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Sequence for Bucket Searching When the
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We study the expected value of the maximum number of accesses needed to locate
an element in a hashing file constructed by using an order-preserving hashing
function and with collision resolution by the method of separate chaining. It is
assumed that X1 , . . ., X„ are independent [0, 1]-valued random variables with com-
mon density f, and that XI is hashed to the nX; + 1st bucket (chain). For all
densities that are bounded, the expected value of the maximum number of accesses
is shown to be asymptotic to log n/log log n, and the dependency of this expected
value on f is made explicit by exhibiting the first few terms in the asymptotic
expansion. For unbounded f, a tight upper bound is given for the expected value .
© 1985 Academic Press, Inc.

1 . INTRODUCTION

Assume that n elements are stored in a hash table with n locations by the
method of separate chaining [7, Sect . 6.4] : for each location we have a
linked list with all the elements (keys) that hash to that location. For a
perfect hash function (i.e ., one that assures that all locations are chosen with
equal probability) the average number of probes in successful and unsuc-
cessful search is well known (see Knuth [7]) . The expected length of the
longest probe sequence increases very slowly with n : Gonnet [6] has shown
that this expected length is asymptotic to r - '( n) where I' is the gamma
function. For example, for n = 40,320, its value is near 735 (Gonnet [6,
Table V]). Additional information is given in Larson [8] . There are some-
times reasons to keep the elements in order, or nearly in order, e.g ., in the
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context of data structures for geometrical problems, or when frequent
alphabetical listings of names are required . Order-preserving hash functions
lead usually to nonuniform distributions over the locations . For example,
when X is a random variable with density f and distribution function F, it
is well known that for a monotone function h to give a uniform [0,1]
random variable h ( X ), we must have h(X) = F(X) for almost all x ( F ) .
Yet, F is usually not known. It is the purpose of this note to point out how
nonuniform distributions affect the expected length of the longest probe
sequence .

Our model is the following. Let X1 , . . ., X„ be a sequence of independent
[0,1]-valued random variables with common density f . This is the sequence
of data points or a suitable transformation of this sequence to force the
values to fall into [0,1] . We have n locations, or buckets : the ith bucket
holds all the data points with value in [(i - 1)/n, i/n) . If f is sufficiently
well spread out, the data points are nearly sorted, and a second pass of the
buckets is all that is needed to obtain a completely sorted sequence
(Dobosiewicz [4], Devroye and Klincsek [3], Meijer and Akl [9]) . The
structure can be used for searching too (Aid and Meijer [1], Ehrlich [5 ]) .
When N; is the cardinality of the i th bucket, it is easy to see that the longest
probe sequence for successful search has length max ;N;. Gonnet's results are
valid for the case of a uniform density on [0,1] . We will indicate how the
nonuniformity of f influences E(Mn ) where Mn = max ;N; .

In Theorem 1 below, we consider only bounded densities f, and show
that

E(M) -- loge
log log n

for all such densities. Thus, in first approximation, the density does not
influence E(M). „ The explanation is due to the fact that the expected value
of the maximum of n independent Poisson (X) random variables is asymp-
totic to log n/log log n, for any constant X . It is thus of some interest to
know how f affects E(M). We will show that this occurs through the
smallest bound on f, and then only in the third term of the asymptotic
expansion for E(M) .

THEOREM l . Let c = ess sup f (i .e ., c is the smallest real number such that
the Lebesgue measure of the set { x : f(x)> c } is 0). Then, if c < oo,

	log
E (M„ ) = to on n +

	

log n 2 (log log log n + 1 + log c + o(1)) .
(log log n )

In particular, E( M) - log n/loglogn whenever c < oo . If c = oo, we can
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formally replace c by oo in the equality: thus,

lim E

	

log log n

	

log log log n Jlog( M„ )	log n - 1

	

log log n

	

log n = oo .
n -o0

Note . Theorem 1 remains valid when the minimum and the maximum of
the X's are used to determine an initial interval, and the buckets are
defined by dividing this interval into n equal subintervals. The density f is
assumed to have support contained in [0,1] but not in [0,1 - e] or [e, l] for
any F > 0 . The proof of Theorem 1 can be found in Section 2 .

When f is unbounded, the theorem gives very little information about
E(M„ ). Actually, the behavior of E(Mn ) depends upon a number of
quantities that make a general statement all but impossible. In fact, any
slow rate of convergence that is o(n) is achievable for E(Mn ). Since N; is
binomial (n, p,) where p; is the integral of f over the ith bucket, we have

max npx E ma.x N,= E(M) .

When f is monotone nonincreasing, the left-hand side of this inequality is
equal to nF(1 /n) where F is the distribution function corresponding to f.
Thus, since any slow rate of decrease to O is possible for F, when n oo,
any slow rate o(n) is achievable for E(M). The rate log n/log log n,
achieved by all bounded densities, is also a lower bound for E (M) for all
densities .

This note would not be complete if we did not mention how E (M) varies
when max,npr diverges. Most of this information can be deduced from the
inequalities given in Theorem 2 below . For example, we will see that
E(Mn ) ~- log n/log log n (the optimal rate achievable) when max rnp r =
o (log n/log log n), and that E (M) max inp1 when lim n .~ log nimax, np
= O. What happens when max 1npr varies at the critical rate log n is
described in Corollary 3 .

THEOREM 2 . Let q = max inpi. Then

1
q~E(M)~q+-logn+q(et_1_t)),

	

alit>o,n~ 3 .
t

The proof of Theorem 2 can be found in Section 3 .

COROLLARY Z . The upper bound takes its minimal value for the solution of

e`(t - 1) = 1 (logn - q) .
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When q is small compared to log n, an approximate solution is given by

1

	

1
t = log -log n -- log log-log n .

q

	

q

The upper hound is then not greater than

1log-
1
-log n+ flog n/log1log n .t

	

t

	

q

In particular, when lim n ~q/lag n = o, then the upper hound is asymptotic
to (--) q + log n/log log n . Thus, combining Theorems 1 and 2, we see that
lim, q/log n = o implies

maxi q, i glogn (1 + 0(1))
1
I < E(M) <

t
I q + 1 glogn (1 +

In other words, the inequality in Theorem 2 is strong enough to show that for
all f with q = o (log n/log log n), E(M) log n/log log n .

COROLLARY 2. Since e t - 1 - t < (t 2/2)e` we see that

E(M„)<q+ tlogn+q2e`,

	

t>O,n~3 .

Disregarding the contribution of et, this is minimal fort = ((2/q)log n)"2 .
Thus, we have

E(M) < q + 2(2glogn)l/Z exp
t
I ?logn
4

E(M) I a+ t +a(e`-1

and the upper bound

	

q when lim b ~q/log n = oo . In other words,
lim n ~q/log n = oo implies

E(M) -- q .

We can conclude therefore that the inequality of Theorem 2 is tight when either
q is very small compared to log n, or q is very large compared to log n .

COROLLARY 3 . The critical rate of increase for q is a log n for constant
a > 0 . In that case, we have

t ) I log n
i

where t is the solution of e `( t - 1) _ (1 - a )/a . Since E(M„ ) > a log n = q,
we see that the ratio of upper bound to lower bound remains absolutely bounded
uniformly over n .



Applications

The entire discussion until this point focused around Mn in the context of
searching. It goes without saying that there are numerous places where M„
is an important quantity. It should be noted that the results remain valid for
an n l"d x • . . Xnl/d grid of n cells on [0,1] d. Such grids are frequently
used in computational geometry (for a survey, see Toussaint [11]) .
For example, a simple algorithm for finding the convex hull of n points
in [0, 1] 2 suggested by Shamos has expected complexity 0(n) +
O(E(v/MRlog(VM„))) = O(n) + D(Vlogn)E(M„) (Devroye, [2]) . This
is O(n) whenever E(M) = O(vc/log n), i.e ., whenever max ;np; _
0(V/log n).

2. PROOF of THEOREM 1

We will use a Poissonization device . Assume first that we have shown the
statement of the theorem for M,* where I,* = max 1 lV * and N7 is the
number of X's in XI , . . ., XN belonging to [(r - 1)/n, i/n }, where N is a
Poisson (n) random variable independent of X1 , X2	Now, for all € > o,
we have

M,* <

	

(1+E) + nI(N > n(1 + e))

and
M,* Mn l ~. E --- nI (N E n(1 - )

where I is the indicator function, and where n(1 + E ) and n(1 - € ) should
be read as "the smallest integer at least equal to . . . ." By Chebyshev's
inequality and a property of the Poisson distribution,

nP(IN - n) > nE) < n
E((N - n)4)

(n€)4
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n(n + 3n 2 ) ~ 4
nE 44(nc)

Define a = log c,
b(n) =

1 + a + log log n -I- log log log
n, c(n) _

(log log n) 2/log n . Thus, by assumption,

0(1) = E~M,*}c(n) - b(n) < E~M„~l+E~~c(n) + 4n~4~ b(n)

E(M„(i+f))c(n(1 + E)~ c n
Cl

(n)

	

1

+ e + ~` n )

-b(n(1 + E)) +(b(n(1 + E)) - b(n)) .

Now, b(n(1 + e)) - b(n) - 0(1), and, for n large enough, c(n) > c(n(1 +



6

	

LUC DEVROYE

€)) > c( n )log n/log( n (1 + €)) , c(n)/(1 + e/log n ) . Thus,

	 b(n(1 + E))+ o(l)
c(n(1 + E))(1 + E/logn)

b(n(1+ E))+0(1)
c(n(1 + e))

Similarly, it can be shown that E(M)„ < (b(n) + o (1))/c( n ), and combin-
ing this gives us our theorem .

Lower Bounds for M,*

Let 'q > 0 be an arbitrary number, let c = ess sup f , and let e > 0 be the
solution of q _ - 3 log(1 - (2/c)€) (this will turn out to be a convenient
choice for e) . Let A be the set { x: f(x)> c - E }, and let S = IA dx (which
is positive by definition of c) . Finally, let h = h„ be the integer part of
(b(n) - q)/c( n ) . We let p; keep its meaning from the introduction, and
note that the function f,, on [0,1] defined by

fn(x) - nPj,

P(M,* <h)

is a density. Because N1, NZ, . . . , N,7 are independent Poisson random
variables with parameters np l , npz , . . . , np1,, respectively, we have the follow-
ing chain of inequalities :

n

i=1

	

i=1
h)

n

n

ex(_

	

= h)
t=1
n

= exp - (np 1 )

E I
Z -

x

	

Z 1
L

	

nln

11(' - P(J7 =h))

eT npt

	

1 he"- n f
ht

= exp
J .4

e _ `

	

dx ~ e~~

	

dx
A, f > c -2E

	

A, n -f ~~E

e~` 8_f

	

dx >e' ~' 8

e - `(s - 0(1)),

( Ifn -

q

( Ifn -

€

(1)

We need two facts from measure theory : first, f„ -p f for almost all x

(Wheeden and Zygmund [12]), and because both f„ and f are densities, this

implies JIf,, - f ~ -~ '0 (Scheffe [10]) . Thus,

h

- ZE
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and by combining this with (1), we see that

P(M,* <h) < exp(- h~ (c - 2e) h e -`(S - 0(1)))

Using Stirling's approximation u! - u(log u - 1) + Zlog(2Tru) as
we see that

log( hi (c - 2E) h e - `(8 - 0(1)),

logogn (log(c - 2e) + r~ - log(c) - 0(1))

	logn 	i1
log log

	

all n large enough .n 3 '

Thus, for all n large enough,

E(M7) > hP(M,* > h) = h(l - P(M,* <h))

l	 log nh 1 - exp - exp13 log log n )
h (1 - exp( - exp(log log n ) ) )

=h11-11>
b(n)c(n)

_i)(1_)

b(n)-'q- 0(1)
c(n)

Thus,

E ( M*)

-cefC k
k,

nP(Mk)~~PNk~n>.e
i=1

	

j~k

h h+1
~h+nc ~ .	

h .

	

h+l c

2

j •

U

00

	

*

	

00

	

ke-c

	

k+1
h+ P Mn k c h+> nC ---

k-h k=h

	

k~ k+ 1- c

(2)

(3)

•

	

Upper Bounds for M,*

Again, we let q be an arbitrary positive number, and choose h = h,, as
the integer part of (b(n) + )/c(n ). Let k h be some integer. Then, for
h

	

C,

(4)
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and that

Therefore,

C

log nch h ~) , -

~h+
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By some straightforward analysis, one can show that

+ o(1)) log nlog log n

	 h+l 12	 2c

	

(11
(h+I - cj

=1+ h+1 o
(h)

.

E(M,* < h +(1 + h + of h "exp
1
f -(~ + 0(1)) to

	 log
on n,

~ b(n) + r1 + 1 +0(1) b( ) +'q+0(1)
c(n)

	

logn

	

c(n)

E(e t '1) = E(e_t '~ 0 etNt) = e_ tnp~(e tp

1 + o(i)
(
1 +

\ log n/

p ) n ( e npj(e`-t_ 1)

(5)

But q was arbitrary. Thus, by a combination of (3) and (5), E(M) ( ) _
b(n) + o(1) . This concludes the proof of the theorem.

3 . PROOF OF THEOREM 2

The lower hound of Theorem 2 follows directly from Jensen's inequality .
To derive the upper bound, we let U N - npi , U = maxjU. Note that U
is a nonnegative random variable . We have

Mn < max np i + max U = q + U.

For r ? 1, we can apply Jensen's inequality again :

E r(U) E (U r) = E max Ur

	

(u'isconsideredsignpreserving)

T r
nmaxE((UT) + ) nmaxE -- e 'U; ,

	

all t > 0 .
1

	

er

Here we used the inequality u + < (r/et)Te' . 't > U, where u + = max(u, a) .
Also,



Thus,

E(M) ~ q + (et )nl/reXP(1(e` - t - 1)) .

This bound is minimal with respect to r when r = log n + q ( e ` - t - 1)
(just set the derivative of the logarithm of the second term in the bound
equal to 0). Resubstitution gives the desired result . The restriction r > 1
forces us to choose n > 3 .
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