Computers Math. Applic. Vol. 25, No. 5, pp. 19-31, 1993 0097-4943/93 $6.00 + 0.00
Printed in Great Britain. All rights reserved Copyright© 1993 Pergamon Press Ltd

RECORDS, THE MAXIMAL LAYER, AND
UNIFORM DISTRIBUTIONS IN MONOTONE SETS

Luc DEVROYE
School of Computer Science, McGill University
3480 University Street, Montreal, Canada H3A 2A7

(Received January 1992)

Abstract—Consider a nondecreasing nonnegative integrable function f on [0, 1]. Draw an indepen-
dent sample (X1,Y1),...,(Xn,¥n) of size n from the uniform distribution under f, and let Ny be
the number of records in the sample, where (X;,Y;) is a record when, for all j # {, either X; > X, or
Y; < Y;. We study the dependence upon f of the constant C in the asymptotic formula EN,, ~ C\/n,

and show that whenever j: f!' >0, N, /JEN,, — 1 in probability. The results are related to the ex-
pected time analysis of algorithms for finding the collection of all records (i.e., the maximal layer).

1. INTRODUCTION

Consider a nondecreasing nonnegative function f on [0,1] and let (X;,Y3),...,(Xs,Y,) be inde-
pendent, identically distributed (i.i.d.) random variables uniformly distributed in the set

A={(z,y):0<z<1,0<y < f(=)}.

We say that (X;,Y;) corresponds to a record (or is a record) if ¥; = max{Y¥; : X; < X;}. Let
N, be the number of records in a sequence of length n. In this paper, we are interested in the
behavior of N,,. In particular, we will obtain

o the first term in the asymptotic expansion of N,;
o explicit inequalities related to Var N, and EN,;;
e a weak law of large numbers stating that N, /EN,, — 1 in probability, as n — oo.

Some of these results require a certain smoothness on the part of f. Interestingly, the weak law of
large numbers is universally valid. In the particular case f = 1, N, is distributed as the number
of records in an i.i.d. sequence of continuous random variables, and its properties are well-known
(see, e.g., [1]). Among these, we cite:

e EN, =Y 4=logn+v+0(1);

e Var N, ~ logn;

e Nn/EN, — 1 in probability, as n — oo;

o (N,—EN,)/\/Var N, 45N (0,1) as n — oo, where % denotes convergence in distribution,
and N(0,1) is a standard normal random variable.

An early reference on the subject is [2]. There are also many strong convergence results available,
but they do not necessarily carry over to our model because our sequence does not grow from
left to right. From now on, unless mentioned otherwise, all integrals are over [0,1]. When f is
monotonically increasing, the situation is very different, since we expect N, to be larger than in
the case f = 1. Indeed, there is a sudden jump from logn behavior to \/n behavior as can be
seen from the following result.
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THEOREM 1. Let f be absolutely continuous on [0, @) for all « < 1. Then

.. .EN [ fo VT
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The right-hand-side in the inequality of Theorem 1 can be oo for functions f with an unbounded
peak as z T 1. Furthermore, under slight regularity conditions, equality is reached and, in fact,
N,/EN, — 1 in probability. The curves for which we have no specific answer in this paper
include the non-smooth curves, and those with a large infinite peak as z 1 1. In the latter case,
it is for example possible to have rates of increase that are between /n and O(n). However, we
always have the following theorem.

THEOREM 2. For any f, EN, = O(n).

The motivation for this paper is triple: first of all, the model generalizes the standard model
with f = 1 and takes a time factor into account. Second, records correspond to points on the
maximal layer of the sample; the maximal layer is an object that has received some attention in
computational geometry (see [3-12]). The expected size of the maximal layer in R? is studied
in [13-18]. Third, the properties of N, are essential in the analysis of the expected time taken
by certain algorithms for computing the maximal layer of a cloud of points.

2. TWO BASIC LEMMAS

In the remainder of the paper, we will need a fundamental fact about the differentiability of
monotone functions. We have the following lemma.

LEMMA 1 (NATANSON [19]). Let f be a bounded nondecreasing function on the real line with
limzj_co f(z) = 0, and let f' be the derivative of f wherever it exists. Then

(a) if S is the set of all = for which f' exists and 0 < f' < oo, then [;. dz = 0, where S° is
the complement of S;

(b) for z < y, we have [’ f' < f(y) — f(z); furthermore, [ |f'| < oco;

(c) if fac(z) = ffoo f' and f, = f — fac, then f.. = f' almost everywhere and f, = 0 almost
everywhere.

In part (c), fqc represents the absolute continuous portion of f and f, the singular portion.
When f is absolutely continuous, we see that f: ff=fy)—f(z)foralil0<z<y<l

Let A(z,y) be the set defined by {(u,v):0<u<z,y<v< f(u)}, and A(X,Y) be defined
similarly provided that (X,Y) is distributed as (X1,Y1). Thus, (X;,Y;) defines a record if and
only if A(X;,Y;) contains no (X;,Y;) with j # i. We have the following lemma.

LEMMA 2. N, is distributed as

n
E : IA(X.-,Y.-) contains no data point-
i=1

Also,

EN, = nP{A(X,,Y1) is empty}
= nE(1 - p(A(X,Y))*")
S n E e-(n—l) “‘(A(Xry)),

where pu is the uniform probability measure on A(1,0).
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3. SOME PROOFS AND REMARKS

Note first that fol f(z)dz < oo, for otherwise, we would not be able to define a uniform

distribution on 4 in view of the fact that [, dedy = fol f(z)dz. We will call the given area of
A . 1t is possible to have [ /7 = co. In that case, Theorem 1 shows that

EN,
Vvn

An example is furnished by f(z) = 1/(1 — z) log'**(1/(1 — z)) for § > 0. Such functions
necessarily have an infinite peak at one. However, there are functions with an infinite peak for
which [/J7 < oo.

It should also be noted that for purely singular functions, we have [+/f7 = 0 since f' = 0
almost everywhere. For such functions, EN,, can tend to co at any rate between logn and o(n).
The functions with an infinite peak can attain any rate between \/n and o(n).

ProOF oF THEOREM 2. From Lemma 2, we note that

— OO

ENn _ g {e-tr-nuaacern},
n
and this tends to 0 by the Lebesgue dominated convergence theorem if for almost all z(u) we
have u(A(z,y)) > 0. Let S be the subset of A consisting of all (z,y) with u(A(z,y)) = 0. We will
show that u(S) = 0. Observe that S = (), Sa, where S, = {(=,¥) : u(A(z,y)) < 1/n}. Thus,
#(S) = lim, o, p(Sn). It suffices to show that the given limit is zero. Take a constant D such
that u(AN {y : y > D}) < ¢, for a given small e. Partition the entire plane into a regular grid
with grid size 1/\/n. Thus, each cell completely contained in A has y measure 1/n. In each row,
mark the leftmost such cell, and in each column, mark the topmost such cell. Mark also all cells
whose intersection with the complement of A and with A are both non-empty. It is easy to see

that S, is included in the marked cells. The number of marked cells with nonempty intersection
with AN {y : y < D} does not exceed 3(1 + D)+/n. Thus,

1
u(Sn) <e+ ;(3+3D)\/r_z=e+o(1).
This concludes the proof of Theorem 2. |

4. LOWER BOUNDS FOR THE EXPECTED NUMBER OF RECORDS

THEOREM 3. For all monotone f on (0,1}, we have

. . .EN, wf\/f
‘L’EL’Af\/;Z\/;\/Tf'

Proor. From Lemma 2,

. 1 ,f(=)
ENpy1 = (n+1) / / (0~ u(A(z, )" dy da.

By Fatou’s lemma, we are done if we can show that for almost all z with f/(z) > 0,

1(2) -
liminf VAT T [ (1= A" dy 2 /5 VFGIVA

By Lemma 1, it suffices to consider only those £ € (0,1) for which f’ exists and is finite and
positive. Let 0 < € < f’(z) be arbitrary. Then, by the existence of f(z), we have for all § smaller
than some A = A(z,¢),

f(2) = 6(f(z) - ) < f(z = 8) < f(=2) + 6(F' () + o).
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Uniformly over all y < f(z) with f(z) — y < A(f'(z) — ¢€), we have

(f(z) ~y)*
H(A(z,y)) < DYZOED)
So, ,
I(z) S (z) (f(z) - y)z )"
1— p(A(z,y))" d - 77— d
/o (1= (A= 9))" dy 2 /max(o,f(z)—A(f'(z)-e)) ( n(fi-o) ¥
A(z,}\/S'(z)—eVnX n
-/ (1-5) VF@=eVia:/va
~VF@ = [ VR ds /R
0

= \[3VF@ AN

Since we can choose ¢ arbitrarily small, we have shown the Theorem. [}

THEOREM 4. For all monotone f on [0,1], we have

1
EN, > H, d=e‘1+-~+-,;=logn+~/+0(1),

where v = 0.55... is Euler’s constant.
ProOF. Let M be a very large constant to be picked later. Replace all Y;’s by

Y=%ﬂy 1<i<n.
1

3
tributed on [0, M]. Also, if f(X;) < M and (X;,Y/) is a maximal layer point in the collec-
tion (X1,Yy),...,(Xa,Y}), then (X;,Y;) is a maximal layer point in the original data set. If
F(Xi) > M, this statement may not be true. Let N, and N, be the cardinalities of the maximal
layers with the original and the transformed data, respectively. Then

It is easy to verify that Y/ is independent of X; for all i. Furthermore, Y; is uniformly dis-

n
No 2 Np =3 Tycxism-

i=1
Taking expectations, and letting M tend to infinity shows that
EN, > limin{ EN;,.
But when X; is independent of Y/, the number of maximal layer points N}, satisfies [13]
EN, = H,. 1
THEOREM 5. For ell monotone f on [0,1], we have

liminf =% > 4,
n-—+00 ogn

where Ag = limg g A; and
Asj=#z:2¢€[0,1), limf(y)>limf(y)+86.
ylo yix

(Note: Aq is the number of points of increase of f.)
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PROOF. Fix § > 0. Let 0 < z; < 23 < - -+ < z4, be the points from [0, 1) counted in A;. Let

Zig1
b= / .f)
zg

where by definition, z4,+1 = 1. On the interval [z;,z;;1), Define
b = lim f(y), a; = lim f(y).
ylz; ytei

For every X; € [z;,2:41), replace Y; by
b:
Y! = ——Y;.
TTRX)

Note that every such Y; is independent of X; and uniformly distributed on [0,6;]. In addition,
we add As; new data points at the positions (z;,a;), 1 < i < As. The crucial observation is that
the number of maximal layer points in the new data set is not greater than N, + As;. Among
(X;,Y}), the number of points (say, M;) falling in [z;,2i4+1) X [a;,bi] is binomially distributed
with parameters n and

b;—a.-
i = pi X b,

When we condition on M;, the expected number of maximal layer points among the M; points
just marked is at least Hps;, > log(1 + M;) (Theorem 4). Thus,

n
EN, > ) Elog(1+ M;) + As — As
=1
As
> Elog(l + EM;) (Jensen’s inequality)

=1

Ag
=3 log(t + nas)

=1

~ Ajlogn.

Now let § tend to zero. B

The lower bounds collected thus far show that there are two processes at work. The smooth
increases as measured by f' contribute to the coefficient of a \/n term. Abrupt points of increase
of f are counted in a coefficient of a logn term. The latter phenomenon is somehow similar to
one seen in the study of the expected number of maximal layer points for uniform distributions
in a staircase-shaped polygon with k steps, which grows as a constant times k logn (for a similar
result for the number of convex hull points in a k-gon, see [20]). We note that in Theorem 5, A5
can be co. In such cases, we can attain any rate of convergence between logn and o(n). This
is slightly annoying, since these counterexamples can be chosen in such a way that there are a
countable number of points of increase of f, and f' = 0 elsewhere, as in infinite staircases. Thus,
the lower bound of Theorem 3 cannot possibly have a similar-looking universal upper bound,
except perhaps under smoothness conditions on f.

A Class of Counterexamples

Partition [0, 1] into intervals of length 1/2', i = 1,2,..., the smaller intervals to the right of
larger intervals. On the i*! interval, let f take the value a; = 2° ¢;, where ¢; is to be specified.
We want the integral under f to be one, so we require
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We also require that ¢; > § ¢;_; so that a; T. Observe that the i*" interval contributes at least one
maximal layer point if at least one j exists for which X; falls in the i* interval, and Y; € (a;_1, a;]
(ao = 0). The probability of this event is

1-(1—(a;—ai-y)2” ')"— 1—-(1—(c,——c. ))?

Z 1—(1—5'6.')”

S|

>1-e7 if ¢; > —.
Take ¢; ~ i~7 for some p > 1. Then the number of i’s for which ¢; > 3/n grows at least as
(n/8)Y/?. Thus,
1y
EN, > (1 -e1)(1+ o(1)) (g) g

This can be pushed as close to o(n) as desired by decreasing p to 1. Observe that f' is identically
zero except at the borders of the intervals. Also, f necessarily exhibits an infinite peak at one. I

5. UPPER BOUND AND EXACT ASYMPTOTICS

THEOREM 6. Assume that f is monotone on [0,1}, and that either f is concave, convex, or
Lipschitz (C), i.e., we have |f(z) — f(y)] < C|z — y| for all z,y € [0,1]. Then

zfol\/ff
2

limsup
Nt 0O

n_.oo ‘/_ \/7 fO

ProoF. The second part of the theorem is a corollary of Theorem 1 and the first part of this
theorem.

Extend f on the real line by setting f(z) = 0 for z < 0 and f(z) = f(1) for £ > 1. Assume
first that f is Lipschitz on the entire real line. Define A = fol f, let u be the uniform probability
measure defined in the proof of Theorem 1, and let A;, be the collection of all (z,w) with
0<z<zand f(2) > w>y. Then

L e
ENny1 = (n+1) / = / (1= u(As,))" dydz
[1] 0

In fact,

1 f(z)
<o) [ A7 [ exp(-nuldny)) dyds
. 0 . 0
= (n+1)/0 n~Y2 g, (z) dz.

If f is Lipschitz with constant C, then

T 2
hey) 2 SE=0

Therefore,
; 1(=)
(@) = vaXT [ exp (-nu(sy)) dy

< Jaa-l /of(z) exp (:l(-féz,),\;w) dy

5\/;/5.
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Thus, for all z, g,, remains bounded. Observe that

ENn+1 n+1 /
Jnil _\/ gn(z) dz

and that g, is uniformly bounded over [0,1]. Thus, by Fatou’s lemma, Theorem 6 follows for
the Lipschitz functions if we can show that for almost all z, limsup,_, ., ga(z) < /7 f'(2)/2).
Consider first z such that f(z) > 0 and f'(z) > 0. For fixed ¢ € (0, 1), find § > 0 such that

f(z) ~v)°
2f'(z) A

Whoy) > (1 - LE V"

whenever y > f(z) - § > 0. Thus,

o< 2 [ o () e F [ oo (2O o

x| _f'(z)
<o(l)+ \/—2': m

By the arbitrariness of ¢, the desired result follows for this first case. The case f(z) = 0 can be
discarded straight away. Finally, we consider f(z) > 0 and f'(z) = 0. For fixed € € (0,1), find
& > 0 such that

(f(z) —v)?

WAsy) 2 =55,

whenever y > f(z) — 6 > 0. Thus,
J(z)-¢ 1(=) 2
yn(z)<\/_/ exp( 2,\) y+ va exp( 2(_}’(2)_31)_) y

A f(z)=-é 2¢ A
<o(l)+ \/—21-\/§

This is as small as desired by our choice of €, which once again establishes the sought limiting
result. This concludes the proof if f is Lipschitz on the real line.

When f is merely Lipschitz on [0, 1], then it may have a jump at the origin. Assume thus
that f(0) > 0. Then, partition the data points into sets I and J, where I collects all indices j
between 1 and n such that Y; < f(0). J captures the remainder of these indices. The cardinalities
of I and J are denoted by |I| and |J|. The number of maximal layer points among the points
with index in I(J) is denoted by N;(Ns). From the fundamental properties of records, we have

1¥{ n

1 1

EN1=E(E ’1-.I|]|>o) < E ;—Sl-}-logn
i=1 i=1

Also, we have simple subadditivity: N, < Ny + N;. Hence,

n o1 N
limsup N, < limsup ENy

71~ 00 ﬁ - n—00 ﬁ '

From the first part of the theorem, we see that for every ¢ > 0, there exists a constant M such
that

E(NJ I IJ') < (1+€)\/—_m——\/|-J_I|J|>M+ |J|I|J|<M)
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and thus, using

n [(f - £(0))
E|J| < VE|J| = —_ff )
we obtain
EN;<(l+¢) ki f‘/T+M

N

Iff VJ7 > 0, the result of the theorem follows from this and the arbitrary nature of e. Consider
the last case: f' = 0 almost everywhere, and f is Lipschitz (C). Clearly, f is absolutely continuous
on [0, 1], and therefore, by Lemma 1, f is constant on [0, 1]. For this distribution, EN,,/logn — 1,
go that EN,,//n — 0 as required.

Next, consider f concave and nondecreasing on [0, 1]. Then we note that except at the origin,
f is necessarily Lipschitz with some constant C. Assume first that f(z) | 0 as = | 0. Again,
consider subsets I and J of indices between 1 and n withi € I if X; >z andie Jif X; <z,
where z is picked so small that f(z)/ [ f < 6 for a prespecified small § > 0. By Theorem 11
below, we see that there are universal constants ¢, > 0 such that

EN,; SC+c'E1/.f_(ﬁ# <c+d ﬂ?}?}ﬂ

=c+c nfz )<c+0\/—
Jo £

0

By the arbitrary nature of § and the subadditivity of N, (i.e., N, < N1+ N;), we see that the
result of Theorem 6 follows if it is true for N;. For this purpose, take ¢ > 0. We note that it is
impossible that [ +/f7 = 0, for this would force f = lim, o f(z) = 0, thus making [ f = 0. By
the first part of the theorem,

1 /
w
E(Nr||ID<(1+¢) \/';fx \/T\/ [ hinsa + | in<ss,

Vi1

where M depends upon e only. Unconditioning and using Jensen’s mequahty as done above shows

that
7 [LVF T LT

P Vi \/fo—

from which the desired result follows once again. Assume next that f(z) - c¢>0asz | 0. If
f' > 0 on a set of positive measure, then we argue as above using the subadditivity trick again
to deduce the result. Finally, if f/ = 0 almost everywhere, then the concavity implies that f = ¢/
for some constant ¢’ > 0. In this case, we know that EN,, = o(logn), so that the result is once
again verified. This concludes the proof for concave functions f.

The theorem is also easy to verify for bounded convex functions on [0,1]. The proof is not
given here. |

EN;<M+(1+¢)

<M+ (1+¢)

REMARX. Theorem 6 remains valid for functions f on [0, 1] that are nondecreasing, and either
concave or convex on each of a finite number of intervals into which [0, 1] can be partitioned.
6. VARIANCE

In this section, we consider general monotone f on [0,1]. The purpose is to prove the following
inequality.

THEOREM 8. For all monotone f on [0,1] and all n > 1,




Monotone sets 27

PRrROOF. We introduce A;, the set of all z,y for which y < f(z), yet z < X; and y > Y;. [ is the
indicator function of the event that A; does not capture any of the (X;,Y;), 1 <j<n,j#i.

Define
def

pi = EL = E(1 - p(41))"",
where p is the uniform probability measure on {(z,y) : 0 < 2 < 1,0 < y < f(z)}. By the
symmetry in our problem,

Var{N,} = EN2 - E’N, =E (i]g+2[;1j —ip.? —Zpipj)

i=1 ji i=1 §#i

n
=Y n(1-p)+ Y (ELL —pipj)
i=1 i
SENa+n(n-1)(EL Iz - p1p2).

Assume that n > 2, and let B denote the event that (X5,Y>) is a maximal layer point among
those points with X2 > X;,Y; < Y2 < f(X}). Let C denote the event that (X2,Y3) is a maximal
layer point among those points with X2 > X;,Y2 > f(X1). Let S; be the rectangle defined by
Y1 <y < f(X1), and X; < z <1, and let |S;| be the number of (X;,Y;) pairs in S;: conditional
on (X1,Y)1), this is binomially distributed with parameters n — 1 and p(S1). We will also need
the inequality

EN,_, <1+2=1

EN,,

which follows from

EN,_
ENa-1 —EN, = nEp(A1) (1 - p(A41))" "2 - E(1 — p(A41))"% < n_i_l - T‘l‘l

By symmetry,

ElL I, = 2EL I Ix,<x,
= 2B I I, <x, Iv,> p(x,) + 2B5 I Ix, < x, Iy <va<1(X0)

2 n
= 2E(1 — p(A1) — p(A2))* % Ix,<x, Iy > p0x0) + —E (Il 35 I(X,-.Yj)es,)
=2
2
< E(L - p(A1)"7* (1 - 4(42))" " + ——7 E(L(1 +10g[S1]))
2
SE(1=p(A))** (1 - u(42))" " + ——q(1+logn)p
(EN,,_I)’ (2+ 2logn) EN,

n—1 n(n-1)
2
< ( 1 + EN, + (2+ 2log n) EN,
n—1 n n(n~-1)

1 \? (4 + 2logn) EN,
- (n—l) thpt n(n-1)

We used the fact that the expected number of maximal layer points for an i.i.d. sample of size k
drawn from a uniform distribution on the unit square is ELI % < 1+ logk. Combining these
bounds shows that

Var{N,,}S(5+2logn)EN,.+n21. 1
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7. WEAK LAW OF LARGE NUMBERS
THEOREM 9. For any monotone f on [0, 1] for which EN, /logn — oo, we have

Nn
EN,

— 1 in probability

as n — oo. In particular, this is true whenever fol f(z)dz > 0.

Theorem 1 follows directly from Theorems 3 and 8 and Chebyshev’s inequality. In the vast
majority of the cases, we have liminf, ..o EN,//n > 0, so that the weak law of large numbers
indeed applies. This is important to know, since it means that the expected value is a good
indicator of the size of the maximal layer. It also means that the actual asymptotic value of
second order quantities such as the variance of N, is less important, except perhaps in situations
in which one wants to construct some kind of statistical test or confidence interval.

8. A GENERAL UPPER BOUND

The upper bounds provided so far assumed a certain smoothness on the part of f. Basically,
we have treated functions that consist of a finite number of Lipschitz, convex, or concave pieces.
Without any smoothness conditions, it remains nevertheless possible to bound EN,, from ahove
in useful manners. The following lemma will be useful.

LEMMA 10. Let f be a nondecreasing function on [0,1] which remains bounded, and let p > 0
be a given number. Let S, be the collection of all (z,y) such that

A(A(z,9)) < p,

where A(-) denotes Lebesgue measure. Then
A(Sp) < 2p+ 3V (D).

Proor. Extend f on (1,00) by defining f = f(1) there. Extend the definition of A(z,y) to
include all z on (0,00). Let L, be the collection of all (z,y) for which A\(A(z,y)) = p. Construct
a cover of S, as follows. Begin with any point on Ly, having y = 0. Call this (21,y1). Find any
point on L, with z-coordinate z;, and call its y-coordinate y;. Repeat this process by finding
(z2,¥2) on Ly, and so forth. Stop the process after k steps where k is the first index for which
zr > 1. (It is possible that k is infinite.) Define (2, y0) as any point on L, with yo = 0. Clearly,
the sets A(z;,y:), 1 < i<k, cover Sp. Thus,

k
SP _C_ U A(z,-,y,-).
=1
To describe things a bit better, we need to introduce sets A; = A(z;, %), Bi = A(zi-1, %),
C; = BiN Biyy, D; = A; — (B; U Bi41), and E; = Biy1 — (B; U B;;2). We note the following.
Clearly, B; N B;41 C A;. Also, B; has a vertex on L,, and C; is not empty. If C; were empty,

then we would have
A(Ai) > A(B;) + A(Biy1) > 2p,

which is a contradiction. Thus, D; and E; are both rectangles. Furthermore,

k-1
Sp CApU AU U(D,‘UE.'UC;).

i=1
We will use this inclusion in a nonoptimal manner since some C;’s may overlap:

k—1
A(Sp) < 20+ S N(DY) + A(E:) + MG).

i=1
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But since A(B;) = A(Bi4+1) = p, we see that A(D;) = A(C;). Let D; have dimensions (a;, b;).
Then E; must have dimensions (a;,b;4+1). It is clear that

»

-1

x

-1

k
<1, Y h<FEf1), Y bu<FELQ).

i=1 i=2

1
-
.
1

i
Furthermore, both a; b; and a; b;;; are less than or equal to p. Thus, A(S,) does not exceed

k-1
2p+ Zae (25 + biy1),

i=1

subject to the abovementioned constraints. We will maximize

k-1
Z as bi.
s—1
We have
k-1 k-1

a; (by the Cauchy-Schwarz inequality)

-
1
—
-
1]
-

A similar argument remains valid if the b;’s are replaced by b;41. Thus,
A(Sp) <2p+3pF. i

The following theorem partially overlaps with results in [16,21].

THEOREM 11. For any bounded nondecreasing f on [0, 1],

EN, < nf),
n<6+8 I

PROOF. We construct nested functions f; as follows: let fo = f. In the notation of Lemma 10,
we remove from the area under f the set S,, where p > 0 is to be chosen further on. For every
z € (0,1), define fi(z) = inf{y : y € Sp}. From f;, we construct f, in a similar manner, and so
forth. Let M; be the number of points (Xj,Y;) for which fi;1(X;) < Y; < fi(X;). Consider a
point (X;,Y;) counted in M;. Clearly, A(A(X;,Y;)) > ip by construction. Thus, the point is a
maximal layer point with probability at most (1 — ip/ fol F)"~1. Thus, if we define A = fol f and

7= (2p+3/pf(1))/A,

A

<n +(1—£)n‘1 + 1..21_’ " +...< i —ip/A(n-1)
s ng hY nq X ng : _nq(_ge

-1 n—-1
EN,,gEM0+(1-§)" EM1+<-“;—”) EM2+(1—3’3) EM;+---

— nq
T 1= e~p/An=1)"
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Take p = A/(2(n — 1)). Then, assuming n > 1,
o/ T
_("—1)(1-\/_) Vi =1(1~/1/e)
<G T IO '
Observe that the upper bound is scale-free, and does not require any smoothness assumptions

regarding f. Theorem 11 provides the main tools to the problem of bounding EN,, whenever f
has an infinite peak at one. A typical result, one of many possible such results, is the following.

THEOREM 12. Assume that f is nondecreasing on [0,1] and that [ f1*® < co for some a > 0.

Then 14a 1/(2a+1)
a a
wwnzene(J(3))" -

for some universal constants ¢, c'.

ProOF. Again, we will use the subadditivity property of the proof of Theorem 6. Let I and J be
the collections of indices of points with ¥; < r and ¥; > r respectively, where r > 0 is a constant
to be chosen further on. Clearly,

14a
BNy <BlJ| =} [(7-min(s,n) < [ L]

by Chebyshev’s inequality. Furthermore, by Theorem 11,

=6+8\/¥-

Since EN, < EN;+EN;, we obtain an upper bound that is a function of r, n and f. Minimization
with respect to r shows that we should take r proportional to

(2)1/(2a+1) (/ f1+a)2/(20+1) .
3 .

REMARK. The upper bound of Theorem 12 is again scale-free, as it should be. Note that [ fi+o
measures the peakedness of f, while the upper bound can vary from o(y/n) to o(n).
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