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A Note on the Expected Time for Finding Maxima
by List Algorithms 1

L. Devroye2

Abstract. Maxima inRd are found incrementally by maintaining a linked list and comparing new elements
against the linked list. If the elements are independent and uniformly distributed in the unit square [0,1]d, then,
regardless of how the list is manipulated by an adversary, the expected time isO(n logd−2 n). This should be
contrasted with the fact that the expected number of maxima grows as logd−1 n, so no adversary can force an
expected complexity ofn logd−1 n. Note that the expected complexity isO(n) for d = 2. Conversely, there
are list-manipulating adversaries for which the given bound is attained. However, if we naively add maxima
to the list without changing the order, then the expected number of element comparisons isn+ o(n) for any
d ≥ 2. In the paper we also derive new tail bounds and moment inequalities for the number of maxima.

Key Words. Outer layers, Maxima, List algorithms, Expected time, Randomized algorithms, Probabilistic
analysis.

1. List Algorithms and Adversaries. Given areX1, . . . , Xn, i.i.d. points uniformly
distributed in [0,1]d. We write Xi = (Xi 1, . . . , Xid). We say thatXi is a maximum if
no Xj , j 6= i , exists for whichXjl > Xil for all l . If N is the number of maxima, then it
is known that

EN ∼ logd−1 n

(d − 1)!

(see Barndorff-Nielsen and Sobel, 1966). In 1990 Bentley et al. pointed out that list
algorithms may be quite efficient on the average for finding all maxima. A list algorithm
is one in which a linked list of maxima is kept, and eachXi is considered in turn.
The maxima are kept in the list in some order. In the worst scenario, the order may be
determined by an “adversary.” In the ordinary list algorithm,Xi is compared with each
list element in turn until either the list is exhausted (in which caseXi is a maximum itself
and is added to the list) or a list elementXj is found that dominatesXi in all components
(in which caseXi is discarded). Even before handlingXi , the list may be reorganized by
an adversary. It is more common though to reorganize the list after having processedXi .
For example, Bentley et al. (1990, 1993) suggested theMTF heuristic: moveXj to the head
of the list if Xj is the first list element that dominatesXi , and appendingXi in the rear if
Xi itself is a maximum. They conjectured that this strategy would taken+o(n) expected
comparisons between elements where one (vector) comparison between elements may
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involve up tod scalar comparisons. This was later proved by Golin (1994) ford = 2. In
this note we extend and strengthen these results in several directions:

A. We show that the expected number of element comparisons for any list algorithm
(manipulated at will by adversaries) is bounded by 3n whend = 2. For generald,
the expected time is guaranteed to grow asO(n logd−2 n) (see Theorem 1 below).
As EN grows as logd−1 n, it is remarkable that no adversary can force an expected
complexity ofÄ(n logd−1 n).

B. We show that the rates above cannot be improved.
C. Without adversaries or list manipulation of any kind, the linked list stores all current

maxima in chronological order. New maxima are appended at the rear of the list. A list
constructed in this manner is called a random list. Despite the lack of any meaningful
list organization, the expected number of element comparisons isn + o(n) for any
d ≥ 2 (see Theorem 2).

The first result shows that, ford = 2, all list algorithms takeO(n) time on the average,
regardless of the list ordering strategy. Ford > 2, the expected time linearity may be
lost. Theorem 2 shows the futility of any list organization method (such asMTF) since a
simple random ordering ensuresn+ o(n) element comparisons on the average. It may
still be true, however, thatMTF has a better “o(n)” term.

2. The Main Results

THEOREM1. For any list algorithm, if X1, . . . , Xn are i.i.d. random vectors uniformly
drawn from[0,1]d, the expected time is O(n logd−2 n) for all d ≥ 2.Note that, for n = 2,
it is in fact O(n). Conversely, there exist list adversaries(who are allowed to rearrange
the lists at will, but not the order of insertion) such that the list algorithm takes expected
time bounded from below byÄ(n logd−2 n).

THEOREM2. Let X1, . . . , Xn be i.i.d. random vectors uniformly drawn from[0,1]d

where d≥ 2.Then the expected number of comparisons between elements in the random
list algorithm is n+ o(n).

In addition, some interesting probability theoretical results about maxima are obtained
as well. These include tail bounds forN and inequalities for the moments ofN.

3. Proof of the Upper Bound Whend Equals 2. Assume thatX1, . . . , Xn have been
processed. When a pointXn+1 is considered, we look at the the four quadrants formed
by moving the origin toXn+1 as in Figure 1. Using the notation of that figure, we see that
the number of points ofA compared withXn+1 during the traversal of the current list is
at most one. Thus, the number of comparisons during insertion is at most one plusNn,
the number of maxima inB∪C ∪ D. We writeNn instead ofN to denote the fact thatn
points have been processed beforeXn+1. The expected time for finding the maxima of
n points is thus not more than

n+
n−1∑
i=0

ENi .
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Fig. 1.Partition of the unit square by the newly inserted pointXn+1 into four rectanglesA, B, C, andD.

Now, Ni ≤ N ′i +N ′′i , whereN ′i is the number of maxima inC∪D andN ′′i is the number
of maxima inB ∪ C. By symmetry, we have

n+
n−1∑
i=0

ENi ≤ n+ 2
n−1∑
i=0

EN ′i .

Given Xn+1, we may computeEN ′n as follows:

E{N ′n | Xn+1} = n P{X1 ∈ C ∪ D, X1 is a maximum amongX1, . . . , Xn | Xn+1}
= n E{I X1∈C∪DP{X1 is a maximum amongX1, . . . , Xn | X1} | Xn+1}
= n E{I X1∈C∪D(1− (1− X1,1)(1− X1,2))

n−1 | Xn+1}
(whereX1 = (X1,1, X1,2))

= n
∫ Y

0

∫ 1

0
(1− (1− x)(1− y))n−1 dx dy

= n
∫ Y

0

1− (1− (1− y))n

n(1− y)
dy

=
∫ Y

0

1− yn

1− y
dy

=
∫ Y

0

n−1∑
j=0

y j dy

=
n∑

j=1

Y j

j
.
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If we take the expected value and note that, for a uniform [0,1] random variableY, we
haveEY j = 1/( j + 1), then

E{N ′n} = E{E{N ′n | (X,Y)}} = E

{
n∑

j=1

Y j

j

}

=
n∑

j=1

1

j ( j + 1)
= 1− 1

n+ 1
< 1.

Therefore, the expected number of point comparisons for finding the maxima is not more
than

n+ 2n = 3n.

4. Proof of the Upper Bound for d Greater Than 2. Assumed ≥ 3. In the above
argument, setXn+1 = Z = (Z1, . . . , Zd), and letN ′n denote the number of maxima
whose first component is less thanZ1. Then, arguing by symmetry as above, whenZ is
inserted, the expected time does not exceed

n+ d
n−1∑
i=0

EN ′i .

Write Xj = (Xj 1, . . . , Xjd). Define the setC = {z ∈ Rd : z1 ≤ Z1} and the random
variableY =∏d

j=2(1− X1 j ). Then

E{N ′n | Z} = n P{X1 ∈ C, X1 is a maximum amongX1, . . . , Xn | Z}
= nE{I X1∈CP{X1 is a maximum amongX1, . . . , Xn | X1} | Z}

= nE

{
I X1∈C

(
1−

d∏
j=1

(1− X1 j )

)n−1 ∣∣∣∣∣Z
}

= nE{I X11≤Z1(1− Y(1− X11))
n−1 | Z1}

= nE{IU≤Z1(1− Y(1−U ))n−1 | Z1},
whereU is uniform [0,1]. Unconditioning, we see that

E{N ′n} = nE{IU≤Z1(1− Y(1−U ))n−1}
= nE{(1−U )(1− Y(1−U ))n−1}
= nE{U (1− YU)n−1}.

ReplaceY by V W, whereV is uniform [0,1] and W is the product ofd − 2 uni-
form [0,1] random variables. It is easy to verify that the density ofW is given by
f (w) = logd−3(1/w)/(d− 3)!, 0 < w < 1 (see, e.g., Devroye, 1986). Then, taking the
expectation first with respect toV and then with respect toU yields

E{nU(1− V WU)n−1} = E
{

nU
1− (1− V WU)n

nWU

}
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= E
{

1− (1−WU)n

W

}
≤ E

{
min

(
1

W
,nU

)}
≤ E

{
min

(
1

W
,

n

2

)}
(condition onW and apply Jensen’s inequality)

≤
∫ 2/n

0

f (w)n

2dw
+
∫ 1

2/n

f (w)

w dw

≤ f

(
2

n

)
+ logd−2(n/2)

(d − 2)!

∼ logd−2(n/2)

(d − 2)!
.

Thus, any list algorithm takes expected timeO(n logd−2 n) whend ≥ 2, even if the lists
are allowed to be manipulated at will by adversaries.

5. Proof of the Lower Bound. We finish by noting that our bound, under the adversary
manipulation model, is best possible. It is trivially so ford = 2 as the expected time
is 2(n), but it is also true ford > 2. To that end, note that the expected time after
manipulation of the list to make it perform at its worst, is bounded from below by

n−1∑
i=0

EN ′i .

Now, as noted above,

E{N ′n} = E
{

1− (1−WU)n

W

}
≥ 1

2E
{

1− (1− (2/(n+ 1) 1
2)

n

W
IW>2/(n+1)

}
∼ 1− 1/e

2
E
{

1

W
IW>2/(n+1)

}
≥
∫ 1

2/(n+1)

f (w)

(4w)dw

≥ f

(
1√

(n+ 1)/2

)∫ √2/(n+1)

2/(n+1)

1

(4w)dw

= logd−3
(√
(n+ 1)/2

)
log
(√
(n+ 1)/2

)
4(d − 3)!

= logd−2((n+ 1)/2)

2d (d − 3)!
.

Thus, the expected time isÄ(n logd−2 n).
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6. Random Lists. Theorem 2 relies heavily on the distributional assumption. It is true
whenever the components ofX1 are independent and nonatomic. In this sense, things
differ dramatically from randomized algorithms. The proof of Theorem 2 requires some
basic properties of maxima, which are derived in Appendix B.

PROOF OFTHEOREM2. Let T be the expected number of list element comparisons
whenXn+1 is processed and the list contains the maxima forX1, . . . , Xn. Let Nk denote
the number of maxima forX1, . . . , Xk. If the maxima are in chronological order, all
permutations are equally likely. LetN be the number of maxima in setA of Figure 1,
and letM be the number of maxima elsewhere. Recall thatE{M} = O(logd−2 n). In a
random list withN+M items, the expected number of comparisons for inserting a new
element is the expected number of items encountered until one of theN items in A is
seen. If the number of comparisons isT , we have

E{T | N,M} = 1+ M

N + 1
.

Unconditioning, we get, for any integerm> 0,

ET ≤ 1+ E{M IN<m} + E
{

M

N
IN≥m

}
≤ 1+

√
E{M2}P{N < m} + EM

m
(by the Cauchy–Schwarz inequality)

≤ 1+
√

E{(M + N)2}P{N < m} + O(logd−2 n)

m

= 1+√E{N2
n}P{N < m} + O(logd−2 n)

m

≤ 1+
√
(E2{Nn} + E{Nn})P{N < m} + O(logd−2 n)

m

= 1+ O(logd−1 n)
√

P{N < m} + O(logd−2 n)

m
.

We first deal withd = 2, for which the short proof deserves separate treatment. Take
m= 1. The proof is complete if we can show that

P{N < 1} = o(log−2 n).

It should be noted thatN1 ≺ N2 ≺ N3 ≺ · · · ≺ Nk, where≺ denotes stochastic ordering.
GivenXn+1, let V denote the number ofXi ’s with 1≤ i ≤ n that dominateXn+1. Thus,
theseXi ’s are in the quadrantA centered atXn+1—see Figure 1—and are uniformly

distributed inA. Therefore,N
L= NV , where

L= denotes equality in distribution. By
Lemma 1 (see Appendix A),

P{N < 1} ≤ P{V < k} + P{Nk < 1}
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≤ k+ d

n+ 1
+ e log(k+ 1)

k+ 1

= O

(
logn√

n

)
if we takek ∼ √n. The first part of the last step follows from the observation that if
V < k, then one of thed coordinates ofXn+1 must be among the 1+ k/d largest of all
similar coordinate values inX1, . . . , Xn+1. As the latter probability for a fixed coordinate
does not exceed(1+ k/d)/(n+ 1), we haveP{V < k} ≤ (k+ d)/(n+ 1). This is more
than is required, and the proof is complete.

Ford > 2, we must argue a bit more carefully. Definek = b√nc, andm= b 1
2E{Nk}c,

and note thatm∼ logd−1 n/(2d(d − 1)!). Observe that

ET ≤ 1+ E{M IN=0} + E{M I0<N<m} + E
{

M

N
IN≥m

}
≤ 1+

√
E{M2}P{N = 0} + E{M I0<N<m} + O(logd−2 n)

m
(by the Cauchy–Schwarz inequality)

= 1+
√

E{(M + N)2}P{Xn+1 is a maximum} + E{M I0<N<m} + O

(
1

logn

)
= 1+ O(logd−1 n)

√
E{Nn+1}

n+ 1
+ E{M I0<N<m} + O

(
1

logn

)
.

The second term isO(log(3d−3)/2 /
√

n) and the fourth term iso(1) as well. We finish the
proof by showing that the third term iso(1). To boundE{M I0<N<m}, we note first that,
deterministically,M IN>0 ≤

∑d
j=1 N∗j , whereN∗j is the number of data points that are

maxima in the(d − 1)-dimensional subspace that does not include thej th component.
Thus, by Hölder’s inequality, if we pick

µ = 1
2

(
1+ d − 1

d − 2

)
, λ = 1

1− 1/µ

(so thatµ, λ > 1, 1/λ+ 1/µ = 1), then there exists a constantC only depending upon
d (Lemma 2) such that

E{M I0<N<m} ≤ (E{Mλ IN>0})1/λ(E{I µN<m})1/µ

≤
(

d
d∑

j=1

E{N∗j λ}
)1/λ

(P{N < m})1/µ

≤ d2/λ(CEλ{N∗1 })1/λ(P{V < k} + P{Nk < m})1/µ

≤ (Cd2)1/λE{N∗1 }
(

k+ d

n+ 1
+ P{Nk < m}

)1/µ

= O(logd−2 n)

(
k+ d

n+ 1
+ P{Nk < m}

)1/µ
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= O(logd−2 n)×
(

O

(
1√
n

)
+ P{Nk − E{Nk} < m− E{Nk}}

)1/µ

= O(logd−2 n)×
(

O

(
1√
n

)
+ P{Nk − E{Nk} < − 1

2E{Nk}}
)1/µ

≤ O(logd−2 n)×
(

O

(
1√
n

)
+ 4 Var{Nk}

E2{Nk}
)1/µ

(by Chebyshev’s inequality)

≤ O(logd−2 n)×
(

O

(
1√
n

)
+ 4C′

E{Nk}
)1/µ

(by Lemma 3, whereC′ depends upond only)

= O(logd−2 n)

log(d−1)/µ n

= O(log−1/2µ n)

= O(log−(d−2)/(2d−3) n).

This concludes the proof of the theorem.

Appendix A. Left Tail Bounds for Number of Extrema When d Equals 2

LEMMA 1. Let N be the number of extrema for X1, . . . , Xn, an i.i.d. sample drawn
uniformly and at random from[0,1]2. Then, for integer m> 0,

P{N < m} ≤ 1

n+ 1

(
e log(n+ 1)

m

)m

.

PROOF. Ford = 2, we recall from Devroye (1988) that

N
L=

n∑
i=1

Yi ,

whereY1, . . . ,Yn are i.i.d. Bernoulli random variables andE{Yi } = 1/ i . This follows
by first ordering the first components of theXi ’s, and then noting that the corresponding
second components define an extremum if and only if they correspond to records. Thus,
by Chernoff’s bounding method (Chernoff, 1952; Hoeffding, 1963), fort > 0,

P{N < m} ≤ etmE{e−t N}
= etm

n∏
i=1

E{e−tYi }

= etm
n∏

i=1

(
1− 1

i
+ 1

i
e−t

)
≤ etme

−6n
i=1

((1−e−t )/ i )
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≤ etm−(1−e−t ) log(n+1)

= 1

n+ 1

(
e log(n+ 1)

m

)m

(if we takeet = (log(n+ 1))/m).

This concludes the proof of Lemma 1.

Appendix B. Auxiliary Results on the Number of Maxima. Let N be the number
of maxima ofX1, . . . , Xn, i.i.d. points uniformly distributed on [0,1]d. Then

E{N} = nE

{(
1−

d∏
i=1

Ui

)n−1}
,

whereU1, . . . ,Ud are i.i.d. uniform [0,1] random variables. SettingU = ∏d
i=1 Ui , we

note thatU has density

f (u) = logd−1(1/u)

(d − 1)!
, 0< u < 1.

Thus,

E{N} = n
∫ 1

0
(1− u)n−1 f (u)du∼ logd−1 n

(d − 1)!
.

The asymptotic expression ofE{N} goes back at least to Barndorff-Nielsen and Sobel
(1966). One useful result is the following.

LEMMA 2 (Devroye, 1983). For all a ≥ 1, there exists a constant C depending upon a
and d only such that

E{Na} ≤ C(E{N})a.

LEMMA 3. Let X1, . . . , Xn be i.i.d. random vectors uniformly distributed on[0,1]d. If
N denotes the number of maxima, then there exists a universal constant C only depending
upon d such that

Var{N} ≤ CE{N}.

PROOF. Let X1, . . . , Xn+1 be i.i.d. random vectors uniformly distributed on [0,1]d.
Let Ni denote the cardinality of the collection of maxima among these points ifXi is
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first removed. Note thatN ≡ Nn+1. Let Ni, j denote the cardinality of the collection of
maxima among these points ifXi and Xj are first removed. LetN denote the average
(1/(n+ 1))

∑n+1
i=1 Ni . Then we have

Var(Nn+1) ≤
n+1∑
i=1

E{(Ni − N)2}

(this is the Efron–Stein inequality (Efron and Stein, 1981))

=
n+1∑
i=1

E

{(
1

n+ 1

∑
j 6=i

(Nj − Ni )

)2}

= 1

n+ 1
E

{(
n+1∑
j=1

(Nj − N1)

)2}
≤ (n+ 1)E{(N2− N1)

2}
≤ 4(n+ 1)E{(N1− N1,2)

2}
= 4(n+ 1)E{(Nn+1− Nn,n+1)

2}.
Let Zi be the indicator of the event thatXi is a maximum amongX1, . . . , Xn−1 dominated
in all components byXn. Let Wi be an indicator of the event thatXi is a maximum.
Then, forn ≥ 3,

E{(Nn+1− Nn,n+1)
2} = E

{
Wn ×

(
1−

n−1∑
i=1

Zi

)2}

≤ 2E{Wn} + 2E

{
Wn

(
n−1∑
i=1

Zi

)2}

= 2E
{

Nn+1

n

}
+ 2

n−1∑
i=1

E{WnZi } + 2
∑

i 6= j ;1≤i, j≤n−1

E{WnZi Zj }

= 2E
{

Nn+1

n

}
+ 2(n− 1)E{WnZ1}

+ 2(n− 1)(n− 2)E{WnZ1Z2}.
We compute the two expected values on the right-hand side separately. LetX1 have
components(1 − U1, . . . ,1 − Ud), where theUi ’s are i.i.d. uniform [0,1] random
variables. Then

E{WnZ1} = E

{
d∏

j=1

Uj

(
1−

d∏
j=1

Uj

)n−2}
= E{V(1− V)n−2}

(whereV =∏d
j=1 Uj )

=
∫ 1

0
v(1− v)n−2 logd−1(1/v)

(d − 1)!
dv
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= O

(
logd−1 n

n2

)
.

For the product term, we also introduce the components(1− V1, . . . ,1− Vd) of X2.
It is handy to representX1 andX2 slightly differently by introducing two i.i.d. uniform
[0,1] sequences(m1, . . . ,md) and(M1, . . . ,Md), and noting that

(min(Ui ,Vi ),max(Ui ,Vi ))
L= (mi

√
Mi ,

√
Mi
)
.

Then

E{WnZ1Z2} = E

{
d∏

j=1

min(Uj ,Vj )

(
1−

d∏
j=1

Uj −
d∏

j=1

Vj +
d∏

j=1

min(Uj ,Vj )

)n−2}

≤ E

 d∏
j=1

mj

√
Mj

1− 2

√√√√ d∏
j=1

mj

√
Mj

√
Mj +

d∏
j=1

mj

√
Mj

n−2
(sincea+ b ≥ 2

√
ab for a,b > 0)

≤ E

{
d∏

j=1

mj

√
Mj

(
1−

d∏
j=1

√
mj

√
Mj

)n−2}

= E{V
√

W
(
1−
√

V W
)n−2}

(whereV =∏d
j=1 mj andW =∏d

j=1 Mj )

= E
{

V
∫ 1

0

√
w
(
1−
√

Vw
)n−2 logd−1(1/w)

(d − 1)!
dw

}

= E
{∫ √V

0

2u2

√
V
(1− u)n−2 2 logd−1(V/u2)

(d − 1)!
du

}
≤ E

{
1√
V

}
×
∫ 1

0
2u2 (1− u)n−2 4 logd−1(1/u)

(d − 1)!
du

= O

(
logd−1 n

n3

)
.

Collecting bounds, we see that

Var{Nn+1} ≤ 4(n+ 1)

{
2E{Nn+1}

n
+ 2(n− 1)O

(
logd−1 n

n2

)
+2(n− 1)(n− 2)O

(
logd−1 n

n3

)}
= O(E{Nn+1}).
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