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A STUDY OF TRIE-LIKE STRUCTURES UNDER THE
DENSITY MODEL'

BY Luc DEVROYE

McGill University
We consider random tries constructed from sequences of i .i.d . random

variables with a common density f on [0,1] (i.e., paths down the tree are
carved out by the bits in the binary expansions of the random variables) .
The depth of insertion of a node and the height of a node are studied with
respect to their limit laws and their weak and strong convergence proper-
ties . In addition, laws of the iterated logarithm are obtained for the height
of a random trie when jf 2 < ~. Finally, we study two popular improve-
ments of the trie, the PATRICIA tree and the digital search tree, and show to
what extent they improve over the trie.

Introduction. Tries are efficient data structures that were developed and
modified by Fredkin (1960), Knuth (1973), Larson (1978), Fagin, Nievergelt,
Pippenger and Strong (1979), Litwin (1981), Aho, Hopcroft and Ullman (1983)
and others. The tries considered here are constructed from n independent
infinite binary strings X 1 , . . ., Xn . Each string defines an infinite path in a
binary tree: A 0 forces a move to the left, and a 1 forces a move to the right .
For storage purposes, n nodes are identified, one per path, which will repre-
sent the n infinite strings ; we say that Xi is stored at node i . The tree is now
pruned so that it has just n leaves at the n representative nodes . Observe that
no representative node is allowed to be an ancestor of any other representative
node. Clearly, there are infinitely many possible trees . We define the trie as the
minimal tree of the type defined above . This implies that every internal
(nonleaf) node has at least two leaves in its collection of descendants .

In the uniform trie model, the bits in the string Xl are i .i .d. Bernoulli
random variables with success probability p = 0 .5. The Xi's can also be
considered as random variables on [0,1] when the bits in the strings are just
the fractional binary expansions . Thus, in the uniform trie model, the Xi's are
i .i .d. uniform [0,1] random variables [see, e.g., Knuth (1973) or Aho, Hopcroft
and Ullman (1983)] . Other models have been proposed in the literature : In the
density model, the Xi's are i .i .d. with density f on [0,1] [Devroye (1982,
1984)] . In this case, the bits are no longer independent . It is this model that
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will be dealt with in the paper . Others have considered the singular continu-
ous model, in which the strings form an m-ary expansion, and the symbols in
the string (items in the expansion) occur independently with probabilities
P o' . . . , pm -1 . When the probabilities are unequal and none is 1, then the Xi's
are singular continuous random variables . Noting that alphabetic data rarely
follow the uniform or singular continuous models, Regnier (1988) and Sz-
pankowski (1988b) considered the Markovian model, in which the strings of
symbols form a Markov sequence . A strongly mixing model has been studied
by Pittel (1985) .

The random tries thus constructed are used in computer science applica-
tions when data need to be stored and the whole is to be regarded as a
dictionary; that is, we can insert new elements, delete certain elements, look
up information stored at certain elements and modify information stored at
certain elements . If element Xi is stored in node i, we usually associate with
node i additional information regarding X i that is of no concern to us here ;
just think of it as the definition of X i in a dictionary . To look this information
up forces us to access the root, and then to follow a path down the tree as
indicated by the bit string in Xi, until we reach the node at which Xi is stored .
The number of steps is equal to the length of the path linking X i and the root.
We call this distance the depth D n i of node i in a trie of size n . When we want
to give guarantees to a potential user about the time required for a look-up,
then we should really refer to the height Hn

defmax
i Dni . Another quantity of

interest to the user is the time required to insert a new element in the
dictionary. This is clearly seen to be proportional to the depth of node n + 1 in
a trie of size n + 1 . We will use the notation D n + 1 . The above quantities have
a direct relationship to the time required to carry out certain operations . Other
key quantities not studied here include : the conditional depth of insertion
C def

E{Dn + 1 IX1 , . . . , Xn} (which measures the depth of insertion in a givenn
trie when averaged over all possible random variables that have to be inserted),
the average depth An = ( 1/n) E n

=1 Dn, i and the size Sn , the number of nodes
in the trie (which can be greater than n since only leaves represent elements) .
The size of the trie can be superlinear for some densities ; yet, for two simple
modifications, PATRICIA and the digital search tree, the size is guaranteed to be
0(n) in the worst case ; therefore, a study of its properties is less important at
this stage .

The asymptotic behavior of tries under the singular continuous and uniform
models is well known. It should be clear that tries grow unboundedly as
n -~ oo . Yet, alphabetic data are by definition of limited length . Thus the
asymptotic analysis for the singular continuous model may not reflect what is
observed in practice for such tries . If we use the trie to store real numbers,
however (e.g ., times of events in discrete event simulation ; positions of parti-
cles in a physics simulation), then the asymptotic analysis for the density
model does indeed have a direct relationship with the "real world ." Hence the
need to understand the properties of the density model .
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Most of the key properties of tries under the singular continuous model are
well understood . The height is studied by Regnier (1981), Mendelson (1982),
Flajolet and Steyaert (1982), Flajolet (1983), Devroye (1984), Pittel (1985,
1986) and Szpankowski (1988a, 1989) . For the depth of a node, see, for
example, Pittel (1986), Jacquet and Regnier (1986), Flajolet and Sedgewick
(1986), Kirschenhofer and Prodinger (1986) and Szpankowski (1988b) . The
size is analyzed in Jacquet and Regnier (1986), and the average depth in
Kirschenhofer, Prodinger and Szpankowski (1989b) . See also Flajolet and
Puech (1983, 1986), Flajolet (1983) and Flajolet, Regnier and Sotteau (1985) .
To put tries into a broader context, see Vitter and Flajolet (1990) .

In this study, the depth and the height of a trie under the density model are
studied in more detail. Arguments include Schur convexity, the Lebesgue
density theorem and the Hardy-Littlewood maximal function . Furthermore, it
is shown how two related improvements of tries, the PATRICIA tree [Knuth
(1973)] and the digital search tree [Coffman and Eve (1970)], behave under the
density model. Another variant, the DISC [Luccio, Regnier and Schott (1989)],
will not be discussed here .

The main message in the paper is that the trie and its variants are
remarkably robust under departures from uniformity . The asymptotic behav-
ior of Dn and Hn is basically like that of the uniform trie model ; typically, the
density f only affects the second term in the asymptotics . We first show that
for any density, Dn + 1 - log 2 n has a limit law depending upon f. The same is
true for Hn - 2 log e n when j f 2 <00 . In both cases, the density affects the
"constant" term in the asymptotics . The factor if2, which is an indicator of
the peakedness of f, plays a key role in the analysis of the height . This should
come as no surprise, as growing tries are bound to uncover the finer detail
of densities . Interestingly, the depth Dn is mainly influenced by the
entropy - ff log f . In the context of coding, Renyi (1959) and Csiszar (1969)
already noted the importance of the entropy in problems involving partitions
of the unit interval. The strong behavior and some laws of the iterated
logarithm complete the study of Hn. When jf 2 = ~, the height is no longer
concentrated about 2log 2 n, but can grow at any prespecified rate . This
dependence is investigated . Similarly, we also look at how the density influ-
ences EDn + 1 . We conclude the study by looking at the same questions for
PATRICIA and digital search trees. We will find, for example, that in both cases,
Hn/log2 n -~ 1 almost surely when ffP < oo for all p > 1 . This improves over
the behavior of Hn for the ordinary trie by about 50% . A final word about the
notation . The dyadic intervals of [0,1] are denoted by Ii, k, 1- i < 2k , k > 0,
where Ii, k = [(i - 1)/2k , i/2k ). For x E [0, 1), let A x, k be the unique interval
in the collection of I i, k's to which x belongs. We define qi, k = jh k f and
q, k = IAX, k f

Depth of a tries A limit law . Consider a trie built up on the basis of n
i .i .d. random variables X1 , . . ., Xn , drawn from density f . Clearly, all the
Dn, is are identically distributed, and thus we can and do write Dn for the
marginal random variable . We begin with the following fundamental property .



LEMMA Dl.

P{Dn+1 k} _

where X is a random variable with density f. Also,
2' 2k

P{Dn+1 > k} =

	

gi,k( 1 ( 1 gi,k)n) < n

	

q'2 k < n2 _k ff 2
i=1

	

i=1

PROOF . Let Xn + 1 = X. Then Xn + 1 has depth of insertion Dn + 1 less than
or equal to k if and only if IX, k contains none of the Xi ' s with 1 < i < n . The
last statement follows from Jensen's inequality . D

We have the following limit law .

THEOREM D2. Under the density model, for all constants M,

lim

	

sup
n~OO u : u+loge n integer, IuI<_M

and for all fixed u,

lim
n-p00

where u * _ L u + log 2 n ] - log 2 n .

PROOF . Note that for almost all x E [0, 1), we have
IAx, k f ~ 2 - kf(x) as

k -~ oo, where 2 k is the number of intervals into which the unit interval
is partitioned. This is a special version of the Lebesgue density theorem
[Wheeden and Zygmund (1977)] . Thus, if k = log 2 n + u, we have (1 -
IA f)n -~ e- f/2u . This concludes the first part of the theorem . The second
par' t is immediate from the first one. D

The odd format of the limit law is due to some discretization problems .
Ignoring these for a moment, we could say that the limit distribution function
is close to

F(u) = f(y)e_1
2-u d

y

Note that by the Lebesgue dominated convergence theorem, it is easy to verify
that F is a bona fide distribution function . It depends in an intricate way upon
f . From Theorem D2, we also have the following law of large numbers [see also
Devroye (1982)], where a sequence of random variables Yn is said to be Op(1)
when limM lim supn P{ (Yn ( > M} = 0 .
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= ~

	

f( 1 -
IX,k

	

i=1 li,k

2' n
q, (l

	

gi, k
i=1

n

ffI,

P{Dn+1 < log 2 n + u} - f(y)e - fcy)2 u dy

P{Dn+l <_ [log 2 n + uj} - ff(y)e
_ f(y )2-u* dy = 0,

= 0,
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THEOREM D3. For any density f, Dn - loge n = O(1).

Thus Dn shows a remarkable robustness to nonuniformity . In fact, we
cannot expect to find a structure with better asymptotic performance, since
complete binary trees need about loge n levels of nodes . It is nevertheless odd
that for any u > 0, no matter how large,

lim infP { D n + 1 _< log2 n - u } > 0 .

In other words, we beat the "optimal" (complete binary tree) value of log e n
by any large fixed amount with positive probability .

REMARK 1 (Singular continuous distributions). Assume for the moment
that the distribution of X 1 is continuous with an absolutely continuous part
and singular continuous part with support set S _c [0, 1], where the set S is
the collection of all x for which µ(x - h, x + h)/2h -~ 00 as h ~, 0, and µ is the
probability measure for X1 . Using arguments as in the proof of Theorem D2,
we note that for any u, no matter how large,

lim infP{ Dn + 1 > log2 n + u } > µ( S) .

If there is an atomic part in the distribution of X 1 , then P{ D 2 = oo} _

where the p i 's form the sequence of probabilities of the atoms . We thus
conclude that Dn+1- loge n = Op(1) if and only if µ is absolutely continuous .

REMARK 2 (Smooth limit distribution). It is instructive to look at the
smooth (i .e ., nondiscretized) distribution function

F(u) = f(y)e_1
2 - udy

The mean of the extreme value distribution function a-e
u
is y = 0.57722 . . .

(Euler's constant) and its variance is ~r 2/6 = 1.64493 . . . . It is easy to verify
that F has mean (y - H)/log 2 and variance (~r 2/6 + H2)/loge 2, where
H = - Jf log f is the entropy, and Hc2~ = Jf log e f - j 2f log f . The entropy
H of a density f on [0,1] is always nonpositive . It is maximal and 0 for the
uniform density . The quantity Hc 2 ~ governing the variance is minimal and 0
for the uniform distribution as well .

REMARK 3 (Uniform density) . Pittel (1986) obtained the limit law D2 for
the uniform density. His result states that P{ D n + 1 < log2 n + u } -~
exp( - 2_u) . This coincides with our result, except for the fact that his state-
ment does not seem to require the discretization format of D2. Without the
discretization adjustment, Pittel's result is only valid when n and u vary in
such a manner that log 2 n + u is an integer . To see this, note that P{ Dn+ 1 <
loge n + u} = P{Dn+ 1 < log2 n + v} when [loge n + u] _ [ loge n + vj. Thus, if
l u - v ( < 1, then, along an infinite subsequence, the difference between the



two probabilities is 0 . This contradicts Pittel's statement, according to which
the difference is asymptotically nonzero whenever u * v .

Height of a trie . The height of the trie can be studied via a Poissoniza-
tion argument along the lines of Devroye (1984) . Some key lemmas from that
reference allow us to present a very short proof of the limit law for Hn .
Theorem H1 shows that the distribution of Hn - 21og2 n is close to a suitably
discretized version of the extreme-value distribution a- e x. Ignoring small
oscillations due to discretization, we have

l
P Hn c 21og 2 r~ +

x-
l0 2
log2

+ log e ff y
1

when f is square integrable . It is interesting to note that f influences the
height in the second term only, the main term being 21og 2 n, precisely double
the main term log e n for Dn+l . The uniform density version of Theorem H1 is
due to Mendelson (1982) .

THEOREM H1 . Assume that jf 2 <00 . For all x E R and k = [21og 2 n + x j,

Also, Hn - 21og2 n = 0(1) in probability .

PROOF . We first introduce a Poissonization argument . Let N(A) denote a
Poisson random variable with parameter A . Let n 1 and n 2 be real numbers
such that 0 <n1 < n <n2 <00, and let S be the collection of all 2 k intervals
into which [0,1) can be partitioned . For 1 < i < 2 k , we denote by q 1 k the
probability mass " k f . Then, by Lemma 2 of Devroye (1984),

2'

P{Hn < k} ~ P{N(n 1) > n} + fl (1 + nlgl,k)e -ni4t,k
i=1

and

2'

P{Hn < k} ? 1I( 1 + n2gl,k)e-n2cik - P{N( n2 ) < n} .
i=1

For E E (0,1/2), n 1 = n(1 - E) and n 2 = n(1 + E), the following exponential
inequalities were proved in Devroye (1984), Lemma 4 :

TRIE-LIKE STRUCTURES

	

407

11mIP{Hn sk}-

P{N( nz)

p{N(n i )

5 n}

>_ n}

e(-n22-k f f 2)/2 I

< e -ns 2/4 '

0 .

If we combine these inequalities and use (1 + u )e - u < e - u 2 x(2(1
+u)) , u > 0
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[Devroye (1984) Lemma 3], then
2k

P{Hn < k} < e-fE2/2 + exp -

	

(n 1q,i k

kBut E 2=1g 2 k

i=1

2 k
2

<_ a -nE /2 + exp -

	

( n1qi k,
i=1

1 2 k
2Xexp - ~, ( n 1gi,k) I[n 1 g t , k >E]2 i=1

2- kj f 2 as n -~ 00 (Lemma E2) . Also,
2k

2
( n1gi,k) I[nlgt k>E]

i=1

) 2/(2(1 + nlgi,

)
2
/(z(1 + E)))

2 k
< n2

	

-kff2I[flqj,>g]2

	

k
i=1

	

l

_< n22_k f2 ( x ) I[nlx 2=kf>E] dx = o(n22_k)
when k -~ 00 in such a way that 1k - 2 log 2 n i < M < oo for some constant
M. To get this, we used the fact that ff2 <00, the Lebesgue dominated
convergence theorem and the observation that for almost all x,

2 k_1 x+2-kf(y) dy -~ f(x) .
x-2 -k

Consequently,
P{Hn <_ k}

<_ 0(1) + exp
t
l -(1 - e + o(1))Zn22 -k f f2/(2(1 + E)) + o(n 22 -k)) .

Choose k = [21og2 n + x j, so that 21-x > n 22-k > 2-" . Then

P{Hn < k} <_ (1 + o(1))exp
t
l -(1 - e)2n 22 -k ff 2/(2(1 + s))~,

which is as close to e(-h122 k112)/2 as desired by our choice of a and the fact that
n22 -k remains bounded away from 0 and 00 . Similarly, for the lower bound,
using (1 + u)e -u >

e_u2/2
u > 0, we have
2k
~

P{Hn < k} >_ 1 1 (1 + n2gi k)e_n2gi,k - e 2 "-nE 4

i=1

2k
~ [1 e -cn2gt,k>2/2 - o( 1)

i=1

2 k
= exp -

	

(n2 q 1 ) 2/2,k- o(1)
i=1

> exp -(1 + e) 2 n 22 -k f2/2 - o(1),

which once again is as close to e-(n22-k jf2)/2 as desired by our choice of e .



THEOREM H2 . For any density [with ff2 < oo, EH, = 2log 2 n + 0(1) .

PROOF . Mimic the proof of Theorem 4 of Devroye (1984) and combine it
with the exponential bounds given in the proof of Property Hi, provided that
one takes k = [(2 - S)log2 n] and k = [(2 + S)log 2 n] respectively, for arbi-
trary small S > 0 . 0

For the class of densities with lip < ~, 1 < p <2, we have :

THEOREM H3. Assume ff' < oo for some p E (1, 2] . Then

P{Dn+1 > k) _< Cn2-k(2(p - 1)/P)

where C = (jfp )2/p . Also,

for all e>0.

lim P Hn >
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p -
+s)lo 2 n}=og

PROOF . From Theorem E4 and Lemma E2,

2 k

	

2/p

P{Dn+1 > k) < n q2 k < n 2 -2k(p
- 1)/P f1)

i=1

This proves the first part of the theorem. The second part follows from
P{Hn > k) - nP{Dn+1 > k) < Cn 222k(1-p)/p ~

which tends to 0 when we choose k > (p/(p - 1) + E)log 2 n for some e >0.
D

We can push things a bit further in the direction of more peaked densities .

THEOREM H4. Let ff logs+a(1 + f) < oo for some a > 0. Then Hn =
O ( n2/(1+a))

PROOF . Let : [0, oo) -~ [0, oo) a strictly increasing convex function. Then,
by Jensen's inequality, q i k

< 2 -k inv(2 k
I ( f )) Thus

P{ Dn+1 > k) < n2-k
inv 2k

	

(f) .

With ' I'(u) _- u log 1 +a (1 + u), a > 0, we can verify that P{Dn + 1 > k) <
cnk

-(1+a) for some constant c . Therefore, P{Hn > k) - cn2k-(1+a) This tends
to 0 when k/n2/(1+a) oo 0

We finally note that EHn = for all n > 2 if and only if ED 2 = oo, so that
the pathological cases are again described by Theorem E3. Otherwise (i .e., if
ED 2 <), we have EHn - nEDn + 1 = o(n2) . If f is nonincreasing with distri-
bution function F, then trivial arguments show that P{Hn >

log2(1/Fin~(2/[n/2]))) > 1/2 for all n > 4, so that it is impossible to have any
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kind of universal upper bound on the weak convergence rae of Hn . For
example, there exists an f such that for all n >_ 4, P{Hn > 222 } >_ 1/2. This
should be contrasted with the observation that for any f, D/log 2 n -~ 1 in
probability .

Strong convergence results. Assume that j f 2 <00. The objective of
this section is to show that Hn does not deviate a lot from 2log 2 n as we let
the trie grow (n -~ oc) . But the same is not true for Dn . We recall from
Theorem D3 that lim inf D/log2 n < 1 almost surely. However, lim sup Dn/
loge n = 2 almost surely, and for the uniform density, lim inf D/log2 n = 1
almost surely. Similar results for the alphabetic model were obtained by Pittel
(1985). In fact, the almost sure behavior of Hn/log2 n and of D/log2 n
(lim sup only) matches that of the uniform density model, as long as jf 2 < oo .

THEOREM S1 . Assume that jf2 < oo . Then limn ~~Hn/log2 n = 2 almost
surely and lim supn D/log2 n = 2 almost surely .

Theorem S 1 follows from Lemmas S2, S4 and S6. Note that the limit
infimum of D/log2 n is related to the behavior of the density f when f (x) is
near 0. It is less important since it furnishes virtually no information about
the average or worst-case behavior of random tries .

LEMMA S2 . If jf 2 < ~, then limsup n ~~Hn/log2 n < 2 almost surely .

PROOF. If a n = [(2 + e)log 2 n i with £ > 0, we have from Theorem E4,
(00

	

00

U [Hn 1 (L n ] < P{HN > aN} +P

	

P{Hn+1 > an+1 , Hn < an)
n=

	

n=N

< NP{DN > aN} +

	

P{Dn+1 > a n+1)
n=N

<_ NP{DN+1 > aN) +

	

P{Dn+1 > an)
n=N+1

N22-aN ff2 + ~, n2-a fl ff 2
n=N+1

<N-Eff 2 + f ,-(1+E) f2
n=N+ 1

<_ (1 + 1/s) N-E f 2 .

The explicit inequality obtained in the proof above may be of interest in its
own right. Note also that a simple Borel-Cantelli-type argument applied to
bounds for P{Hn > a n } would only yield Hn/log 2 n _< 3 almost surely. The
same technique coupled with Lemma H3 shows that when ff p < ~, then



lira sup Hn/log 2 n < p/(p - 1) almost surely for all p E (1, 2] . Similarly, when
ff logs +a f < 00 for some a > 0, then, almost surely, lim sup log Ha/log n <
2/(1 + a), that is Hn is almost surely smaller than n~2+E)/(1+a) for any E > 0
and all n large enough. The lower bound to complement the upper bound of
Lemma S2 can be obtained via a Poissonization argument as in Theorem H1,
but we prefer to give a different, more instructive proof, which yields useful
information even for densities with ff 2 = oo . First, we recall an inequality for
unions of events in a form due to Chung and Erdos (1952) .

LEMMA S3 . Let {A1 ) be a sequence of events . Then

P U Ai >
(JP{A))2lli

P{A}

LEMMA S4 . lim supn Dn/log 2 n = lim supn Hn/log 2 n .

PROOF . Dn + 1 = Hn+ 1 almost surely when Hn + 1 > Hn, which happens i .o .
almost surely. Thus

lim sup
n - 00
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ff 2

When jf 2 = 00, then P{Hn < (2 - E)log 2 n} = o(n - E" 2 ) .

Dn

	

Hn= hm sup
n -~

	

log 2 nlog e n

LEMMA S5 . When E E (0,1) and ff2 <00, then

( 32 + o(1))n -E' 2
P{Hn < (2 - E)log 2 n} <

PROOF . First, assume ff2 <00 . Define k = ((2 - E)log 2 n ], and for two
indices i # j,1 < i, j < n, let Ai j be the event that the trie formed by X i and
Xj has height greater than k; that is, it is the event that the first k bits in the
expansions of X i and Xj are identical . We have the fundamental identity

P{Hn > k} = P U Aij .
i#j

A lower bound for this is obtained via Lemma S3 . From the proof of Theorem
Hi, we recall that

2k

	

2def
p= P{Ail} = Lr J f

	

2-k J f 2 .
i=1

	

'i,k

Also, if the indices i, j, l, m are all different, then P{Aij n Aim} = p 2 . Fur-
thermore, if i, j and l are different, Lemma E2 implies that

2k

	

3

P{Aij n A il}

	

f < p3/2 .
i=1 h,k
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Also,

{(i, j, l)'

{(i,j) : i #j,1 - i,j < n}I = n(n - 1),

{(i, j, l, m) : i, j, l, m all different, 1 < i, j, l, m < n}I
= n(n - 1)(n - 2)(n - 3),

i, j, l all different, 1 < i, j, l < n}I = n(n - 1)(n -2) .
By Lemma S3 and a combinatorial argument,

P U A~j
ij

>_ (n(n - 1)p)2

X {n(n - 1)p + n(n - 1)(n - 2)(n - 3)p2

+2n(n - 1)p + 4n(n - 1)(n - 2)p3/2}
n(n - 1)p

3+(n-2)(n-3)p+4(n-2)~Thus, since pn2-E remains bounded away from 0 and 00,

3+(n-2)(n-3)p+4(n-2)/-n(n-1)p
P{H,~ < k} <

3+(n-2)(n-3)p+4(n-2)/

< 4 + 0(1) 2k/2 ~ 32 + 0(1) n_E 2
4N
n~

	

n f f2

	

f f2
Assume next ff2 = 0. With k and E as before and using the fact that
pn2-~ --~ 00 and p = o(1), we obtain without effort that P{Hn < k} = o(n-E'2) .

LEMMA S6. For any f, lim inf n ~Hn/loge n > 2 almost surely .

PROOF. Fix E (0, 1). Assume first that ff2 <00 . We use a simple dyadic
argument and the bound obtained in Lemma S5 : P{Hn < (2 - E)log2 n} -
Cn -E "2 for some constant C > 0 depending upon f and E only . Let N be so
large that N > 2(2-2E)/E . Then, by the monotonicity of Hn,

P
{ U [Hn < (2 - 2E)log2 n]< P U [HN2i < (2 - 2E)log2(N2i + 1)]n>_N

	

i=0

•

	

P U [ HN2i < (2 - E)log2(N2l)]
i=o

•

	

P{HN2i < (2 - E)log2(N2l)}
i=o

•

	

C( N2i) -E~2
i=o

= CN-E(1 - 2-E12)-1
This tends to 0 with N .



Large deviation results . We will require sharp estimates of the large
deviation type for the tails of the distribution of Hn . The following result
suffices .

THEOREM L 1. Consider an integer sequence k = k n -' 00 for which n 2 -k
0 and n22 -k -' 00, then, if ff2 < 00, we have

If k kn

1
P{Hn <_kn} = exp -( 2ff2 +o(1))n 22 -k ) .

00 in such a way that n 22-k -' 0 and if jf 2 < 00 , then
1

= I(2 ff2 + o(1))n 22-k .
l

P{Hn > kn}
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PROOF . We argue as in the proof of Theorem H1, where we choose E = E n
in such a way that -' 0 and nEn/(n 22 -k ) - 00 . In trying to find asymptotics
for P{ H n -< k), we verify that

2 k

(nlgi,k) 2 I[n i g i k >E]
i=1

< n22-k

	

k f 2(x) dx = o(n 22 -k )
x : n jx2-k f>E

since for almost all x, 2k -1jx2 k f -' f(x) provided that ff2 < 00, and since
n2 -(k+1)/E -' 0. Thus

P{H

	

_ exp(- n22 -k/0(1)) + exp - (1 + 0(1)) 1 f 2n 22 -kn < - k}

	

.2
Furthermore,

2kn

	

1 2

	

2

	

1P{Hn >k) <- 2()P{H2 >k) <-n

	

_<-n 22 -k f2 .
2 l=1

	

2

Finally, return again to the proof of Theorem H1 and pick E = E n in such
a way that E -' 0, E 2/(n2 -k) - 00 Then, using the fact that log(1 + u) -
u < -u 2/2 + u 3/3 for u > 0, we have

2k

P{Hn > k) > 1 - fl (1 + nlgl,k)e-nlgi,k - P{N(n l ) > n}
i=1

2k
> 1 -

	

e - ( nlga,k)2 ~2 +(nigi,k) 3 ~3 - e- n1E 2/2
i=1

2 k
1 - exp -

i=1

def=1 - e-anebn -

Obviously, the lower bound is approximately a n when a n > 0, bn = o(a) and
a/cnn -' 0 . But we already know that a n N 2n22 -kj f 2 -' 0 . Also, by our

1
2

	

2 k

-(nlgl,k) )exP(2 i=1

1
3(nig~,k)

31

1
e -n1E 2/2
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choice of E, we verify that nE 2/(n22 -k) -' o, so that a n = o(c n ). By Lemma
E2,

2k

	

3/2
3bn <_ n 3 q3 k < n3 2 -k ff2)

	

an/2 ,
i=1

and thus bn = o(a n) . We conclude that P{Hn > k) > (1 + 0(1))2 ff 2n22k o

Laws of the iterated logarithm . It is interesting to note that our
problem has so much structure that we are able to obtain laws of the iterated
logarithm for Hn, enabling us therefore to tell how wide the "swings" are of
Hn as n grows large. In this section, we only assume that ff2 <00 . For
sequences a n and bn that increase to 00, we need to be able to tell whether
Hn > a,~ infinitely often (i .o .) or finitely often (f.o .), and whether Hn < bn i .o .
or f.o. Hence the need to consider four distinct problems . We begin by noting
that the upper-class behavior of Hn is not affected by the density at all, as long
as f f2 < 0 .

THEOREM I1 . Let an be monotone T and assume that ff2 < 00 and
n22 -an

-' 0. Then

if~n2 _an
< 00 ,

nP{ Hn > a,i t .o .} _
if

	

n2 -an
= 00

n

If we write log2p~ for the p times iterated logarithm base 2, then we have
P{Hn > 2 loge n + log22~ n +

	

+(1 + b)logm )2n i .o} = 0 or 1
according to b > 0 or 8 = 0. In particular,

•

	

Hn -2log2 n
hm sup 1

	

= 1 almost surely .
n-~

	

og2 log n

PROOF . Since H,? T , we have for integer N,
U [H>a] =n

	

nU [Dfl>aflIU[HN>aNI .
n>_N

	

n>_N

If Dn > a,i i .o . almost surely, then Hn > a,i i .o . almost surely. If Dn > a,i f.o .
almost surely, then Hn > a n f.o. almost surely. Then Hn > an i.o. almost
surely if and only if Dn > a,i i .o . almost surely. In particular,

lim sup H n hm sup Dn
almost surely .a n

	

an

If nP{Dn > a n ) < 00, then P{Hn > a n i.o .) = 0. By Theorem E4,

P{Dn > a n ) <- n2 -an f2 .

If this is summable in n, then we have that Hn > a n f.o. with probability 1 .



Assume next that nn
2-an = 00 and that a n T 00 in such a way that

1122 - an -' 0. Let us split the data sequence into parts of sizes 1, 2, 4, 8 and so
forth, and consider the sequence of (independent) tries formed in this manner .
The heights of these tries are denoted by Z 1 , Z 2 and so forth, so that Z k is
distributed as H2 k -1 . Also, if n k = 2k - 1, we see that Hn k > max 15 i 5 kZi
Zk. By the Borel-Cantelli lemma, Hn > an i.o. almost surely if

P{Zk > a nk } = oo
k=1

This is equivalent to

P{H2 k-1 > a2 k-1} _ 00
k=1

If 22(1)2 2k1 -' 0 (which holds in view of 1122
-an

-' 0), then we can apply
the large deviation estimate of Theorem L1, and reduce the above condition to

22(k-1) 2 -a2k-1 = o0

k=1

	

.

We now show that this is indeed satisfied . By the monotonicity of a n ,
00

	

00 2 1 _1k+00 2k+1 _ 1

	

00~, 22k2 -a2k-1 =

	

2k2 - a2k-1 >

	

j2-aj _

	

j2-aj _ 00
k=1

	

k=1 j=2k

	

k=1 j=2k

	

j=2

THEOREM 12 . Assume that ff2 < o . Then, for all > 0,

P H n < [21og2 n - log 2 log log n - log 2 (1 + E) 2 f 2 i .o.

Thus, almost surely,

U [Xnn]~ a C
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lim inf (Hn - 21og2 n - log e log log n) > log 2 2 f2 - 1 .

PROOF . Let Xn T be a sequence of monotone random variables . Note that
for all N,

U [Xni-~ an] U [XN ~ aN] •
n>_N

	

n>N: an>an_1

Take probabilities and let N -' 00 to conclude that P{X11 < a n i .o .) = 0 if
P{X11 S a n) -' 0 and ~n:an>an_1P{X11-1 < an ) < 00 .

Define a n =121og 2 n - log e log log n - log 2((1 + E)2/ ff 2)J and assume that
n is large enough so that this is well defined . We have P{Hn < a n 1 .0 .) = 0 if
P{Hn < a n) -' 0 and n: an > an-1P{Hn _ 1 < a n) <0°. With our choice of an , we
have 11 22

-an _ 00 and 112
-an

-' 0 . From Theorem L1, we thus have the
estimate

P{Hn _1 S an ) < (log 11 )-1-E-0(1) ,

=0.
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We need only verify that this is summable over all n with a n > an _ i . Let {n~)
be the smallest index such that a n = j. We verify easily that there are positive
constants c, d such that c s n~/(2~/2 log j) < d . Thus we need to check the
summability of

(log nJ)-i-
g
-o(i)

J
But this is clearly the case for any fixed E > 0 . D

THEOREM 13 . Assume that ff2 <00 . Then, for all E > 0,

P Hn < [21og 2 n - log e log log n - log e 2 f2 + E i . o .

Thus, almost surely,

hm mf ( H - 2 tog2 n - tog2 tog tog n) - < l0g22 ff 2 + 1 .n

PROOF. Define n~ = jej . We will show that almost surely, Hn < a n , in-
finitely often, where an = (2 log e n - log e log log n - log 2(2/f f 2 ) + El . We also
need random variables V and W defined as follows : V is the height formed by
the trie based upon all data points X i with n~_ 1 < i <- n3 , and W is the
maximal depth of insertion of the elements X1 , i > n~ _ 1 , in the trie formed by
X1, . . ., X n ~ _ 1 (thus insert each of these elements and delete it immediately).
Let Z~ be the height of the latter trie . We have Hn . = max(V, W, Z~ ) . For
Hn~ <- an, infinitely often, it suffices that V < an; infinitely often and W > a n
finitely often and Z~ > a n finitely often. By three applications of the
Borel-Cantelli lemma, we see that this is true if

P{V <_ a ny } 00,

J

~P{W >a n . } <00,

P{Z~ > a,~~} <00 .

J

Note that
P{W > a ny } < n~_ in~P{H2 > a n . }

<- nj _ in~2 -and f 2

	

(Theorem E4)

_< n'
i 2 togtog n,

( j-1)22
~-210g(2J'l0~zj

	

g .1)

21og(2j log j )

=1 .



which is summable in j >_ 2 . Also, P{ZJ > a,} < n~_ 1P{H2 > aj, and this
too is summable in j by the argument used for W. Finally, since

	

1 = o(n),
n22 -an -' oo and n2 -a n -' 0, we can apply Theorem L1 and obtain

P{V _< a ny } = P{Hn,_n, -i <_ a n, }

_

	

1 2

	

a ~exp _
2

f +0(1) (n _~ n j _ 1 ) 22 -

=e
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1
- I

/
2 ff 2 + o(1)

1
~n~2-Qn~~

t

> e -(1 +o(1))loglog n~2-E

-(2+o(1) )log(2j log j)

_ (2J' togj) (2 - E+0(1))

and this is not summable in j, as required . D

In the lower-class behavior of Hn , we observe that the density f affects the
constant term only. We have for all square integrable f,

Hn - 2log2 n
hm lnf	to to to

	

-1 almost surely .
g2 g gn

Also, if ff2 = oo, lim inf(Hn - 2 log e n + log e log log n) _ oo almost surely. Fi-
nally, Theorems 12 and 13 together pin down the lower classes for Hn modulo
unavoidable discretization factors due to the fact that Hn is integer valued .
Summarizing, we note that the upswings of Hn - 2 log e n are about log e log n,
and the downswings about -log e log log n .

PATRICIA . PATRICIA is a space-efficient improvement of the classical trie
discovered by Morrison and first studied by Knuth (1973) . It is simply obtained
by removing from the trie all internal nodes with one child . Thus it necessarily
has n leaves and n - 1 internal nodes. Also, Hn < n/2 . The trie from which it
is deduced is called the associated trie . Also, all parameters of PATRICIA such as
D n and Hn have to improve over those of the associated trie, regardless of
which density drives the data. The object of our analysis then is to show how
much PATRICIA improves over the trie. For the uniform density, Pittel (1985)
has shown that Hn/log 2 n -' 1 almost surely, which constitutes a 50% im-
provement over the trie . Thus it is of interest to see for just how large a class
of densities H n is close to log e n.

For the uniform density, EDn+1 was studied in Knuth (1973), Flajolet and
Sedgewick (1986), Kirschenhofer and Prodinger (1986) and Szpankowski
(1988). The variance of Dn+1 was studied in the latter two references, while
the variance of the external path length was obtained in Kirschenhofer,
Prodinger and Szpankowski (1989a). The structure has never been studied
under the density model . The first remarkable property of PATRICIA is that
EDn + 1 = o(n) for any density. Recall that for tries, we can have E D2 = x .
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Hence the pathological case corresponding to densities described in Theorem
E3 no longer exists .

THEOREM P1. For any density f, PATRICIA behaves such that EHn = o(n)
and Hn/n -' 0 almost surely .

PROOF. Since Hn < n, EHn = o(n) whenever Hn/n -' 0 in probability. So
we consider only the strong convergence. Let Ni , k (Ni , k) denote the number of
Xi's belonging to Ii, k (Ax, k ). Let E > 0 be arbitrary and let M be an integer
picked so large that supxgx, M < E/3 . Let n be so large that M < En/3. We
apply an inequality due to Bennett (1962) [see also Hoeffding (1963)] which
states that for a binomial (n, p) random variable Z,

P{Z - EZ > nE} < e -nE((l+p/E)log(1+E/p)-l)

For p < E, the upper bound does not exceed (e/4Y . For all x, ENXM
n supx gx, M < n E/3 . Thus

P{Hn > ne} <_ P{
2M
U I[NI,M<nE -M)
i=1

2M
P{N, M > nE - M} < 2MSUpP{NX , M >_ 2nE/3}

i=1

	

x

< 2MSUpP{NX , M - ENX , M > nE/3} < 2M( e/4) nE/3 .
x

The upper bound is summable in n, so we can conclude by the Borel-Cantelli
lemma . D

The optimality of Theorem P1 will be established below . It is helpful to have
convenient representations of PATRICIA trees such as the one given below. We
define the sequence of neighboring buckets by Lx, k, where Lx, k is the k th
level bucket to which x would belong if we flipped its k th bit. Observe that
A x, k and Lx, k are always adjacent buckets . Also, for any x, U k - lI'x, k = [ 0, 1] .
Let Nk denote the number of Xi's with 1 < i < n belonging to L k x . A
simple argument in terms of internal nodes with two children shows that 1

Dn+1 =

	

I[Nk >0)
k=1

Note in passing that D 2 =- 1, and compare with the possibility of ED2 = oo for
an ordinary trie. Also,

P{Nk > OIXn+1 = x} = 1 (i_i)
Lx, k

n



and

The following obvious lower bound is valid for all f

~

	

n

EDn+1 ? j f 1

	

1-

	

f )) .
k=1 h,k

	

12,k

Consider the decreasing density f(x) = c /(x log 1 + a(1/x)), where a > 0 is a
parameter, 0 < x < e -(1 +a) and c > 0 is a normalization constant . We recall
that for k large enough, 'Ilk f = bk -a, where b = c/(a logs 2) . Also, if a < 1,

a

f f_

	

_

	

a(1 _ 1

	

1

	

>_

	

_ -a -1

	

-(a+1)b(k 1)

	

b(k 1) ak >_ bak .
'2,k

	

k

Thus, when K denotes a large integer,

EDn+1'
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EDn+I = ff(x) ~, 11- I 1- f f I n I dx .
k=1~

	

1 L,k,

1

	

b + o(1)

	

abn (1-a)/(1+a)
~

	

f ,	 X	
2 k>K : uIZ k

log2/n h,k

	

2( 1- a)

	

log 2

The lower bound can be made larger than nl- E for any small s > 0, merely by
choosing a small enough. Similarly, for any a 0, however slowly, it is
possible to find a density f such that for n large enough, ED n+ 1 >_ na n . This
concludes the proof of the optimality of Theorem P1 .

Now for the main result of this section : If lip <00 for all p >_ 1, then
Hn/log2 n -' 1 almost surely. Thus, for all bounded densities and for many
unbounded densities, the asymptotic behavior of PATRICIA'S height is like that
for the uniform density, and improves dramatically (50%) over the associated
trie. Theorem P2 below also bounds Hn for those densities for which lip < 00

for some, but not all, p . Observe in particular the improvement over the
associated trie, where for all square integrable f (regardless of whether
ff5oo <00 for example), lim supn ~~ Hn/log e n = 2 almost surely.

THEOREM P2 . If lip < 00 for fixed integer p > 1, then

Hn

	

p11m sup
n

	

l

	

<
->~ og2 n

	

p_1

almost surely . In particular, if f is such that ff13 < 00 for all p >_ 1, then
lim Hn/log2 n = 1 almost surely .

PROOF . We follow a simple argument due to Pittel (1985), page 426 . Again,
we argue in terms of the original unimproved trie, not PATRICIA . The event
[Hn > k + l ] implies that there exists a set of l data points Xi with 1 <_ i <_ n,
such that all of them share the same first k bits in their binary expansion . By
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Lemma E2,

P{ Hn > k + l } _<
n P{ X i , . . . , Xl belong to the same interval inl

the k th level partition}
n l 2k

,~

	

f

	

l-1

f
l ' i=1 li,k

	

la,k

nlI 2-k(l-1) f l
L

Consider the monotone random variable Hn and define
l

an= (1+E) 1-1 1og2n ~ .

We have

P U[Hn >an ] <

	

P{H n >a n}+P{HN >aN } .
n>N

	

n>N:a,+1>a,
The last probability tends to 0 with N in view of the inequality derived above .
Let nj be the largest index such that an <j. Then it is easy to see that
a < n/2

	

1)/ 11) <_ b for some 0 < a < b <00 . Also, for all j at least equal
to a large constant J, we have a Jn . = j - 1. Thus

P{Hn >a n}<J+~P{Hn .>a n }J

	

Jn : an+1>an

	

j=J

°° n~
-< J +

	

L2-(a_1-lXl-1) fl

j=J l!

00 b2

	

1)/(1+)
< J + ~	 2-(J-1-1-1X1-1) f 1

l!j=J

b2(1-1X1+2)ffl 00

< J +	~ 2-E(l-1)J/(1+~) <
00

l! j=J

Thus Hn > a n finitely often almost surely . Finally, use the fact that Hn
llog2 n i. D

Theorem P2 covers the least peaked densities . For the very peaked densi-
ties, we could present a myriad of results, all pointing to the improvement over
the ordinary trie . To make the point, we will just present a result for the class
of densities with ff logs( f + 1) <00, where a > 0 is a fixed parameter (see
also Theorem H4). In the trie, we have Hn = Op(n2/a) . In contrast, PATRICIA
has Hn = OP(n1/(1+a)) For finite entropy densities (case a = 1), Hn = OP(v).
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THEOREM P3 . Let ff logo ( f + 1) < 00 for some a > 0 . Then
lira sup ra ~~ Hn/nl/~1+ a ) < 00 almost surely .

PROOF . Let us follow the argument and notation of Theorem P1 . By using
an inequality from Theorem 114, we have supx qx, k < Ak

-a for some constant
A. Take k = [El, where E depends upon n and will be picked later . To apply
the bound derived in the proof of Theorem P1, we need M so large that
A/Ma < E/3, and n so large that M < nE/3 . Take M = [3A/E]1/a and note
that both requirements are met for all n large enough when E = un a /(1 +a)
for fixed u > 3A1/(1+a) . Thus k N unl/~1+a) . Then

P{ Hn > k} < 2M(e/4) nE < 2(log 2 e-5/3)ns

	

2-0.22un 1 /(1+a)

Therefore, by the Borel-Cantelli lemma, almost surely,

lim supHn/nl/~ 1+a ) <_ 3A1/~1+a)

	

o
n -300

Digital search trees . Digital search trees are constructed from our data
sequence X1 , . . . , Xn by repeated insertion into an initially empty tree. A node
travels to the first unoccupied slot (thus X 1 is the root) . When a node travels
down the tree, its k th bit in its binary expansion determines whether it should
go left (0) or right (1) . First suggested by Coffman and Eve (1970), it can be
represented in a different manner . Let the data be i .i .d. random variables
(X1 , T1), . . . , (X, Tn), where the Ti 's are independent of the Xi's and are
uniform [0,1] time stamps . The point with the smallest time stamp forms the
root. The next point to be inserted is the one with the next smallest time
stamp and so forth . This model will be called the random digital search tree
(RDST). But we may also consider other models such as the random incremen-
tal digital search tree (RIDST) in which Ti =- i ; this is the model typically
considered in the literature . It is also possible to consider models in which the
Ti 's depend upon the data; for example, consider the case in which the data are
inserted in order of increasing values . Then we could set Ti = k if Xi is the
k th smallest among the XD 's.

A random digital search tree can be obtained from the trie defined by
X1 , . . ., Xn as follows : Declare all nodes "unmarked" ; grab the leaf with the
smallest Ti value and move it toward the root as far as possible without
hitting a marked node ; mark the node where the point comes to rest (so that it
is either the root or its father is a marked node) ; next, grab the leaf with the
smallest Ti value from among the leaves not considered earlier ; and repeat the
same process until all n leaves are treated. The resulting tree of n marked
nodes is a subtree of the original trie . It has n - 1 edges, so that storagewise,
the digital search tree is optimal . Furthermore, for all i, Dn i is smaller than or
equal to the corresponding quantity in the startup (or associated) trie. Simi-
larly, we can define the associated PATRICIA, defined on the same X1, . . ., Xn .
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We note first that for both the RDST and the RIDST, Hn has the same
distribution . Also, Dni in both models in stochastically smaller than Dnn in
the RIDST . Thus, for weak convergence results, it suffices to study Hn and Dn n
in the RIDST . Several results are known for the uniform distribution on [0,1] in
the RIDST . Konheim and Newman (1973) and Knuth (1973) showed that the
expected value of (1/n)E n_ 1Dni is log e n + 0(1) . Among other things, Flajolet
and Sedgewick (1986) showed that the average number of leaves is
(0.3720468 . . . + wn)n, where I w n I < 10 - 6 is an oscillating function . Similarly
to PATRICIA, Pittel (1985) showed that Hn/log2 n -* 1 almost surely .

Xn+

LEMMA T1 . Let Dn be Dnn for the RIDST . Then for integer k >_ 1, we have

2l2ff1+1

	

l
P{Dn+1 ? k} <_ inf

	

,

	

( n2 -k ) .
k>_l>_1

	

l .

PROOF . The proof hinges on the following inclusion of events : Given

k

[D 1n+~ k] c n [Card(AX,kl)-~ 1 1,
t=o

1 = x,

where Card is the cardinality function : Card(A) _

	

1'[X A] We fix a
positive integer l <_ k, and note that by Lemma E2,

n

P{Dn+1 ? k} <_ P

	

I[x; E Ixn+l ,k-t~
J=1

n
l f

("X +n,k -1

n l 21

	

l+1

	

212jf1+1

	

l
<_

	

J
f

	

_<

	

( 2-k) .

	

a
li i = 1

	

h, k _ 1

	

l .

If we take l = 1, Lemma T 1 is strong enough to imply that whenever
If2 <00, then Dn+1= log e n + O(1). This result was already known, of course
(Theorem E4) . From Lemma T1, we have the following theorem without much
work, just as for PATRICIA .

THEOREM T2 . For any density f, the RIDST and RDST have EH = o(n)
and Hn/n -* 0 almost surely . If jfP <00 for fixed integer p > 1, then

Hn

	

phm sup
loge n

	

- 1

t

almost surely, both for the RDST and the RIDST. In particular, if f is
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such that lip < 00 for all p >- 1, then lira Hn/log2 n = 1 almost surely . If
Ii log'( f + 1) < 00 for some a > 0, then lira sup ra _~ Hn/n 1 / (1 +a ) < 00 almost
surely .

PROOF . The first statement is obtainable by mimicking the proof of Theo-
rem P1 . For the RIDST, we have Hn + 1 = max(Hn, Dn + 1). Thus we can argue as
in Lemma I1 and conclude the proof of the first statement if for every E > 0,

°°

	

p
P Dn+1 >

n=1 k p
1 +E log2 n <00.

By Lemma Ti, the nth term in the summation does not exceed a constant
depending upon p only times n - ( p -1x p /(p -1) + E-1) = n -(p - 1)s -1 This is
summable in n. The second statement follows from the first one and the
observation that Hn >- [log e n] .

For the RDST, Hn does not increase in the same simple manner . Still, Hn
increases monotonically, so that we may argue as in the proof of Theorem P2 ;
we also need the fact that P{ Hn > k } -< n P{Dnn > k } <- n P{Dn+ 1 > k), where
Dn n and Dn + 1 refer to the RIDST. 0

The expected depth of insertion. There is an essential difference
between the weak convergence of Dn and the convergence of E Dn . Indeed, for
many densities with infinite peaks, Dn/EDn -* 0 in probability or almost
surely, while only for "nice" densities we have the law of large numbers :
D n/EDn -* 1 in probability . In view of this discrepancy, Var Dn is not a good
measure of the "spread" of the distribution of Dn . We will thus not focus on
the variance. In this section, we take a closer look at all the possible rates at
which EDn + 1 can diverge. We begin with lower bounds .

LEMMA El . If Ii log(f + 1) _ oo, then both E{Dn + 1 - log2 n } and
E{Dn+ 1 - loge n} + tend to 00 . In all cases,

y - H11m 1nfE{ Dn - log e n}> - 3 + 1
og2

and EDn >- [log 2 n] .

PROOF . The function u(1 - u)n never exceeds the value 1/(n + 1) for
0 < u <- 1. Thus, from Lemma D 1, we have P{Dn + 1 <_ k } <_ 2'/(n + 1) . Thus
also,

~1og2 n1

	

Uog2 nl 2k

	

2

P{ Dn+1 < k)<_	 2Uog2 n] < 2
k =- co

	

k=o n+ 1

	

n+ 1

Thus E{Dn + 1 - loge n } - >_ -2 . Let F be the smooth limit distribution of
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Remark 2 of the previous section . By Fatou's lemma and Theorem D2,

lim infE{ D n - log e n} + = lim inf P{ Dn - log e n > u) du
n-,oo

	

n-'°° 0

f liminfP{Dn > log e n + u) du

>_ f(i~- ff(y)e_2'-u- dy) du
0

Z

= f0 (1-F(u+l))du= fl ( 1-F(u))du

j (i~ -F(u))du-1
0

y-H
~ log 2

	

1

The last line follows from properties of the smooth limit distribution F defined
in Remark 2. It remains valid even if H = - oo . For the last part of the
theorem, standard combinatorial arguments show that (1/n) ''
[log e n i . But EDn = ED, i for all i, so the same lower bound is valid for ED ..

a

LEMMA E2 (Properties of q i, k )• For any nonnegative function 4 with the
property that u 4(u) is convex, we have

2k
gi,kY'~qi>k~ ~

ff(2f) .

-k
i=1

In particular, for any a >- 0,

s , 2k

	

1+ai=lgi,k1 - 0(1) <_ 2_k«1f1+« _< 1 .

Furthermore, for any p >- 2,

and for 1 S p <_ 2,

i=1

i=1

2'

L q2k
i=1

p/2

P(2 -k !F B )

2' 2/P

	

2/P
qPk

	

<
(2_kP_lffP)
()

i=1
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PROOF . The first inequality follows directly from Jensen's inequality ap-
plied for each term q1 , k) • The particular case of this inequality is
obvious. Next, the asymptotic result follows from Fatou's lemma and the
Lebesgue density theorem :

2k

lim inf
i1

2 k"q i, k" = lim inf f (x) 2 k "q: k dx
=

>_ ff(x)(1iminf2qk)k"x, dx

= ff(x) l±a dx .

The last two statements follow from the observation that (~ iq"k )1'P is
nonincreasing in p . 0

The class of all densities is dichotomized into two sets A and B, where on
A, EDn = o(n), while on B, EDn + 1 = 00 for all n . There is no intermediate
result ; for example, there does not exist a density for which 00 > ED n + 1 >_ n
for all n .

THEOREM E3 . If ~k- 1E 2k 1(j~~ k f )2 = o, then EDn+1 ? ED2 = oo for all
n - 1. Otherwise, EDn + 1 = o(n) .

PROOF . Assume first that k - 1E 2k 1q2 k < ~ . Let E > 0 be arbitrary and
let K be such a large integer that k -K 2k 1q2 k < E . Then, from Lemma Dl,

00

	

00

	

2k

EDn+1 =

	

P{Dn+1 > k) < K +

	

gi,k(1- ( 1 gi,k) n )
k=0

	

k=K i=1
2k

2_< K +

	

nqi, k
k=K i=1

-K +E n .
This proves the second part of the theorem . Next, assume that

00

	

2 k

g2 k - °° •
k=1 i=1

Observe that E Dn + 1 >_ ED2 for all densities and that
00

	

2 k

ED2 =

	

q2k = ~.
k=1 i=1

a

The discriminating double sum in Theorem E3 is just the value of ED2. The
class of densities of interest to us is the one with ED2 <00. Unfortunately, this
class is not easily characterized in terms of the entropy H = - ff log f. To get
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a clearer picture, we offer the following range of analyses :
1. When f is bounded, ED n + 1 - log e n = 0(1) . In fact, the same is true if

merely ff2 <00 . This case already captures most unbounded densities as
well.

2. When ff log1+a(1 + f) <00 for some a > 0, then EDn+1= loge n + 0(1) .
This covers all but the most peaked densities .

3. When the entropy is finite, ED n + 1 = 0 (log2 n) . Otherwise, E(Dn + 1 -
log 2 n) _ 0.

4. To look at the boundary outlined in Theorem E3, we will consider in more
detail the family of decreasing densities on [0, 1]. For monotone densities, a
complete characterization of all densities for which ED 2 = 00 is provided .
Densities will be constructed with H = - 00, E D2 <00, for which ED n + 1
grows at any polynomial rate nb , where b E (0, 1).

THEOREM E4 . When f f1+C < 00 for some a E (0, 1], then

P{ Dn+1 > k) < ( n 2-k) a fl+« .

Also,
1

EDn+1 <_ log 2 n+ 2+ -loge fl+«(1- 2
a

PROOF. From Lemmas D 1 and E5,
2'

	

2k

P{ Dn+1 > k) =

	

gi,k( 1 - ( 1 - gi,k)n) <_ Eq1,k mln(ngi , k,
i=1

	

i=1

2k
<_

	

g l kana <_ (n2_ k ) aff l +a .i,
i=1

Also, for integer M to be picked later,

EDn+1 =

	

P{Dn+1 > k) _< M +

	

(n2_ff 1+ ak) «
k=0

	

k=M

= M + n« f 1+a2-Ma (1 - 2 -a) -1

Take

Then

M = a -1 loge n « f l+«(1 _ 2 -a) -

EDn+1 _< 2 + a -1 loge n« fl+a(1- 2

1)1 .

a)

1)

1

0
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The bound in Theorem E4 shows again the remarkable robustness of the
trie with respect to deviations from uniformity . The square integrability of
f is crucial in the study of the height of the tries Theorem E4 will thus be
useful there. When I Lp for any p > 1, it is still possible to have EDn + 1 =
log e n + 0(1). The class of densities for which this happens is described in
Lemma E5. We introduce the Hardy-Littlewood maximal function f * defined
by

1 x+r
f * (x) = sup -

	

f (y) dy .
r>0 2r x-r

We have f < f * almost everywhere, and for every p > 1, ff°* < 10 p /(p -
1)jf" [see, e.g ., Stein (1970), page 7, or De Guzman (1975, 1981)] . In particu-
lar,

f f~ fx+2 <
-kf21 _kf*(x) .

Ax k

	

x-2 -k

The finiteness of ff log( f * + 1) is crucial in the arguments that follow . It
follows trivially (since f - f * almost everywhere) from the finiteness of
ff* log( f * + 1), which in turn is equivalent to the finiteness of ff loge ( f + 1)
[see, e.g., Stein (1970), page 23] . However, this is much too strong a condition
in the present context. We were not able to find a proof of the relatively
straightforward result in the literature on maximal functions, so we include a
proof here. It should be noted that the class F * includes all f satisfying, for
some E > 0, one of the following conditions :

fflog1(f++E 1) <00,

ff log( f + 1)log 1 +E log( f + e) <00,

ff log(f + 1)loglog(f + e)log 1 +E loglog( f + ee) < ~ .

There still is a tiny gap between F* and the class of all densities with finite
entropy : ff log( f + 1) <00 •

LEMMA E5 . Let F* be the class o f densities satisfying the following prop-
erty : There exists a positive convex function i,(l, with i(1) > 1, i(u)/u T for
u > 1, ii(u)/u, such that f1/ii(u)i du <00, and fi/i(f) < 0 . Then, if f *
is the maximal function for f, it follows that ff log( f* + 1) < oo whenever
f E F* .

PROOF . Let be a function satisfying the conditions mentioned in the
definition of F* . We will need the fact that if A t is the set of all x with
f * (x) > e t - 1, then

5
f dx<_ e1

	

t>0
AAt

[see, e.g., Stein (1970), page 5] . Writing Min° for the inverse of i,(l, and K for
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ff'( f), we have the following chain of inequalities :

fflog(f* + 1)

- fo fAf(x) dxdt
r

_<1+

_<1+

1+

_<1+

1+
00

	

,pinv( v )

'K/5(e_1)V(K + 5v)	 dv,

which is finite if fi,lu\(v)/v 2i, dv < oo . Use the transformation v
partial integration, the monotonicity of (u)/u and the finiteness of
f1/i(u)i ~ du to verify the finiteness of the integral in question . 0

THEOREM EEL If f E F* (see Lemma E5 for definition), we have EDn+1 _
loge n + 0(1). In particular,

EDn+I < log2 n + 5 + fflog2 (f* + 1) .

PROOF. From the proof of Theorem E4, we recall the following :

EDn+

fff(x)IA

	

~~dxdt
i

fl 'A,dx ~'a" f~( 1)/fAtdxJ
dt

	

(Jensen's inequality)

rl,
Y

j

'

,inv( K/fA t dx) dtJ	

K/ jA~ dx
,~Ij'°°(K(et - 1)/5~

dtI

	

K(et - 1)/5

ff(x)f( 1 -
k-0
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(ij-
~i, k

r fl )
dx

<_ ff(x) inf ~1 + M + n ~ 21-kf*(x)
J
dx

M integer

	

k =M

=
ff(x)

inf (1 + M + 4n2 -Mf*(x)) dx
M integer

<_ ff(x)(3 + log 2(4n( f* (x) + 1))) dx

[take M= [log 2(4n( f*(x) + 1))]]

<_ 5 + loge n + fflog2(f* + 1) .

The proof is complete in view of Lemma E5. 0



Let us finally look at densities that cause us problems because ED 2
Note that a sufficient condition for this is that

This is often a necessary condition as well. To better illustrate the matter, we
consider monotone densities f .

THEOREM E7 . For decreasing densities
only if

PROOF .

Also,

From Theorem E6, we note that

ED2 <_

TRIE-LIKE STRUCTURES

f

	

2

(surf f
k=1

f (j2-k ) 2

k-1

2 k

ED 2 =
k=1 i=1

	

Ii,k

~

	

2

	

~ 2k

•

	

2-k ) 2 + f2/2k

k=1 U

	

k=1 i=2 'i,k

•

	

fk2- f 2 + ~` fl f2/
Lr

k=1 0

	

k=1 2-

2-k

	

1 2•

	

( f f + f f (x) E Irk''°g2«/x»/2k
dx

k=10

	

)

	

0

	

k=1

•

	

( f2-kf ) + f 12xf(x) dx
k=

	

0

	

0

k=1

f
)

2

= oo .

0

= oo ,

k=1

we have ED2 = oo if and

(f2 kf )2

0
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00

The inequalities here are obtained by the observation that for monotone
densities, xf (x) <_ 1, and by an association inequality : If g, h are increasing
positive functions, then for any random variable X, E h (X)Eg(X) <_
Eh(X)g(X) [see, e.g ., Joag-Dev and Proschan (1983)] . 0

THEOREM E8. For monotone f, we have EDn+ 1 = loge n + 0(1) i f and
only i f jf log(f + 1) < oo.
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PROOF . If f is a nonincreasing density on [0, 1], then f f(x)log 2(1/x) dx < x
if and only if jf log( f + 1) < oc . In fact,

An Yf f =
k=0 h,/?

We now show that for any decreasing density,

An <EDn+ , <An +2+log 2 n+ fflog 2 f .

The lower bound is obvious since

EDn+1 < An +

_< An +

J
1

0
flog(f+l)<

x

	

x
f'f(x)

	

o~l[x<z-k]dx < 1 + fO l f(x)log 2(1/x) dx.o

EDn+1 =An +

Using the fact that JI, ~;

x
I

f'f(x)(l - (1
k=1 2-'̀
x
f 'f(x)(l - (1-

k=1 0

L.DEVROYE

f 'f(x)log (
o

	

1 + x dx)

< e + folf log ( f + 1) .

This can best be seen as follows : In view of xf (x) s 1, the leftmost implication
is immediate. The rightmost inequality is a Young-type bound found, for
example, in Hardy, Littlewood and Polya (1952), Theorem 239 .

Let A n
def k

-OI1,,t
f(1 - (1 -

fl,,k f) n ), Note that,

x 2k

	

n

f f 1- 1-

	

f
k=1 i=2 Hit

	

Iz,k

-< 2 -kf(x -
2_k) for any x E Ii k, we have

n
- 2-kf(x - 2 -h )))dx

2-hf(x))n ) dx

< An + f'f(x)(

	

1 +

	

2_
k
nf(x)dx

0

	

k>_1 : k_<log 2(nf(x))

	

k>_1 : k>log 2(nf(x))

GA n + f 'f(x)(log 2(nf(x))

	

O + 2'1CGx

An + fT log e f + loge n + 2 .

Theorem E8 now follows from Lemma E 1 and the estimates obtained above .
0

EXAMPLE . In this example we consider the family of densities Fa , where
f E Fa if as x ,~ 0, f(x) 1/(x log' +a(1/x)) , where a > 0 is a parameter. Note
that for a -< 0, f cannot possibly be a density . Also, f kf 1/(a(k log 2)").
Thus ED2 = oo if and only if 0 < a < 1/2 . Consider next 1/2 < a < 1 . These
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densities still have H = - 00, but now E D 2 <00. In view of
1

	

2 -k
2 L fsAn_1

f2-kf
k>1 : Jo kf>_(1/n)1og2

E

+

	

~

	

n 2 -kf 2

k>_1 :f kf<(1/n)1og2

we have c1n< An < c2n(1-a)/a for some constants c 1 , c 2 . For 1/2 <
a < 1, EDn + 1 grows polynomially with n at any sublinear rate one desires to
attain. For a = 1, we still have ff log f = 00, but An = 0(log n) so that
EDn + 1 = 0(log n) . For a > 1, the entropy is finite, A n = 0(1) and EDn + 1 =
loge n - 0(1). 0

We conclude this section by arguing that in a certain sense, monotone
densities constitute the worst case, and so we have the following theorem .

THEOREM E9. For any density with ff log( f + 1) <00, we have EDn + 1 _<
A log e n + Bjf log( f + 1) + C, where A = 1 + e -1 , B = 2 + 2e -1 and C =
4 + 9e -1 + 8e -2 .

PROOF . The function g (u) = u(1 - (1- uY') is important in the study of
EDn +i . Unfortunately, while it is monotone, it is not convex . It is convex on
[0, 2/(n + 1)] and concave on [2/(n + 1), oo) . Clearly, it is bounded from above
by the following convex function :

h(u) _
nu 2 ,

lu
t

0_<u <_
2

n+l'
(

	

1
)(1+~+n	n21

	

e

	

ln ~ 1J 2

	

u>_ n 2 1 .
1

	

t

This is seen by noting that

2

	

2

	

n -1

	

1
g'

	

=1+ 1-n+1

	

n+1

	

e
for all n . Define pi = k f and qi = k f, where f is the rearranged mono-
tone version of f; that is, it i s a nonlncreaslng density with the property that
I,> u f =- I > u f for all u . Then it is clear that the vector of p i 's is stochasti-
cally majorized by the vector of q i 's ; that is, if both vectors are sorted from
small to large, then q1 + q2 +

	

+q1 < p 1 + p2 +

	

+pi for all i . Thus,
by some results on Schur convexity [see, e.g., Marshall and 01kin (1979)],
E i h (p 1 ) < E i h (q i ) . The function h (u) in turn does not exceed the more
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practical function i(u) = min(nu2 , (1 + 1 /e) u ). Combining all this shows
that

Eon+1 - 1
2 k
~h f

k=1 i=1

	

Ii,k

o

	

2k

	

2

min n

	

i
k=1 i=1

	

Ii,k

•

	

2~ (1+1/e)
k=1

	

h,k

•

	

2(1 + 1/e) flf(x)log 2(1/x) dx
0

+ ~2I
2k
()() '1 fx minn2 -kf(x1 + 1/e)dx

•

	

2(1 + 1/e)I
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(1 + 1/e) f f

ra k

f+ ~ ~ min n ( fj
f ) 2

. .k
k=2 i=3

4

	

l
e + fogi+f l(1))

1

+ 1f x

	

1 + 1/e)I[x , 2-k(

	

_

	

]
U

	

k>_2 : k<_log 2(nf(x))

+

	

2-knf (x) dx
k >_ 2 : k > log 2(nf (x))

4
•

	

2(1+1/e)(I-+ f/log(f+ l ) ~
~e

+ folf(x)((1 + log 2 (nxf(x)))(1 + 1/e) + 2 dx

4
•

	

2(1+1/e)(I-+ fflog(f+l)
1

I
~e

+3 + 1/e + (1 + 1/e)log 2 n .

Here we followed arguments from the proof of Theorem E8 . D
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