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A b a t r a c t - - C o n s i d e r  a nondecreasing nonnegative integrable function f on [0,1]. Draw an  indepen- 
dent sample (X1,Y1) . . . . .  (Xn,Yn)  of size n from the uniform distr ibut ion under  f ,  and  let Nn be  
the  number  of records in the sample, where (Xi,Yi) is a record when, for all j # i, e i ther  Xj > Xi or 
l~ < Yi. We study the dependence upon  f of the constant  C in the  asymptot ic  formula ENn  " CV/'ff, 

and  show tha t  whenever f 2  f0 > 0, Nn/ENn --* 1 in probability. The results are related to the e x -  

pected t ime analysis of algorithms for finding the collection of all records (i.e., the maximal  layer). 

I. INTRODUCTION 

Consider a nondecreasing nonnegative function f on [0, I] and let (X1, YI),..., (Xn, Yn) be inde- 
pendent, identically distributed (i.i.d.) random variables uniformly distributed in the set 

A = {(z ,y)  : 0 < z < 1, 0 < Y _< f (x )} .  

We say that  (Xi, Yi) corresponds to a record (or is a record) if Y~ = max{Yj : Xy _~ Xi}. Let 
N ,  be the number of records in a sequence of length n. In this paper, we are interested in the 
behavior of N~. In particular, we will obtain 

• the first term in the asymptotic expansion of N~; 
• explicit inequalities related to Vat N~ and EArn; 
• a weak law of large numbers stating that  Nn/EN, ~ 1 in probability, as n -~ oo. 

Some of these results require a certain smoothness on the part  of f .  Interestingly, the weak law of 
large numbers is universally valid. In the particular case f - 1, N~ is distributed as the number 
of records in an i.i.d, sequence of continuous random variables, and its properties are well-known 
(see, e.g., [1]). Among these, we cite: 

• EArn = E L I  ~ = l o g n + 7 + o ( 1 ) ;  
• VarNn .-. Iogn; 
• Nn/EN,~ --+ 1 in probability, as n ~ oo; 

• (N, -EN,  O/~x/V'-~--N-~, ~ N(0, 1) as n - .  oo, where £ denotes convergence in distribution, 
and N(0, I) is a s tandard normal random variable. 

An early reference on the subject is [2]. There are also many strong convergence results available, 
but  they do not necessarily carry over to our model because our sequence does not grow from 
left to right. Prom now on, unless mentioned otherwise, all integrals are over [0, 1]. When f is 
monotonically increasing, the situation is very different, since we expect Nn to be larger than in 
the case f - 1. Indeed, there is a sudden jump from log n behavior to x/~ behavior as can be 
seen from the following result. 
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THEOREM I. Let f be absolutely continuous on [0, a) for all a < I. Then 

li i2f--  i. 

The right-hand-side in the inequality of Theorem I can be oo for functions f with an unbounded 
peak as z I" 1. Furthermore, under slight regularity conditions, equality is reached and, in fact, 
Nn/ENn ~ 1 in probability. The curves for which we have no specific answer in this paper 
include the non-smooth curves, and those with a large infinite peak as x T 1. In the latter case, 
it is for exmnple possible to have rates of increase that are between ~ and O(n).  However, we 
always have the following theorem. 

THEOREM 2. For any f ,  EAr, = O(n). 

The motivation for this paper is triple: first of all, the model generalizes the standard model 
with f - 1 and takes a time factor into account. Second, records correspond to points on the 
maximal layer of the sample; the maximal layer is an object that has received some attention in 
computational geometry (see [3-12]). The expected size of the maximal layer in ]id is studied 
in [13-18]. Third, the properties of Nn are essential in the analysis of the expected time taken 
by certain algorithms for computing the maximal layer of a cloud of points. 

2. TWO BASIC LEMMAS 

In the remainder of the paper, we will need a fundamental fact about the differentiability of 
monotone functions. We have the following lemma. 

LEMMA 1 (NATANSON [19]). Let f be a bounded nondecreasing function on the real line with 
lim~l_oo f ( x )  -- O, and let f '  be the derivative o f f  wherever it exists. Then 

(a) i f  S is the set of  all x /'or which f '  exists and 0 < f '  < oo, then f$c dx = O, where S c is 
the complement of  S; 

(b) for z < y, we have fv i t  <_ f ( y )  _ f ( x ) ;  furthermore, f [f'l < oo; 
(c) i f  h e ( z )  : fs_oo f '  and f ,  = f - f~c, then f~¢ = f '  almost everywhere and f~ = 0 almost 

everywhere. 

In part (c), fac represents the absolute continuous portion of f and fs the singular portion. 
When f is absolutely continuous, we see that fff f '  = f ( y )  - f ( x )  for all 0 < x < y < 1. 

Let A(x,y) be the set defined by {(u,v) : 0 < u < x, y < v < f(u)}, and A ( X , Y )  be defined 
similarly provided that (X, Y) is distributed as (X1,Y1). Thus, (Xi, Y~) defines a record if and 
only if A(Xi,]~) contains no (Xj, Yj) with j # i. We have the following lemma. 

LEMMA 2. Nn is d is t r ibuted as 

n 

~==~IA(xi,Yi) contains no data point" 

i = 1  

Also, 

EArn = n P{A(X1, ]I1) is empty} 

= hE(1 - u ( A ( X , Y ) )  " -1)  

< n E e - ( n - l )  p(A(X,Y)), 

where p is the uniform probability measure on A(1,0). 
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3. S O M E  P R O O F S  AND R E M A R K S  

Note first that  f :  f ( z ) d z  < oo, for otherwise, we would not be able to define a uniform 

distribution on A in view of the fact that  fA dz dy = f l  o .f(z) dz. We will call the given area of 
A ,~. It is possible to have f v f f  r = oo. In that  case, Theorem 1 shows that  

EN. 
~ - -+  ~ .  

An example is furnished by f ( z )  = 1/(1 - z) logl+~(1/(1 - x)) for ~ > 0. Such functions 
necessarily have an infinite peak at one. However, there are functions with an infinite peak for 
which f V0 v < oo. 

It should also be noted that  for purely singular functions, we have f ~ = 0 since f~ = 0 
almost everywhere. For such functions, EN,  can tend to oo at any rate between log n and o(n). 
The functions with an infinite peak can attain any rate between ~ and o(n). 
PROOF OF THEOREM 2. From Lemma 2, we note that  

= E e - ( n - I )  p ( A ( X ' Y ) )  
n 

and this tends to 0 by the Lebesgue dominated convergence theorem if for almost all x(p) we 
have p(A(x, y)) > 0. Let S be the subset of A consisting of all (z, y) with p(A(x, y)) = 0. We will 
show that  p(S) -- 0. Observe that  S = Nn Sn, where S,, = {(z, y) : p(A(z,  y)) < 1/n}. Thus, 
p(S) = limn...¢o p(Sn). It suffices to show that  the given limit is zero. Take a constant D such 
that  p(A N {y : y > D}) < e, for a given small e. Partition the entire plane into a regular grid 
with grid size 1 / v ~ .  Thus, each cell completely contained in A has p measure 1In. In each row, 
mark the leftmost such cell, and in each column, mark the topmost such cell. Mark also all cells 
whose intersection with the complement of A and with A are both non-empty. It is easy to see 
that  Sn is included in the marked cells. The number of marked cells with nonempty intersection 
with A N {y:  y < D} does not exceed 3 (1 + D) ~-~. Thus, 

p(S.) <_ e+ 1 (3 + 3 D ) ~  = e + o(1). 
n 

This concludes the proof of Theorem 2. | 

4. L O W E R  BOUNDS F O R  T H E  E X P E C T E D  N U M B E R  O F  R E C O R D S  

THEOREM 3. For all monotone f on [0, 1], we have 

ENo , f!_ Y_,/-f 
- V 2  e f f "  

PROOF. From Lemma 2, 

ENn+I = (n + 1)/1/.f(x) ~(1 - p(A(x,y))) n dydx. 
J 0  J 0  

By Fatou's lemma, we are done if we can show that  for almost all z with f ' ( x )  > 0, 

rf(=) V~2 linm~f nv/-n-~T]0 (1 -p (A(x , y ) ) )n  dy > ~ v / - ~ .  

By Lemma 1, it suffices to consider only those x E (0, 1) for which f l  exists and is finite and 
positive. Let 0 < e < f ' ( z )  be arbitrary. Then, by the existence of f ' (x) ,  we have for all 6 smaller 
than some A = A ( z ,  e), 

f (x )  -- 6(f '(x) -- e) ~_ f ( x  -- ~) ~_ f (x)  -F 6(.if(x) Jr- e). 
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Uniformly over all y < f ( x )  with f ( z )  - y < A ( f ' ( z )  - e), we have 

So, 

, (A( , ,  v)) <_ 
( f ( z ) - - y )  2 

2A ( f ' ( x )  -- e)" 

/ / ( x ) (1  p(A(z,y))n dy > 1 - 2A ( / ' (z)  - ) 
J 0 d m a x ( 0 , J ' ( z ) -  4(I'(x)- 0) 

---- / z x ( ' ' 0 ~ 4 ~  ( 1 - - z 2 ~  n 
Jo 2./ vqr(~-Tvqd"/v~ 

fO ° 
~ v / - f (~)  - .  e - e l 2  v ~ d z / ~  

Since we can choose e arbitrarily small, we have shown the Theorem. | 

THEOREM 4. For all monotone f on [0, I], we have 

def 1 
EArn > Hn = 1 + . . . + -  = l o g n + 7 + O ( 1 ) ,  

n 

where 7 = 0.55.. .  is Euler's constant. 

PROOF. Let M be a very large constant to be picked later. Replace all Y/'s by 

M 
Yi' - f ( X i )  Yi, 1 < i < n. 

It is easy to verify that Y/' is independent of Xi for all i. Furthermore, Yi' is uniformly dis- 
tributed on [0, M]. Also, if f ( X i )  _< M and (Xi,Yi') is a maximal layer point in the collec- 
tion ( X 1 , Y [ ) , . . .  , (Xn ,Y~) ,  then (Xi,Y/) is a maximal layer point in the original data set. If 
f (Xi)  > M, this statement may not be true. Let Nn and Nn ~ be the cardinalities of the maximal 
layers with the original and the transformed data, respectively. Then 

1% 

N. >_ N" - ~ ZtS(x,)>. 1 
i = 1  

Taking expectations, and letting M tend to infinity shows that 

EArn > lim inf ENn ~ . 
M---* c~ 

But when Xi is independent of Yi', the number of maximal layer points Nn ~ satisfies [13] 

EN~ = Hn. | 

THEOREM 5. For all monotone ] on [0, 1], we have 

liminf E N" > A0, 
n-.oo log n -- 

where Ao = lim61o A6 and 

A ~ = # z : z e [ 0 , 1 ) ,  l i m f ( y ) > l i m f ( y ) + &  
y l ~  yT:~ 

(Note: Ao is the number of  points o£increase o f f . )  
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PROOF. Fix 6 > 0. Let 0 < zl  < z2 < .- .  < xA, be the points from [0, 1) counted in At. Let 

/ Xi÷l 

P i  = f ,  
,lag i 

where by definition, ZA,+t = 1. On the interval [xi, zi+l) ,  Define 

b,---- lim f (y) ,  ai = l im f(y).  
ylz i  ~l~ 

For every Xj • [zi, xi+l),  replace Yj by 

bi 

Note that  every such Y / i s  independent of Xj and uniformly distributed on [0, bi]. In addition, 
we add A6 new data  points at the positions (zi,ai), 1 < i < A~. The crucial observation is that  
the number of maximal layer points in the new data  set is not greater than Nn + At. Among 
(Xj,Y/) ,  the number of points (say, Mi) falling in [xi,xi+l) × [ai,b,] is binomially distributed 
with parameters n and 

bi - ai 
qi  "-- P i  × b"---'~-s 

When we condition on Mi, the expected number of maximal layer points among the Mi points 
just  marked is at least HM, > log(1 + Mi) (Theorem 4). Thus, 

EAr. >_ E E log(1 + Mi) + At - A~ 
i--1 

A6 

> E l o g ( 1  + EM,) 
i--1 

As 

= E l o g ( 1  + nqi) 
i=1 

~ At log n. 

(Jensen's inequality) 

Now let 6 tend to zero. | 

The lower bounds collected thus far show that  there are two processes at work. The smooth 
increases as measured by f '  contribute to the coefficient of a vrff term. Abrupt points of increase 
of f are counted in a coefficient of a log n term. The latter phenomenon is somehow similar to 
one seen in the study of the expected number of maximal layer points for uniform distributions 
in a staircase-shaped polygon with k steps, which grows as a constant times k log n (for a similar 
result for the number of convex hull points in a k-gon, see [20]). We note that  in Theorem 5, A6 
can be oo. In such cases, we can attain any rate of convergence between log n and o(n). This 
is slightly annoying, since these counterexamples can be chosen in such a way that  there are a 
countable number of points of increase of f ,  and f '  = 0 elsewhere, as in infinite staircases. Thus, 
the lower bound of Theorem 3 cannot possibly have a similar-looking universal upper bound, 
except perhaps under smoothness conditions on f .  

A Class of Counterexamples 

Partition [(3, 1] into intervals of length 1/2 i, i = 1, 2 , . . . ,  the smaller intervMs to the right of 
larger intervals. On the ith interval, let f take the value ai = 2 i ci, where ci is to be specified. 
We want the integral under f to be one, so we require 

y • c i  : I .  
i=1 
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We also require that  ci >_ ~ c i - t  so that  ai T. Observe that  the ith interval contributes at least one 
maximal layer point if at least one j exists for which Xj falls in the i th  interval, and Yj E (ai-1, ai] 
(a0 -- 0). The probability of this event is 

1 n 
1 - (1 - (ai - a,-1)2-~) n = 1 - (1 - (ci - ~ ci-1)) 

1 
> 1 - (1 - ~ c,)" 

3 
> l - -e  -1, i fc i>_- - .  
--  n 

'Ihke ci "., i -a for some p > 1. Then the number of i's for which ci >_ 3/n grows at least as 
(n/3) 1/p. Thus, 

( n )  l / p  
EArn _> (1 - e - 1 )  (1 + o(1)) 

This can be pushed as close to o(n) as desired by decreasing p to 1. Observe that  f '  is identically 
zero except at the borders of the intervals. Also, f necessarily exhibits an infinite peak at one. 1 

5. U P P E R  BOUND AND E X A C T  A S Y M P T O T I C S  

THEOREM 6. Assume that f is monotone on [0, 1], and that either f is concave, convex, or 
Lipschitz (C), i.e., we have If(z) - f (y) l  _< CI x - yl for aH m, y E [0, 1]. Then 

l i m ~ p  - - ~ -  _< ~ f 

In fact, 

= V f( 7ol f 

Therefore, 

[ f(~) 
= v r .x-1 exp dv 

JO 

fs(~) y)~) 
_< vrnA-1 j0 exp (--n(f(x)-_~ dv 

_< 

PROOF. The second part of the theorem is a corollary of Theorem 1 and the first part of this 
theorem. 

Extend f on the real line by setting f ( z )  = 0 for x < 0 and f ( z )  = f(1) for z _> 1. Assume 
1 

first that  f is Lipschitz on the entire real line. Define A = f0 f ,  let p be the uniform probability 
measure defined in the proof of Theorem 1, and let Ax,v be the collection of all (z,w) with 
0 _ < z < x a n d  f ( z ) > w > y .  Then 

ENn+I = (n + I) ,~-1 (1 - p(A=,v)) n dydx 
JO 

/o I _<(n+l) exp(-nu(A , ))dyd  
JO 

) ~1 n -112 gn def._ (n -t- 1 (z) dx. 

If f is Lipschitz with constant C, then 

( f (x )  -- y)2 
u(a,,~) >_ 2C ~ 
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Thus, for all x, gn remains bounded. Observe that  

EN,,+, < [ '  g,,(,) d,,, 
nVr~'T - V n Jo 

and that  On is uniformly bounded over [0, 1]. Thus, by Fatou's lemma, Theorem 6 follows for 
the Lipschitz functions if we can show that  for almost all z, limsupn_.cQ gn(Z) _< ~/~ff(z)/2A. 
Consider first x such that  f (x)  > 0 and f ( z )  > 0. For fixed ~ E (0, 1), find 6 > 0 such that  

P(Ax,v) > (1 - e) ( f (x)  - y)a 
- 

whenever y > f(z) - 5 > 0. Thus, 

Mr~fI(')-' ( n(l_e)62'~. ~/'~fl(.) exp ( gn(z) <_ "~  ao exp ~,Tz ~ '  ,) dy + T a/Or)_ , 

- V A (1 - e ) "  

n ( 1  - ~)(f(z) - -  y)2) 
2f'(z) A dy 

By the arbitrariness of ¢, the desired result follows for this first case. The case f(z) = 0 can be 
discarded straight away. Finally, we consider f(z) > 0 and f ( z )  = 0. For fixed e E (0, 1), find 
6 > 0 such that  

( f ( x )  - y)2 u( A=,~ ) >_ 2~ ~ ' 

whenever y > f(z) - 6 > O. Thus, 

gn(x)<--A--jo exp \ 2~A} dY+--A'JI(=)_6exp (" 

< o(1) + ~/~'~-~. 

n (f(x) -- I/) 2'~ 
2~ A ) dy 

This is as small as desired by our choice of e, which once again establishes the sought limiting 
result. This concludes the proof if f is Lipschitz on the real line. 

When f is merely Lipschitz on [0, 1], then it may have a jump at the origin. Assume thus 
that  f (0)  > 0. Then, partition the data  points into sets I and J ,  where I collects all indices j 
between I and n such that  Yj < f(0).  J captures the remainder of these indices. The cardinalities 
of I and J are denoted by III and IJI. The number of maximal layer points among the points 
with index in I(J) is denoted by NI(Nj). From the fundamental properties of records, we have 

E N z = E  ~1111>0 < ~-_ 
i----1 

Also, we have simple subadditivity: Nn < NI + Nj. Hence, 

EN, ENs 
fimsup,~_.,~ ~ _< limsup,~._,oo vrn " 

From the first part  of the theorem, we see that  for every e > 0, there exists a constant M such 
that  

E(Ns[iJD<--(I+e)~/~ /f(ff~_'f(o,)V/'I~IIS'>-M+[J[I'sI<M, 
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and thus, using 

we obtain 

< J. f (s . - / (o) )  
- V f f  ' 

E N ~ _ < ( I +  V 2 ~ / f f + M .  

If f V T  > 0, the result of the theorem follows from this and the arbitrary nature of e. Consider 
the last case: f '  = 0 almost everywhere, and f is Lipschitz (C). Clearly, f is absolutely continuous 
on [0, 1], and therefore, by Lemma 1, f is constant on [0, 1]. For this distribution, ENn/log n --* 1, 
so that  ENn/  Vr~ ---* 0 as required. 

Next, consider f concave and nondecreasing on [0, 1]. Then we note that  except at the origin, 
f is necessarily Lipschitz with some constant C. Assume first that  f ( z )  I 0 as x ~ O. Again, 
consider subsets I and J of indices between 1 and n with i E I if Xi > z and i E J if Xi < z, 
where z is picked so small tha t  f ( x ) / f f  < ~ for a prespecified small 6 > 0. By Theorem 11 
below, we see that  there are universal constants c, c ~ > 0 such that  

 lJI ÷c,/f( EIJI 
E N . I < c + c ' E  f - V fo f 

=c+c' fgT(x) <c+c'v  

B y  the arbitrary nature of 6 and the subadditivity of Nn (i.e., N,~ <_ NI + N~), we see that  the 
result of Theorem 6 follows if it is true for Nt.  For this purpose, take e > 0. We note that  it is 
impossible tha t  f V ~  = 0, for this would force f - lim~10 f ( x )  = 0, thus making f f = 0. By 
the first part  of the theorem, 

E(NI IIJI)_< (1 +e)V ~ ~ V/~IIII>M +IIIII,I<M, 

where M depends upon e only. Unconditioning and using Jensen's inequality as done above shows 
that  

_ Iv :I' 
from which the desired result follows once again. Assume next that  f (z)  ---* c > 0 as z I 0. If 
f f  > 0 on a set of positive measure, then we argue as above using the subadditivity trick again 
to deduce the result. Finally, if f° = 0 almost everywhere, then the concavity implies tha t  f - c ~ 
for some constant c' > 0. In this case, we know that  E N ,  = o(logn),  so that  the result is once 
again verified. This concludes the proof for concave functions f .  

The  theorem is also easy to verify for bounded convex functions on [0, 1]. The  proof is not 
given here. 1 

REMARK. Theorem 6 remains valid for functions f on [0, 1] that  are nondecreasing, and either 
concave or convex on each of a finite number of intervals into which [(3, 1] can be partitioned. 

6. V A R I A N C E  

In this section, we consider general monotone f on [0, 1]. The  purpose is to prove the following 
inequality. 

THEOREM 8. For all monotone f on [0, 1] and all n > 1, 

n 
Var{N.) < (S + 21ogn)EN. + 

- n - I  
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PROOF. We introduce Ai, the set of all z ,y  for which y _< f(z) ,  yet z < Xi and y > Yi. h is the 
indicator function of the event that Ai does not capture any of the (Xj,I~), 1 <_ ] <_ n,j  ~ i. 
Define 

Pi defEh = E(1 -p(A1)) n-l, 

where p is the uniform probability measure on {(z, y) : 0 < z < I, 0 < y < f(z)}. 

symmetry in our problem, 
By the 

Var{N.}-EN~-E2N.=E I i + E I i I j - E p ~ - E p i p  j 
\i=l j#i i=1 j#i 

11 

- ~ -~p , (1 -p , )+  E ( E I ,  Ij -PiPj)  
i=1 j ~ i  

<_ ENn + n (n - I) (Ell/2 - Pl P2)- 

Assume that n _> 2, and let B denote the event that (X2,Y2) is a maximal layer point among 
those points with X2 > XI,YI < Y2 <_ f(Xl). Let C denote the event that (X2,Y2) is a maximal 
layer point among those points with X2 > XI, Y2 > f(Xl). Let SI be the rectangle defined by 
YI < Y _< f(X1), and XI _< z < I, and let IS~I be the number of (Xi, Y/) pairs in $I: conditional 
on (X1, YI), this is binomially distributed with parameters n- 1 and p(SI). We will also need 
the inequality 

n-1 
ENn-1 <_ 1 + -- ENn, 

n 

which follows from 

EN.- I  - ENn = n Ep(A1) (1 -/~(A1)) "-2 - E(1 - ~(A1)) n-~ < - -  
n EN._I 

n - 1  n - 1  " 

By symmetry, 

E/~/2 = 2EI1 I~ Ix,<x. 
2Eli 12 Ix1<x2 IY2>I(xl) + 2E11 12 Ix~<x2 IY,<Y2<_I(x~) 

= 2E(1 - p(AI) - p(A2)) n-2 Ix,<x, Iy2>l(xl) + ~ E I1 I~ I(xj)5)es , 

2 E(II(1 +log[Sll)) _< E 0  - ~ (Ad)  "-~ (1 - ~,(A,)) "-~ + .  _ 1 

< E ( 1 - p ( A 1 ) ) " - 2 ( 1 - . ( A 2 ) ) " - 2 +  2 ( l + l o g n ) p l  
- n - 1  

- - - - - - 1  + n ( n - 1 )  

( 1 E N . )  ~ ( 2 + 2 1 o g n ) E N .  
< ~--c-f_ i + + - n n ( n  - 1)  

( 1 ) '  (4-{-21ogn)EN, 
= ~ +PIP2+ n ( n -  1) 

We used the fact that the expected number of maximal layer points for an i.i.d, sample of size k 
k 1 < 1 + log b. Combining these drawn from a uniform distribution on the unit square is ~'~i=1 ~" - 

bounds shows that 
n 

v a r { N . }  < (5 + 2 1 o g . ) E N .  + - - .  m 
- -  n - - I  
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7. W E A K  LAW O F  L A R G E  N U M B E R S  

THEOREM 9. For any monotone f on [0, 1] for which E N , / l o g n  --~ oo, we have 

N. 
---* 1 in probability 

EN. 

as n ~ ¢x~. In particular, this is true whenever f~ f ' ( x )  dz > O. 

Theorem 1 follows directly from Theorems 3 and 8 and Chebyshev's inequality. In the vast 
majority of the cases, we have liminf,_.o¢ EN,,/Vrff > 0, so that  the weak law of large numbers 
indeed applies. This is important to know, since it means that  the expected value is a good 
indicator of the size of the maximal layer. It also means that  the actual asymptotic value of 
second order quantities such as the variance of N,, is less important,  except perhaps in situations 
in which one wants to construct some kind of statistical test or confidence interval. 

8. A G E N E R A L  U P P E R  BOUND 

The upper bounds provided so far assumed a certain smoothness on the part of f .  Basically, 
we have treated functions that  consist of a finite number of Lipschitz, convex, or concave pieces. 
Without any smoothness conditions, it remains nevertheless possible to bound EAr, from above 
in useful manners. The following lemma will be useful. 

LEMMA 10. Let f be a nondecreasing function on [0, 1] which remains bounded, and let p > 0 
be a given number. Let Sp be the collection of all (z, y) such that 

A(A(z, y)) < p, 

where A(.) denotes Lebesgue measure. Then 

< 2p + 

PROOF. Extend f on (1, oe) by defining f _= f(1)  there. Extend the definition of A(z, y) to 
include all x on (0, eo). Let Lp be the collection of all (x, y) for which A(A(z, y)) = p. Construct 
a cover of Sp as follows. Begin with any point on L2p having y = 0. Call this ( z l , y l ) .  Find any 
point on Lp with x-coordinate xl ,  and call its y-coordinate Y2. Repeat this process by finding 
(x2, Y2) on L2p and so forth. Stop the process after k steps where k is the first index for which 
x~ > 1. (It is possible that  k is infinite.) Define (x0, y0) as any point on Lp with Y0 = 0. Clearly, 
the sets A(xi ,y i ) ,  1 < i < k, cover Sp. Thus, 

k 

sp c 
i = 1  

To describe things a bit better, we need to introduce sets Ai = A(x i ,y i ) ,  Bi = A ( x i - l , y i ) ,  
Ci = Bi N Bi+1, Di = Ai - (Bi U Bi+l), and Ei = Bi+l - (Bi U Bi+2). We note the following. 
Clearly, Bi N Bi+l C A i .  Also, Bi has a vertex on Lp, and Ci is not empty. If Ci were empty, 
then we would have 

A(AI) > A(Bi) + A(Bi+I) > 2p, 

which is a contradiction. Thus, Di and Ei are both rectangles. Furthermore, 

k- -1  

S v C_ A0 OAk U U ( D i  UEi OCi).  
i = 1  

We will use this inclusion in a nonoptimal manner since some Ci's may overlap: 

k - 1  

A(Sp) _< 2p + E ( A ( D i )  + A(Ei) + A(Cl)). 
i = 1  
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But since A(B/) - A(Bi+I) = p, we see that A(Di) - A(C/). Let Di have dimensions (ai, hi). 
Then E /mus t  have dimensions (ai,b/+l). It is clear that 

k - 1  k - 1  k 

E a i < l ,  ~_~bi<Fd-=df(1), ~"bi<Fdef f (1) .  
i = 1  i = 1  / = 2  

Furthermore, both a /b /and  a/b/+i are less than or equal to p. Thus, A(Sp) does not exceed 

k - 1  

2p+ + b,+l), 
i = 1  

subject to the abovementioned constraints. We will maximize 

k - 1  

i----1 

We have 

f 
k - 1  k - 1  | k - 1  k - 1  

E a' bi = E x/'~ bi (~/fi-~ <- ~ Z ai b~ E a' 
i=l i=l i=l i=l 

I k-1 k-I  
<_ E p b ,  E a ,  (becausea, b, <p )  

i = l  i----1 

(by the Cauchy-Schwarz inequality) 

A similar argument remains valid if the bi's are replaced by bi+l. Thus, 

A(Sp) < 2p + 3x/p F. | 

The following theorem partially overlaps with results in [16,21]. 

THEOaEM 11. For any bounded nondecreasing ] on [0, 1], 

ZN,, <6+ V :: 

PROOF. We construct nested functions fi as follows: let f0 = f .  In the notation of Lemma 10, 
we remove from the area under f the set Sp, where p > 0 is to be chosen further on. For every 
z E (0, 1), define f l(x)  - inf{y : y E Sp}. From f l ,  we construct f2 in a similar manner, and so 
forth. Let Mi be the number of points (Xj, I~) for which f i+l(Xj)  < Yj _< fi(Xj). Consider a 
point (Xj , I~)  counted in Mi. Clearly, A(A(Xj,Yj)) _> ip by construction. Thus, the point is a 
maximal layer point with probability at most (1 - ip/f~ f)n-1. Thus, if we define A - f0 i f and 
q = (2p + 

_ ~ /  E M ;  + . . . . .  

<nq+ 1--~1 nq+ 1 -  nq+...<_nqEe-iPla("-l) 
i=O 

nq 
1 - e-p/a("-1)" 

2G:S-C 
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Take p = A/(2(n - 1)). Then, assuming n > 1, 

n 3 n V / ~ ) / 2 A  EAr,, _< + 
( . -  1)(1 - v :-r(x - v47 ) 

2 3 < 
- (1_ V/~) (I- X/~) 

| 

Observe that  the upper bound is scale-free, and does not require any smoothness assumptions 
regarding f .  Theorem 11 provides the main tools to the problem of bounding EArn whenever f 
has an infinite peak at one. A typical result, one of many possible such results, is the following. 

THEOREM 12. Assume that f is nondecreasing on [0,1] and that f fl+, < oo ?or some a > 0. 
Then 

EJ~n __ cjcc,(/ (_~)l+a) I/(2a'l) < | 

for some universal constants e, c'. 

PROOF. Again, we will use the subadditivity property of the proof of Theorem 6. Let I and J be 
the collections of indices of points with 1~ _< r and ~ > r respectively, where r > 0 is a constant 
to be chosen further on. Clearly, 

E N j  <_ El J[ = ~ ( f -  min(f , r ) )  < n ra A 

by Chebyshev's inequality. Furthermore, by Theorem 11, 

r P 
EN,  _< 6 + 8 E X / ~ / .  j. min(f , r )_< 6 + 8~/n f n~n(f, r) ~/'J" min(f,  r) 

= 6 +  8 ~ / ~ .  

Since ENn <_ ENI+ENj, we obtain an upper bound that is a function oft, n and f. Minimization 
with respect to r shows that we should take r proportional to 

(~)I/(2aa¢l) (/.fl+a) 2/(2"+I) | 

REMARK. The upper bound of Theorem 12 is again scMe-free, as it should be. Note that f fl+a 
measures the peakedness of f ,  while the upper bound can vary from o(v/-~) to o(n). 
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