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ON GOOD DETERMINISTIC SMOOTHING SEQUENCES
FOR KERNEL DENSITY ESTIMATES'

BY Luc DEVROYE

McGill University

We use the probabilistic method to show that if fnh is the standard kernel
estimate with smoothing factor h, then there exists a deterministic sequence
hn such that, for all densities,

	 Ef I fnhn - f Ilim inf

	

=1.
n-boo infh E f i fnh - f

1. Introduction . Let X,, . . . , Xn be i .i .d. random variables with common
density f on the real line . We consider the kernel estimate

1 n
fn(x) _ - >Kh(x - Xi),n i='

where Kh(x) _ (1/h)K(x/h), h > 0, is the smoothing factor depending upon n
only, and K, the kernel, is a given function integrating to 1 [Akaike (1954),
Rosenblatt (1956) and Parzen (1962)] . Sometimes we will write fnh to make the
dependence upon h explicit . We assume throughout thatK is L,-Lipschitz, that
is, that there exists a constant C such that

f IKu (x ) - K°(x)I dx `
c

l
u - v~

max(u, v)

Furthermore, we require that the smallest symmetric unimodal majorant of
IKI be in L, and L4 . (Both conditions are satisfied for all kernels of general
interest.) The L,-error given by

Jnh = J I /nh - / I

measures in many situations the quality of the estimate fn .

THEOREM 1 . There exists a deterministic sequence h n such that, for all
densities,

limin Ef(fnh n -f
f inf Eh f Ifnh - f I
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This theorem shows that there is a deterministic sequence of smoothing
factors that is asymptotically optimal for any density in the world, at least along
a subsequenco . What is interesting is that there is an uncountable continuum
of possible rates to zero for infh E f I fnh - f I . (To see this, play a bit with the
unsmoothness or the tails .) Yet, our sequence has only countably many values .

One would think that data-based smoothing sequences should do better than
this. Maybe we might even suspect that there exists a sequence of functions
Hn : Ian -~ (0, oo) (called data-based smoothing factors) such that, for example,

	 f IfnHn ~'" f

	

1infh f I fnh
	

-fI

almost surely for all densities, where Hn = Hn(X1 , . . . , X,) . However, such a
rule has not been exhibited to date . In fact, it is probably futile to look for
one. Theorem 1 simply says that if we are going to prove that any data-based
smoothing sequence is poor, it can only be provably poor along subsequences .

The proof is nonconstructive . However, with probability 1, an i .i.d. exponen-
tial sequence will do . While almost every exponential random sequence has
the optimality property stated in the theorem, no data-based smoothing factor
published in the literature shares this property, as all methods I am aware of
are asymptotically suboptimal on given subclasses of densities .

2. Proof.
We introduce two real number sequences, an and ,Qn linked by the relation

E I fnpn - fI= ihf E I fnh - f I = an .

The existence of ~3 n follows from the continuity of the L 1 criterion with respect to
h . From Devroye and Gyorfi [(1985), page 12], we have n/3n -4 oo. If the kernelK
has a characteristic function that is not identically 1 in an open neighborhood of
the origin, or iff has a characteristic function of unbounded support, then /3n -~
0 as well [Devroye (1989), Lemma Si] . For now, we assume such a situation .
Also, an -~ 0 for all densities . For fixed s > 0, we further note that if h E
(~n - san/3n, /3n + san,Qn ), then

E I fnh-fI <_E I fnpn-fI +E I fnpn - fnhl

C an + I Kpn Kh I

< c + GI an - hl
n max(~3n ,h)

< an (1 + Cs) .

If we take a random sequence of i .i .d. exponential random variables Hn as
smoothing factors and make sure that the sequence is also independent of the
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data, then

P{ I Hn - ~n I < sci /3 } _ (2 + 0(1))sc 3 .

Let An be the event that

E{JfHn	
IH}

n
~J

	

1 + Cs .infhE nh

Then

P{A} > (2+o(1))sc,3 .

As the A n's are independent, we see that

P{An i .o.}=1

when

n =1

By Devroye and Gyorfi [(1985), page 139],

an > 1E

	

K-2

	

Ifn/3 - a *ffn

Next, by Devroye [(1988), Lemma 5] and the fact that /n

	 fK2 fhm inf -s/fl/3n an >n -~ o0

	

4
We therefore need only verify that

= 00 ;

L. DEVROYE

00 .

0,

but this is a simple consequence of the fact that n/n -~ 00 . We have shown that,
for our random sequence,

P{`d s > O : An i .o .} =1 .

Therefore, there exists at least one deterministic sequence {h}n such that, for
all s > 0,

E {Jnhn }
< 1 + Csinfh EJnh -

for infinitely many n . For more examples of existence proofs through random-
ization, we refer to the literature on the so-called probabilistic method [see
Alon, Spencer and Erdos (1992)] .
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When the kernel has a characteristic function that is identically 1 in an
open neighborhood of the origin, and the characteristic function of f vanishes
outside a compact set, then /3n tends to a constant ~3 > 0 . It is easy to modify
the proof to handle this case as well. Note that this is the reason why we need
a density with full support on [0, oo) such as the exponential density instead of,
say, the uniform [0,1] density, as we want to ensure that ~3 is in the support of
the Hn sequence . 0
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