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Simulating theta random variates 
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A b s t r a c t  

We develop an exact simple random variate generator for the theta distribution, which occurs as the limit distribution 
of the height of nearly all models of uniform random trees. Even though the density is only known as an infinite sum of 
functions, our algorithm does not require any summation. 
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The properties of the theta distribution with distribution function 

F ( x ) =  ~ (1-2j2x2)e-J2x2 

j ~ - ( x 3  

oo 

--  4~Z5/2x3 ~ j2e-n2J2/x2, x > 0  

j=l  

are described in Rfnyi and Szekeres (1967). The theta distribution occurs as the limit law for the height of a 
random rooted labeled free tree. It also is the limit law of the height of many other brands of random trees, 
such as random planted planar trees (or rooted ordered trees; see DeBruijn et al., 1972). As shown in Flajolet 
and Odlyzko (1982), this is no coincidence. In fact, for all so-called simply generated families of trees, the 
theta distribution describes the limit law. The density of the distribution is plotted below. Its sth moment,/Is 
is given by 

Us = 2r(1 + s / 2 ) ( s  - 1 ) ( ( s ) ,  

where ((s) = )-'~n~=l 1/n ~ is the zeta function. In particular, the mean is ~ and the variance n(~z - 3)/2. 
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Fig. 1. The density of the theta distribution. 

The fact that the density is only known as an infinite sum renders random variate generation rather difficult, 
and this has prompted us to write this note. There are two different sums that describe the theta density, 

f ( x )  = f j ( x )  = 9j(x), 
j = l  j = l  

where 

J ~ ( X )  def 2 ( 4 j 4 x 3  _ 6j2x)e_J2x 2, x > 0 ,  

and 

~ 2zc2J 4 3J 2 ) 
9j(x) def 47z5/2 \ --~ x4 e -~2j2/x2, x > O. 

Note that each summand J), Oj has one sign change. Also, each summand is of the form a j - b j  where 
aj, bj~O. If the positive portions (the aj's)'together define a mixture modulo a constant, we could invoke 
von Neumann's rejection method. However, in both cases, this strategy fails as ~ j  f aj = co. 

A possible solution is given by the series method first developed in Devroye (1981), and further explained 
in Devroye (1986). In the series method, the rejection principle is applied, and the acceptance condition 
- which is of the form T < f (X)  for random variables T and X - is verified through convergent upper 
and lower bounds of f .  The convergent bounds are only computed until T drops below the lower bound 
or exceeds the upper bound, an event that has probability one. In the present case, this strategy would be 
applicable without any problems. However, the method developed in this paper is conceptually simpler, easier 
to analyze, and shorter in implementation. We will work out the details for the theta distribution, but the 
general principle should be useful in many other contexts. First, we note the following. 
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L e m m a  1.  Let ~ = 1 6 e  - 3 n  = 0.0012911228 . . . .  Then 

fj(x)<<.yJ-l fo(x), x>~v~, 

where 

fo(x ) = 8x3 e -x2. 

Similarly, 

g j ( X ) < ~ j - l g o ( X ) ,  0 ~<X ~< V/'~, 

where 

87~ 9/2 2. 2 
go(x) = - - e  -~/x 

X6 

Proof.  To see this, it suffices that the ratio of  positive portions of  fj+l over f j  is not more than 7 for all j .  
For general j ~> 1, this ratio is 

4 ( j  + 1)4x3e- ( J+ l )2x2  

4 j  4X3 e - j  2x2 
= e - ( 2 j +  1 )x 2 

16e -3x2 

~< 16e -3~, x>~x/'-ff. 
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Fig. 2. The theta density and the bounding curves f 0  and 9o are shown. We bound the theta density by fo / (1  - 7 )  on [ v % o o )  and by 
go/(1 - y) on [0, v/if]. The area under f 0  + #0 is 7. The area under min(fo ,  go) is about 1.55. The mean of  the theta density is x/ft. By 
design, we have fo(xfff )  = g0(xfff). 
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The ratio between consecutive positive portions of the 9j's is 

(~-J-)4e-(2j+l)n:/x:~16e-3n2/x:<<.16e-3n, O<<.x<~x/~. [] 

By geometric summation, we conclude the following: 

f ( x )  <~ ~ _  790(x) 

(x/> vq) 

(x ~< v ~ )  

1 
1 - 7 min(f0(x), go(x)). 

This is directly useful to develop a rejection method. 
As f o  f0 -- 4 and f0 °° 90 = 3, and as fo/4 is the density of the square root of a F(2) random variable 

and 90/3 is the density of zc/x/7, where Y is F(5/2), we see that the following algorithm is valid. 

repeat 
repeat generate V uniform [0, 1] 

if V ~< 4/7 
t h e n  X ~ v/-dS2, A ~ IX 1> x/-~] 
e l s e  X ~ ~ / v / ~ 2 ,  .4 ~ IX ~ x/-~] 
(note: G2 and G5/2 are g~mma with parameters 2 and 5/2) 

until A 
generate U uniform [0, I] 

if X~v~ then Accept +- [Ufo(X)/(l -7)~<f(X)] 
else Accept ~- [Uoo(X)/(I - 7)~<f(X)] 

until Accept 
return X 

We recognize the standard rejection method. The gamma variates G2 and G5/2 may be obtained from 
standard sources such as Best (1978) or Ahrens and Dieter (1982). However, one might as well use El + E2 
for the F(2) random variate and E1 +E2 +N2/2 for the F(5/2) variate, where N is standard normal, and E1 
and E2 are exponential random variables. The main trouble in the algorithm is with the verification of the 
acceptance condition, which involves the evaluation of the infinite sum f (X) .  But here is the contribution of 
this paper: we may replace the acceptance condition by an equivalent acceptance condition that does not 
require any summation of a series. In the range [x/~, o~), J)(x)/> 0 for all j ,  while on [0, Vq], 9j(x)>>-0 for all 
j .  As f j  <<.vJ-~fo and 9j <<-7J-19o, we obtain an equivalent acceptance test by selecting a random J = j with 
probability (1 - y)yj-1 for j~> 1, and having picked a piece, to accept X with probability f j (X) /TJ- l fo(X)  
or gj(X)/ys-lgo(X), depending upon whether X~> x/~ or not. Observe that if x~> x/q, 

P{X is accepted[X = x} --- ~ (1 - y ) 7  j - I  

j= l  

ff ix)  (1 - ~)f(x) 
~J-l fo(x) fo(x) ' 

just as in the algorithm given above. A symmetric observation is valid for the 90 side of the line. This way of 
avoiding infinite sums in the absence of true mixtures may find many other applications for difficult densities. 
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We summarize the modified algorithm: 

repeat 
repeat generate V uniform [0, I] 

if V<<.4/7 
then X *- V~22, A *- [X i> V~] 
else X *-- 7 z / ~ ,  A <-- [X ~< x/if] 

until A 
J*-O 
repeat generate W uniform [O,l],J~-J+l until W~<I-? 

(J is one plus a geometric (I -y)) 
generate U uniform [0, I] 
if X>_-v/~ then Accept +-[UTJ-Ifo(X)<~fj(X)] 

(equivalently, Accept *- [U? J-I ~<(j4 _ (3/2)j2/X2)e-(J2-1)x2]) 
else Accept *- [U?J-Iyo(X)<~gj(X)] 
(equivalently, Accept <---[g~d-l<,(j4-3J2X2"~e-n2('12-1)/x2]~] ) 

until Accept 
return X 

The expected complexity o f  this algorithm is appropriately measured by the expected number o f  random 
variables V needed per returned X. It is easily seen that this is precisely 7/(1 - y). I f  we take the expected 
number o f  U or J random variables needed per returned X, the situation is much better. This is nothing but 
1/(1 - y) times 

/o L go(x)dx + fo(x)dx  = 3P{Gs/2 ~>rc} + 4P{G2 ~>~} 

= 0.838892269.. .  + 0.715897785.. .  
def = p + q  

= 1.55479005 . . . .  

Additional savings may be achieved by eliminating the inner loop of  the algorithm. In that case, with probabil- 
ity p / ( p + q ) ,  we must generate X with density proportional to g0I[0,v~] and with the complimentary probability, 
X must have density proportional to fOI[v~, oo]. This requires efficient algorithms for the right tail o f  a gamma 
distribution. One is referred for this to Devroye (1986, pp. 420-425) .  Finally, in the definition o f  Accept ,  
J = 1 with probability 1 -Y ~ 0.999, and thus, both calculations of  exponents may be avoided most of  the time. 
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