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Abstract

We give a short proof of the following result. Let f, be any density estimate based upon an i.i.d. sample drawn from
a density f. For any monotone decreasing sequence {a, } of positive numbers converging to zero with a, < 35, a density
S may be found such that

s{ﬁ £ = 1] dx} >a,

for all n. This density may be picked from the class of densities on [0, 1] that are bounded by two. The proof of this fact
simplifies an earlier proof by Birgé (1986) and extends a weaker lower bound by the author (1983).
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We are given data X,..., X,, an i.id. sample drawn from an unknown density f on the real line. An
estimate f, of fis a mapping from R"*! to R. Given the data, f(x) is estimated by f,(x; X,,..., X,,). The
following “slow rate of convergence” result was shown in Devroye (1983).

Theorem. Let | f,} be a given sequence of estimates and let a, |0 be a sequence of real numbers. Then there
exists a density f such that

EJIﬁ.—f|>a..

infinitely often. The density may be picked from the class of densities on [0, 1] that are bounded by two. The
density fmay also be taken from the class of unimodal densities with infinitely many continuous derivatives.

The theorem states that to study rates of convergence in density estimation, we need at least some
combination of a tail condition and a smoothness condition. Nevertheless, the fact that the result referred to
some unknown subsequence prompted Birgeé (1986) to improve the above theorem as follows.
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Theorem (Birgé, 1986). Let a,— O such that supa, € (35, t3). For any sequence { f,}, there exists a density
fon [0, 1] bounded by two such that

Eﬁﬁ—ﬂ;m
for all n.

Birgé’s Theorem 5.4 contains quite a bit more than what is stated above. We feel that it may be helpful to
give a simple proof, that is strongly based on an embedding argument with coupled random variables.
Hopefully, the proof method given here may find other applications in lower bounds that are valid for
sequences of estimates. No attempt is made to get the best possible bound on a,. With a different bound on
a,, the theorem remains valid when f is restricted to all unimodal densities that are infinitely many times
continuously differentiable.

Main theorem. Let a, |0 such that a, < 5. For any sequence { f,}, there exists a density fon [0, 1] bounded by
two such that

Ef1f~11>a
for all n.

Lemma. For any monotone decreasing sequence {a,} of positive numbers converging to zero with a; < s,

a discrete probability distribution (py, pa,...) may be found such that p, = p, = -+, and for all n

o}

E Pi ; max(gam 32”Pn+ 1 )‘

i=n+1

Proof. It suffices to look for p;’s such that

L al

Y, p; = max(8a,, 32np,).

i=n+1

These conditions are easily satisfied. For positive integers u < v, define the function H (v, u) = ¥~ '1/i. First
we find a sequence 1 = n; < n, <--- of integers with the following properties:
(a) H(ny 4, n,) is monotonically increasing;
(b) H(ny,ny) = 32;
(c) 8a, < 1/2*for all k > 1.
Note that (c) may only be satisfied if a, = a; < 7. To this end, define constants ¢;, ¢,... by

32

=——— (k=1)
2kH("k+b ) ( )

Cx
so that the ¢;'s are decreasing in k, and

# Y alHmgum)= Y27 =1
k=1

k=1
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For n € [, ng+ 1), we define p, = ¢,/(32n). We claim that these numbers have the required properties. Indeed,
{pn} 1s decreasing, also,

w0

= ¢
Z Pn= Z 3; H(ng o 1,m) = L
n=1 k=1+"=

Finally, if n € [ny, n,+,), then

0 o0

2 piz Y, EJih"(mh,,ﬂj}: Yy 27i=27k,

i=n+1 j:k+|32 J=k+1

Clearly, on the one hand, by the monotonicity of H(ng.y, m), 1/2* = ¢; = 32np,. On the other hand,
1/2* > Ba,,_ = 8a,. This concludes the proof. [

Proof of the main theorem. Define ¢, = 2a,. First we construct a family of densities /. Let b = 0.b;b3b;... be
a real number on [0, 1] with the shown binary expansion, and let B be a random variable uniformly
distributed on [0, 1] with expansion B = (0.B,B,B;... Let us define a random variable W with

where p; = p, = --- >0, and

€

Y pi > max (8, 32np,. )

i=n+1

for every n. That such p;'s exist follows from the lemma.

Define an 11.d. sequence of uniform [0, 1] random variables U,, U,,... Define another ii.d. sequence
W,, W,, ... drawn from the distribution of W. These sequences are used to construct coupled data sequences.
Each b e [0, 1) describes a different distribution. With b replaced by B we have a random distribution. Define
the random variables

Xi=Fy,— Uppw, + bw,,

where F; = p, + -+ + p;. It is not difficult to see that if W; = jand b; = 0, then X is uniformly distributed on
[F; 1, F;] where Foq = 0 by definition. If b; = 1, then it is uniformly distributed on [F; -, + 1, F; + 1]. In any
case, the density of X, is supported on [0, 2] and, at every x, it takes the value zero or one. Introduce
Aj=[Fi 1+ LF;+1]uU[F;_,.F;]l

We write f, to denote the density of X, for parameter b. Introduce the shorthand notation
U, = (U, Us... ., U)W, = (W Ws,...,W,),and &, =(X, X;,..., X,). We define the error

an

Ju(b) = flﬁ.(x, Z,)—f(x) |[dx = ZJ | fulx, &) — f(x)| dx.
l‘il

i=1

Thus,

sup inf EJ, @) > sup E{jn[ J_"@} > E{inr J,.(B)}‘
b

b n Eq n En

n n
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Consider now the following conditional expectation:

E{inf Jalh)

" n

U.,, wm} > P { ﬁ [Ja(B) = &,]
n=1

U Wm}

>1= Y P{LB) <& U W}

n=1
=l i P{J.(B) < &)|Un W,,).
n=1

We bound the conditional probabilities inside the sum: let 2, denote #,,, ¥, Bw,...., Bw,, so that Z, is fixed
for every fixed element of 2,. Condition on 2, and fix i. Observe that 4; consists of two disjoint intervals
~ called 4; and A below — of length p; each, and that f, is a fixed function, since %, is fixed. Define
1:“[}!']:: Ol ;B ,‘A;lfn lf}:-fa.|fn ll and () —IA |fn_0| Observe that at’"'ft}Pa/z and
Bi + &; = pi/2. We note that given 2, if i ¢ S Wi {Wy,..., W,}. then

J. | fo—Jol = (2 + B g =1 + (i + 0Mp,=0
A;

2 max (Oﬂj + pBI'! Vi = 6i)‘rﬂl-=m
(where m = 1 if the maximum occurs for o; + f; and O otherwise)
2 (pi/2) Ip,=m

(since o; + B + y: + 6: = p)

K3
T (Piﬂ“s.: 1-
Therefore,

P{J.(B) < &y| Z,}

ofr]
ig W, LW, ] A

gp{ > pids,-

WL W)

i

L(x’ ‘Q‘n) _fB(x” dx < En

]

2.}

P{ Z pidpg =1 < 25«}

i=nt+1

(since the p;’s are decreasing; by stochastic dominance)

-_-P{ Z pEBI{Za,,}.

i=n+1
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We bound the last probability by Chernoff’s method:
P{ i piB; < 28,,} < E (¥ sLl...pbi)
i=n+1
(where 5 > 0 is to be picked later)

.
=¥ ] Gtde )
i=n+1

S e l_[ 32— spi+ 57 pif2)
i=n+1
(sincee ™ < 1 — x + x%/2)

al
g CXP(‘ZSEn + Z [ S SPHQ + Szpiz.f'f4})

i=n+1

(since 1 —x<e %)
< exp(2se, — sZ/2 + $%p,  2/4)

(where 2 =3, ,,p)
_ exp( _ l“‘a_—_ﬂ)

4 Zppiy

(by taking s = (2 — 4¢,)/(ps+1Z). and the fact that X~ > 4s,)

g“ e~ Iilep, .

(since X > 8¢,)

In

=€
(since X = 32p, . n).
Thus, we conclude that
. EJ,(b) N et -2 1
f———>1- 2 — -,
e P aie

so that there exists a b for which E J,(b) = a, for all n. ]
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