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Abstract

We give a short proof of the following result . Let f„ be any density estimate based upon an i .i .d . sample drawn from
a density f. For any monotone decreasing sequence {a, } of positive numbers converging to zero with a l -< 32, a density
f may be found such that

E{fIf„(x)-f(x)Idx}%a„

for all n . This density may be picked from the class of densities on [0, 1] that are bounded by two . The proof of this fact
simplifies an earlier proof by Birge (1986) and extends a weaker lower bound by the author (1983) .
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We are given data X t , . . . , X,,, an i .i .d. sample drawn from an unknown density f on the real line . An
estimate f,, of f is a mapping from Rn+1 to R. Given the data, f(x) is estimated by f, (x; X I , . . ., X.). The
following "slow rate of convergence" result was shown in Devroye (1983) .

Theorem. Let { fn } be a given sequence of estimates and let a .10 be a sequence of real numbers . Then there
exists a density f such that

EfIfn-fI >an
infinitely often . The density may be picked from the class of densities on [0, 1] that are bounded by two . The
density f may also be taken from the class of unimodal densities with infinitely many continuous derivatives .

The theorem states that to study rates of convergence in density estimation, we need at least some
combination of a tail condition and a smoothness condition . Nevertheless, the fact that the result referred to
some unknown subsequence prompted Birge (1986) to improve the above theorem as follows .
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Theorem (Birge, 1986). Let a„ -> 0 such that sup an E (3, -s). For any sequence { fn }, there exists a density
f on [0, 1] bounded by two such that

E fIf. - fI>an
for all n .

Birge's Theorem 5 .4 contains quite a bit more than what is stated above . We feel that it may be helpful to
give a simple proof, that is strongly based on an embedding argument with coupled random variables .
Hopefully, the proof method given here may find other applications in lower bounds that are valid for
sequences of estimates. No attempt is made to get the best possible bound on a 1 . With a different bound on
a 1 , the theorem remains valid when f is restricted to all unimodal densities that are infinitely many times
continuously differentiable .

Main theorem . Let a.10 such that a 1 5 T17 . For any sequence { fn}, there exists a density f on [0, 1] bounded by
two such that

Ef If,, -f > an

for all n .

Lemma. For any monotone decreasing sequence {a n } of positive numbers converging to zero with a l

	

,
a discrete probability distribution (PI, P2, . . .) may be found such that pl > P2

	

and for all n

x
Y pi > max(8a n , 32npn+1) .

i=n+1

Proof. It suffices to look for p i 's such that

p i > max (8a n, 32npn)e
i=n+1

These conditions are easily satisfied. For positive integers u < v, define the function H(v, u) = Y =u 1/i . First
we find a sequence 1 = n 1 < n 2 < . . . of integers with the following properties :
(a) H(nk+1 , n k ) is monotonically increasing;
(b) H(n 2i n 1 ) > 32 ;
(c) Ba nk < 1/2k for all k > 1 .

Note that (c) may only be satisfied if a n , = a 1

	

-. To this end, define constants c 1 , c 2 , . . . by

=

	

32ck

	

2kH(nk+l, nk) (k' 1 ),

so that the c k's are decreasing in k, and

32 ~, CkH(nk+1, nk) = Y, 2 k = 1 .



L. Deoroye / Statistics & Probability Letters 23 (1995) 63-67

	

65

For n E [nk, nk+1), we define p n = c k /(32n) . We claim that these numbers have the required properties . Indeed,
{p, } is decreasing, also,

pn = L.. k H(nk+l, nk) = I .
n=1

	

k=1 32

Finally, if n e [nk , n k + 1 ), then

x

	

o0

C3H(

	

=2 k
i_1 l pi > 3=Y 132n3+1, n3)

= 3=Y
l ~

Clearly, on the one hand, by the monotonicity of H(nk+1, nk ), 1/2k > ck = 32np n . On the other hand,
1/2 k > Bank > 8an . This concludes the proof . El

Proof of the main theorem . Define e, = 2a n . First we construct a family of densities f Let b = 0 .b 1 b 2b 3 . . . be
a real number on [0, 1] with the shown binary expansion, and let B be a random variable uniformly
distributed on [0, 1] with expansion B = 0.B 1 B2B 3 . . . Let us define a random variable W with

P{W=i}=pi (i>l),

where p 1 > P2 > . . . > 0, and

x
Y pi > max (8En , 32npn+ 1)

i=n+1

for every n . That such p i's exist follows from the lemma .
Define an i .i .d. sequence of uniform [0, 1] random variables U 1, U 2i . . . Define another i .i .d. sequence

W 1 , W2 , . . . drawn from the distribution of W . These sequences are used to construct coupled data sequences .
Each b c- [0, 1) describes a different distribution . With b replaced by B we have a random distribution. Define
the random variables

Xi = FK . - Uipw ; + bw.,

where F3 = pl + •- - + p3. It is not difficult to see that if Wi = j and b 3 = 0, then Xi is uniformly distributed on
[F 3 _, i F3 ] where F 0 = 0 by definition. Ifb3 = 1, then it is uniformly distributed on [F3 _ 1 + 1, F3 + 1] . In any
case, the density of X i is supported on [0, 2] and, at every x, it takes the value zero or one . Introduce
A3 = [F3_ 1 + 1, F 3 + 1] u [F3 _ 1 , F 3 ] .
We write fb to denote the density of X 1 for parameter b . Introduce the shorthand notation

"?ln = (U 1 . U2 , . . ., Un ), 7Vn = ( W1 , W2 , . . ., Wn ), and C, = (X 1 , X2 , . . ., Xn ) . We define the error

Jn(b)= f lfn(x, n)-f(x) Idx=' f , If(x,Xn)-f(x)Idx .
1=1 A

Thus,

sup inf
EJ

"(b) > sup E{inf
Jn(b)~

> E{ inf J " (') I .
b

	

n

	

En b

	

n

	

En

	

n

	

En
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Consider now the following conditional expectation :

AE }mf
J,(B)

n

	

E n

M

i 1 - Y P1Jn(B) < En Va , oo}
n=1

= 1 - Lr P }Jn(B) < En I O&n, *n} .
n= 1

We bound the conditional probabilities inside the sum : let -9„ denote °h„, YY„, BW1	BW , so that T„ is fixed
for every fixed element of „ . Condition on -9„ and fix i . Observe that A ; consists of two disjoint intervals
- called A; and A i ' below - of length p; each, and that f, is a fixed function, since "„ is fixed . Define
ai = f A' I fn - 0 1, Ni = JA ;' I fn

	

yi = fA ; fn def1l,
and b; = fA' I f„ - 01 . Observe that a, + y ;

	

p;/2, and
/3; + & > p;/2 . We note that given _9

	

0
„, if i S = { W1 , . . . , W„ }, then

I I fn -fBI % (ai + fI`)IB '= 1 + (yi + Si)IB;=o
A

max(a; + /ii, y; + 8i ) I B ._,„

(where m = 1 if the maximum occurs for a ; + /3; and 0 otherwise)

(pi/2) IB;=m

(since a ; + fl; + y ; + d ; 3 p ;)

(pi/2) IB , = 1 .

Therefore,

P{Jn(B) < En I -9n}

•

	

P , fn(x,' n) -fB(x)I dx < E„
i¢{W	W,,} Ai

•

	

P { L PuIB,=1 < 2E„ „}

i P n [ Jn(B) i En]
n=1

-9n(

•

	

P~ _LJ p;IB,=1 < 2E„~
i=n+ 1

(since the p i 's are decreasing ; by stochastic dominance)

x

= P

	

PuB; < 2E n .
i=n+1



We bound the last probability by Chernoff's method :
x

P

	

p 1 B1 < 2E, < E {e2sE^ -sY' piB+t

i=n+ 1
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(where s > 0 is to be picked later)

= e2s`" F1 (12 + 1 e - sp;)

i=n+1
x

•

	

e2sEn 1 1 2'(2 - spi + s 2 pt/2 )
i=n+1

(since e_x < 1 - x + x 2/2)

•

	

exp (2sE n + Y ( - sp i/2 + s 2p~/4))
i=n+1

(since l - x e -x)

•

	

exp(2sE n - sE/2 + s 2pn+1 E/4)

(where Z = yi'=n+lp)i

- l
(4En	

- E)2
= exp

4 Ep„+1

(by taking s = (Z - 4E n )/(p n + 1E), and the fact that E > 4E n )

<1 e- 1/1 6p'+ ,

(since f > 8En )
•

	

e 2„

(since E > 32pn+ I n) .

Thus, we conclude that

sup mf
EJn(b)

> 1 -

	

e - 2n =
e2

- 2 > 1
b n

	

En

	

n =1

	

e- 1

	

2

so that there exists a b for which E Jn (b) > an for all n. El
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