1979) as extendible hashing. Its analysis was subsequently
refined in several papers, including papers by Tamminen (1983, 1985) and Flajolet
(1983). However, these structures differ fundamentally from the trees studied here.

The random hash tree and its modifications studied here are vaguely related to
random tries (see Pittel (1985) for the main properties). We will show that the height
Hn of the random hash tree is with high probability close to log2 n, which is rather
disappointing. The reason for this phenomenon is the same reason why random binary
tries have height close to 2 log2 n. This prompted us to consider a modification similar
to the modification of a trie into the digital search tree of Coffman and Eve (1970):
if n points belong to an interval associated with a node, remove one point uniformly
at random and place it in the node (“pebble” the node). If n > 1, the interval
is partitioned equally into n − 1 child subintervals and the n − 1 remaining points
are placed in their subintervals. This process is repeated until all leaf nodes have
cardinality zero or one. The tree thus obtained is called the random pebbled hash
tree. We will show that this minor modification causes a major improvement in Hn,
which is with high probability close to

√
2 log n/ log log n.

Assuming that each bucketing operation is available at unit cost, the expected
time for unsuccessful and for successful search (assuming all points are equally likely
to be probed for) is O(1) for both random hash tree and random pebbled hash tree,
but the expected worst-case search time for the latter tree is much better than for
classical hash structures in view of the behavior of Hn. For example, for standard
hashing with chaining under the above model, Mn ∼ log n/ log log n in probability
(Gonnet (1981); see Devroye (1985, 1986) for distributions with a bounded density),
where Mn is the worst-case search time (or, equivalently, the maximal size of any
chain).

The random pebbled hash tree is also superior to random binary search trees,
where the height is in probability of the order of logn (under a simpler computational
model, however). It also compares favorably with fusion trees (Fredman and Willard,
(1990)) for standard dictionary operations. Unfortunately, hash trees are not appro-
priate without modifications for fully dynamic situations. A brief section is devoted
to this issue.

There are hash structures with better expected worst-case search and insert times.
Azar et al. (1994) have shown that the worst chain length in multihashing with d > 1
hash functions and insertion into the shortest chain leads to a maximum occupancy
of about logd log n with high probability. This leads to expected worst-case search
times about d logd log n, which are much better than with random pebbled hash trees.
However, multihashing is not an option when the table is to be used for sorting and
order-preserving hash functions are called for. Also, the performance of multihashing
is easily matched by bucketing followed by a binary search tree, known as the BSST
structure, discussed below.

For a survey of known results on hashing and tries, we refer to Gonnet and Baeza-
Yates (1991) and Vitter and Flajolet (1990). Throughout the paper, B(n, p) denotes
a binomial (n, p) random variable.

2. Survey of known results on N-trees and random hash trees. Assume
that the Xi’s are uniformly distributed on [0, 1]. Then Tamminen (1983) shows the
following for N-trees:

HEIGHT AND SIZE OF RANDOM HASH TREES 1217

A. supn
ESn
n ≤ 2.

B. 1.64 ≤ lim infn
ESn
n ≤ lim supn

ESn
n ≤ 1.70.

C. Let Ai be the depth of Xi in the N-tree so that (1/n)
∑n
i=1Ai is the average

successful search time. Then

E

{
1

n

n∑
i=1

Ai

}
≤ 2

for all n.
D. 1.71 ≤ lim infn E

{
1
n

∑n
i=1Ai

} ≤ lim supn E
{

1
n

∑n
i=1Ai

} ≤ 1.80.
If the Xi’s have a density f bounded by ‖f‖∞, then for the random hash tree, Tam-
minen (1983) obtained the following results:

A. supn
ESn
n ≤ 3‖f‖∞.

B. lim supn
ESn
n ≤ 4.

C. Let Ai be the depth of Xi in the random hash tree so that (1/n)
∑n
i=1Ai is

the average successful search time. Then

lim sup
n

E

{
1

n

n∑
i=1

Ai

}
≤ 4.

Note in particular that the asymptotic bounds in parts B and C do not depend
upon the density. Tamminen (1983) also offers heuristic arguments for densities with
unbounded support and so-called hybrid trees, where the first level is split as in an
N-tree and all other splits are as in a random hash tree.

3. The height of the random hash tree. In this section, we assume that
X1, . . . , Xn are independently and indentically distributed (i.i.d.) and have common
density f on [0, 1]. Let Hn be the height of the random hash tree. We show the
following.

Theorem 1. For any increasing sequence an (however fast), there exists a density
f for which P{Hn ≥ an} → 1 as n→∞.

Proof. Let F be the distribution function for f, supported on [0, 1]. Let N1 be
the number of points in [0, 1/n], N2 the number of points in [0, 1/n2], and so forth.
Clearly,

[Nan ≥ 2] ⊆ [Hn ≥ an].

But, putting p = 1− F (1/nan), we see that

P{Nan < 2} = pn + npn−1 ≤ (n+ 1)e−(n−1)F (1/nan) → 0

if nF (1/nan)/ log n→∞. It suffices to pick F such that F (1/nan) = 1/
√
n for all n.

Then let f be a histogram with breakpoints at 1/nan . Conclude that P{Hn ≥ an} →
0.

Theorem 2. When f is the uniform distribution on [0, 1], we have

Hn

log2 n
→ 1 in probability.

Proof. For a lower bound, it suffices to consider a subtree of the random pebbled
hash tree. To do so, we consider only those nodes at depth one that contain precisely
two points. Let L be the number of these nodes. Observe that

E{L}=(n−1)P{B(n−1, 1/(n−1))=2}=(n−1)

(
n− 1

2

)(
1

(n− 1)2

)(
n− 2

n− 1

)n−2

∼ n

2e

1218 LUC DEVROYE

as n → ∞. Furthermore, if one of the data points is changed, L changes by at most
two. Thus, by McDiarmid’s version of Azuma’s inequality (McDiarmid, 1989),

P{L < E{L}/2} ≤ e−E2{L}
8n = e

− n
32e2+o(1) .

Each of the subtrees rooted at these nodes is independent of the others. Both points
in one of these nodes are placed in the same subtree with probability 1/2. Thus, a
subtree has height of at least k − 1 with probability 1/2k−1. Therefore,

P{Hn ≤ k} ≤ E
{

(1− 1/2k−1)L
}

≤ E
{
e−

L

2k−1
}

≤ e−E{L}
2k + P{L < E{L}/2}

≤ e−
n

(2e+o(1))2k + e
− n

32e2+o(1)

→ 0,

as n→∞ if k = b(1− ε) log2 nc for ε ∈ (0, 1).
For the upper bound, let N1, . . . , Nn be the cardinalities of the children of the

root (so that
∑
iNi = n unless n = 1). If Xi and Xj find themselves in the same

child node of the root, then they will stay together at depth 2 with probability 1/2,
at depth 3 with probability 1/22, and at depth k with probability 1/2k−1. Let Am,k
be the event that for the mth child of the root, one of the pairs of points in the node
stays together to depth k. Clearly,

P{Hn > k} ≤ P{∪nm=1Am,k}
≤ nP{A1,k}

≤ nE

{(
N1

2

)
2k−1

}

=
n− 1

2k

as N1 is binomial (n, 1/n). Therefore, for ε > 0,

lim
n→∞P{Hn > (1 + ε) log2 n} = 0.

4. The height of the random pebbled hash tree. In this section, we assume
that X1, . . . , Xn are i.i.d. and have common density f on [0, 1]. Let Hn be the height
of the random pebbled hash tree. Clearly, Hn ≤ n−1. In a random pebbled hash tree
we interchangeably speak of nodes, intervals (each node represents an interval), and
cardinality (the number of Xi’s that fall in a node’s interval). We show the following.

Theorem 3. Consider a random pebbled hash tree. For any monotonically de-
creasing sequence an ↓ 0 (however slow), there exists a density f for which P{Hn ≥
nan} → 1 as n→∞.

Theorem 3 shows that no good universal results are possible for Hn unless the
density of the Xi’s is suitably restricted. As we may often assume that the hash
function is very good, we will assume that the Xi’s are uniformly distributed on [0, 1].
It is worthwhile to note that Theorem 3 remains valid for the N-tree as well.

Proof. We take a density f that decreases monotonically on [0, 1] and has distri-
bution function F. Remove one data point. Let N1 be the number of points in [0, 1/n].

HEIGHT AND SIZE OF RANDOM HASH TREES 1219

Remove one point again, and let N2 be the number of points in [0, 1/n2], and so forth.
Assume without loss of generality that nan is integer-valued and strictly increasing
to ∞. Clearly,

[Nnan ≥ 2] ⊆ [Hn ≥ nan].

But Nk is binomial (Nk−1 − 1, F (1/nk)/F (1/nk−1)), which is stochastically greater
than a binomial (Nk−1, F (1/nk)/F (1/nk−1)) random variable minus one. Therefore,
Nk is stochastically greater than a binomial (n, F (1/nk)) random variable minus k.
Thus, for n large enough, setting p = F (1/nnan) =

√
an + 1/n, we have, by Cheby-

shev’s inequality,

P{Nnan < 2} ≤ P{B(n, p) ≤ nan + 1}
= P{B(n, p) ≤ np2}
≤ np(1− p)

(np(1− p))2

∼ 1

n
√
an + 1/n

→ 0.

Now, take for f a histogram whose distribution function satisfies F (1/nnan)=
√
an+1/n

for all n large enough.
Theorem 4. When f is the uniform distribution on [0, 1], we have

Hn√
2 log n

log log n

→ 1 in probability.

5. Proof of Theorem 4.
Lemma 1. For t > 0 and t ≥ c,

P{B(n, c/n) ≥ t} ≤ et−c−t log t+t log c.

Proof. We write B = B(n, c/n). By Chernoff’s bounding method, for λ > 0,

P{B ≥ t} ≤ E
{
eλB−λt

}
=
(

1 +
(
eλ − 1

) c
n

)n
e−λt

≤ ec(eλ−1)−λt.

The upper bound is minimized when eλ = t/c, yielding the desired inequality.
Lemma 2. If B is a binomial (n, c/n) random variable and t > 0, then, for t ≥ c,

E {BIB≥t} ≤ cet−c−t log t+t log c.

Proof. By simple bounding, we have for λ > 0,

E {BIB≥t} ≤ E
{
BeλB−λt

}
= nE

{ c
n
eλB

′−λt
}

= cE
{
eλB

′−λt
}
,

1220 LUC DEVROYE

where B′ is binomial (n − 1, c/n). Here we made use of the linearity of expectation.
By the Chernoff bound used in Lemma 1, we have

E {BIB≥t} ≤ c
(

1 +
(
eλ − 1

) c
n

)n−1

e−λt

≤ c
(

1 +
(
eλ − 1

) c

n− 1

)n−1

e−λt

≤ cec(eλ−1)−λt.

The upper bound is minimized when eλ = t/c.
We are now ready to prove Theorem 4. For the upper bound, take ε > 0 and

define k =
⌈
(1 + ε)

√
2 log n

log log n

⌉
. The tree is pruned by omitting the root node if its

cardinality is less than k, all nodes at depth one with cardinality less than k− 1, and
in general all nodes at depth d of cardinality less than k − d. We call this tree the
pruned tree. To compute P{Hn ≥ k}, the pruned tree and the random pebbled hash
tree are equivalent as all deleted nodes are roots of subtrees that cannot reach past
depth k. The expected number of nodes in the pruned tree at depth one is

(n− 1)P{B(n− 1, 1/(n− 1)) ≥ k − 1} ≤ (n− 1)ek−1−1−(k−1) log(k−1)

=
n− 1

e

(
e

k − 1

)k−1

,

where we used Lemma 1. Let the L nodes at depth one have cardinalities N1, . . . , NL.
Given N1, the first node spawns an expected number of nodes at depth two equal to

(N1 − 1)P{B(N1 − 1, 1/(N1 − 1)) ≥ k − 2} ≤ (N1 − 1)ek−2−1−(k−2) log(k−2)

=
N1 − 1

e

(
e

k − 2

)k−2

.

Given all the cardinalities, we thus have an expected number of nodes at depth two
not exceeding ∑L

i=1(Ni − 1)

e

(
e

k − 2

)k−2

.

But

E

{
L∑
i=1

Ni

}
= E

{
n−1∑
i=1

MiIMi≥k−1

}
≤ nek−1−1−(k−1) log(k−1) ,

where M1, . . . ,Mn−1 are the cardinalities of the n− 1 intervals in the first partition.
Here we used Lemma 2 with c = 1. Therefore, the expected number of nodes at depth
two does not exceed

n

e2

(
e

k − 1

)k−1(
e

k − 2

)k−2

.

By induction, the expected number of nodes at depth k − 1 does not exceed

n

ek−1

k−1∏
i=1

(e
i

)i
= ne(k−1)(k−2)/2−

∑k−1

i=1
i log i = ne−(1/2+o(1))k2 log k.

HEIGHT AND SIZE OF RANDOM HASH TREES 1221

Thus,

P{Hn ≥ k} ≤ ne−(1/2+o(1))k2 log k → 0

for the given choice of k.
For a matching lower bound, we argue by embedding and prune the tree even

further. For ε ∈ (0, 1), define k =
⌊
(1− ε)

√
2 log n

log log n

⌋
. Of all nodes at depth one,

we keep only those of exact cardinality k. These nodes spawn children at depth two,
of which we keep only the first child and only if it is of cardinality precisely k − 1.
Continuing in this manner, the process either becomes extinct or it survives up to
depth k with at least one node of cardinality one. In the latter case, Hn ≥ k. A node
at depth one has progeny that survives to depth k with probability

1

(k − 1)k−1(k − 2)k−2 · · · 2211

def
= q.

Clearly, q = e−(1/2+o(1))k2 log k. Given that there are L nodes at depth one in the
pebbled hash tree, we have

P{Hn < k|L} ≤ (1− q)L.

Now, L is binomial (n−1, p), where p = P{B = k} and B is binomial (n−1, 1/(n−1)).
It is easy to verify that for n ≥ 3,

p =

(
n− 1

k

)
1

(n− 1)k

(
1− 1

(n− 1)

)n−1−k
≥ 1

k!

(
n− 1− k
n− 1

)k (
1− 1

n− 1

)n−1

≥ 1

4 k!

(
1− k

n− 1

)k
≥ 1− k2/(n− 1)

4 k!

def
= q′.

Hence L is stochastically greater than B′, a binomial (n−1, q′) random variable. Thus,

P{Hn < k} ≤ E
{

(1− q)L} ≤ E
{

(1− q)B′
}

= (q′(1− q) + 1− q′)n−1
= (1− qq′)n−1 ≤ e−(n−1)qq′ → 0

when nqq′ →∞. This is easily verified for our choice of k.

6. The size of random hash trees. The second parameter of primary interest
is Sn. We will look only at sn = ESn. By linearity of expectation, we have

sn =

{
1, 0 ≤ n ≤ 1,
1 + n

∑n
i=0 P{B(n, 1/n) = i}si, n ≥ 2.

Note that we provide storage for empty bins as well. The recurrence given above
yields s0 = s1 = 1, s2 = 1+2(3/4+s2/4) so that s2 = 5. Hence we have the following
theorem.

Theorem 5. For the random hash tree,

lim
n→∞

ESn
n

= 2.3020238

1222 LUC DEVROYE

The limiting constant is

1

e

∞∑
i=0

si
i!
,

where s0, s1, . . . is given by the above recurrence.
Proof. The values sn can be shown to be approximable by the values tn, where

tn =
n

e

∞∑
i=0

si
i!
.

Indeed, note that

sn − tn
n

=
1

n
+

n∑
i=0

(
P{B(n, 1/n) = i} − 1

e i!

)
si −

∑
i>n

si
e i!

.

But for 0 ≤ i ≤ n,

P{B(n, 1/n) = i} − 1

e i!
=

(
n

i

)
(n− 1)n−i

nn
− 1

e i!
≤ ni

i!

(n− 1)n−i

nn
− 1

e i!

=
1

i!

(n− 1)n−i

nn−i
− 1

e i!
≤ e

i
n−1

i!
− 1

e i!
≤ i

n i!
,

and for 0 ≤ i ≤ n,

P{B(n, 1/n) = i} − 1

e i!
≥ (n− i+ 1)i

i!

(n− 1)n−i

nn
− 1

e i!

≥
(

1− i− 2

n− 1

)i
e−

1
1−1/n

i!
− 1

e i!

≥ e−
i2

n−i+1− 1
1−1/n

i!
− 1

e i!
≥ 1

e i!

(
e−

i2

n−i+1− 1
n−1 − 1

)
≥ − 1

e i!

(
i2

n− i+ 1
+

1

n− 1

)
≥ − 1

e i!

(
i2

n/2
+ i2Ii≥n/2 +

1

n− 1

)
.

Thus, we have (sn − tn)/n→ 0 if

∞∑
i=0

i2si
i!

<∞.

But that follows from the simple fact that si = O(i), something that is easy to verify.
Numerical computations show that

1

e

∞∑
i=0

si
i!

= 2.3020238

For the random pebbled hash tree, the recurrences are slightly different. Indeed,

sn =

{
1, 0 ≤ n ≤ 1,
1 + (n− 1)

∑n−1
i=0 P{B(n− 1, 1/(n− 1)) = i}si, n > 1.

HEIGHT AND SIZE OF RANDOM HASH TREES 1223

The analysis is entirely similar as for Theorem 5, and we thus obtain the following
theorem.

Theorem 6. For the random pebbled hash tree,

lim
n→∞

ESn
n

= 1.4183342

The limiting constant is

1

e

∞∑
i=0

si
i!
,

where s0, s1, . . . is given by the above recurrence.
In particular, note that random pebbled hash trees are smaller on the average

than random N-trees.

7. BBST: Bucketing followed by binary search trees. Assume that we
bucket n points into n equispaced buckets and that within each bucket we maintain a
balanced binary search tree. Then, in view of the results of Gonnet (1981) and Devroye
(1985), the expected worst-case search and insert times and indeed the expected
value of the height of this hybrid structure is asymptotic to log2 log n for all bounded
densities f on [0, 1]. In fact, the height Hn satisfies Hn/ log2 log n→ 1 in probability.
The expected average search time (if each element is equally likely to be probed for)
and the expected unsuccessful search time (for a random element drawn independently
from the same density f) are both O(1).

8. Extension: m pebbles. We may extend the analysis to m pebbles, leaving
m randomly selected points in every node before bucketing. If there are m+k points,
then there are k (with possibly k = 1) child nodes, each corresponding to a subinterval
1/kth of the length of the interval of the split node. This leads to random m-pebbled
hash trees. A quick analysis not worth repeating here shows that in this case, Hn ∼√

(2/m) log n/ log log n in probability. However, the worst-case search time is roughly
(m+1)Hn when comparisons and bucket operations all take one time unit. Therefore,
it seems wasteful to take m > 1, and thus the most important member of the family is
the pebbled hash tree studied above. A rather obvious but unaesthetic modification,
however, will improve matters exponentially. Let us set m = c log n/ log log n for some
constant c, and pick the m pebbles as follows for a node representing interval [a, b]:
find the mth order statistic M in time linear in the number of points. The m points on
[a,M] are placed in a balanced binary search tree in time m logm = O(log log n). The
remaining points on (M, b] are bucketed as in a random hash tree, and the process
is repeated. This tree has expected height O(1) so that expected worst-case search
times are O(log log n). As this method is eclipsed by the simple BBST structure of
the previous section, we will not analyze it in this paper.

9. Dynamic data structures. The data structures described above are of
course useful in any static setting, in which case we have expected preprocessing
time O(n) and expected worst-case search times as given by the expected values of
Hn in the analyses. Consider now the standard dictionary operations insert and
search. We may introduce the load factor α, the number of elements stored divided
by the branch factor of the root. The objective is to keep α at all times in a fixed
range, such as [1/2, 2]. As soon as α reaches a boundary, a complete rehash is per-
formed to make α = 1. In an amortized sense, these rehash operations take O(1)

1224 LUC DEVROYE

expected time. Expected worst-case search times remain asymptotically the same as
for the static case. However, for a fully dynamic data structure with interspersed
delete and insert operations, additional analysis is required.

Acknowledgment. I would like to thank all referees for their suggestions.

REFERENCES

Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal (1994), Balanced allocations (extended
abstract), in Proc. 26th ACM Symposium on the Theory of Computing, pp. 593–602.

E. G. Coffman and J. Eve (1970), File structures using hashing functions, Communications of the
ACM, 13, pp. 427–436.

L. Devroye (1985), The expected length of the longest probe sequence when the distribution is not
uniform, J. Algorithms, 6, pp. 1–9.

L. Devroye (1986), Lecture Notes on Bucket Algorithms, Birkhäuser Verlag, Boston.
W. Dobosiewicz (1978), Sorting by distributive partitioning, Inform. Process. Lett., 7, pp. 1–6.
G. Ehrlich (1981), Searching and sorting real numbers, J. Algorithms, 2, pp. 1–14.
R. Fagin, J. Nievergelt, N. Pippenger, and H. R. Strong (1979), Extendible hashing—a fast

access method for dynamic files, ACM Trans. Database Systems, 4, pp. 315–344.
P. Flajolet (1983), On the performance evaluation of extendible hashing and trie search, Acta

Inform., 20, pp. 345–369.
M. L. Fredman and D. E. Willard (1990), Blasting through the information theoretic barrier with

fusion trees, in Proc. 22nd Symposium on Theory of Computing, ACM Press, pp. 1–7.
G. H. Gonnet (1981), Expected length of the longest probe sequence in hash code searching, J. Assoc.

Comput. Mach., 28, pp. 289–304.
G. H. Gonnet and R. Baeza-Yates (1991), Handbook of Algorithms and Data Structures, Addison-

Wesley, Workingham, UK.
C. McDiarmid (1989), On the method of bounded differences, in Surveys in Combinatorics 1989,

London Math. Soc. Lecture Note Ser. 141, Cambridge University Press, Cambridge, UK.
B. Pittel (1985), Asymptotical growth of a class of random trees, Ann. Probab., 13, pp. 414–427.
M. Tamminen (1983), Analysis of N-trees, Inform. Process. Lett., 16, pp. 131–137.
M. Tamminen (1985), Two levels are as good as any, J. Algorithms, 6, pp. 138–144.
J. S. Vitter and P. Flajolet (1990), Average-case analysis of algorithms and data structures,

in Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity, J. van
Leeuwen, ed., MIT Press, Amsterdam, pp. 431–524.

