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A sample X,, • . ., X,~ of i .i.d . R d-valued random vectors with common

density f is used to construct the density estimate

fn(x) _ ( 1/n) ~n , HndK((x - Xi)/Hm),

where K is a given density on Rd , and the H's are positive functions of n, i
and X,, • • • , X„ (but not of x) . The H, 's can be thought of as locally adapted
smoothing parameters . We give sufficient conditons for the weak convergence
to 0 of f I fn - f I for all f. This is illustrated for the estimate of Breiman,
Meisel and Purcell (1977) .

1 . Introduction . Most consistent nonparametric density estimates have a
built-in smoothing parameter . Numerous schemes have been proposed (see, e.g .,
references found in Rudemo, 1982 ; or Devroye and Penrod, 1984) for selecting
the smoothing parameter as a function of the data only (a process called
automatization), and for introducing locally adaptable smoothing parameters . In
this note, we give conditions which insure that estimators of the form

(1)

	

f (x) = ( 1/n) ~i=1 KHm(x - Xi)

are weakly convergent in L1 (R d ) to the common density f of X1 , . . . , Xn , a sample
of independent random vectors . In (1), K is a given density on Rd (kernel), Ku (x)
= u_' K(x/u), u > 0, and Hni = Hni(X1, . . ., Xn), 1 ~ L n, is a positive-valued
function of i, n and X1 , . . ., X, . The Hni's can be thought of as locally adapted
smoothing parameters, and (1) generalizes the kernel estimate (Rosenblatt, 1956 ;
Parzen, 1962 ; Cacoullos, 1966) . Note that the Hni's do not depend upon x, so that
fn is a density in x . Among estimators of the form (1), we cite the Breiman-
Meisel-Purcell estimate (Breiman et al ., 1977), or variable kernel estimate, where
Hni = a times the distance between Xi and its kth nearest neighbor among

X1 ~ . . , Xi_1, Xi+1, . . . ,
Xn ~

a > 0 is a constant, and kn is a sequence of positive integers.
The purpose of this note is (i) to obtain the L 1 convergence of (1) for all f

under fairly weak conditions on the Hni 's, and (ii) to prove that the variable
kernel estimate converges in L1 for all funder suitable conditions on the sequence
kn . We do not make any claims about rates of convergence ; to obtain some sort
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of insurance against nonconsistency is all we want here . But this is precisely
where the technical difficulties arise . For sufficiently smooth f, it is relatively
straightforward to prove that (1) is convergent in L1 . To extend this result
towards all f, it is not enough to invoke the theorem about the denseness of
uniformly continuous functions in LI(R") . Here, we propose a simple embedding
argument that can be useful in other applications too .

THEOREM 1 . Let be the collection of all densities on Rd, and let ~o be a
collection of densities that is dense in in the LI sense. Assume that there exists
a sequence of functions hn: Rd -~ [0, oo) such that

(2)

	

limn hn(x) = 0, for almost all x(f ), all f E moo ;

(3)

	

limn n infxhn(x) _ 00, for all f E moo ;

lim~~ olim supsup ss, I (hn(y) - hn(x))/hn(x) I = 0,
(4)

for almost all x(f ), all

(5) Hni(X1, •, Xn) = H 1(X1 , X1, . . Xi-1, Xi+1, . . , Xn),

E ,
where S, is the closed sphere in R d centered at x with radius e . Assume furthermore
that K decreases along rays (i.e., K(ux) s K(x), u > 1, x E Rd), that

for all i,

and H 1(x1 , x 2 , • • •, xn) is invariant under permutations of x 2 , • • • , xn ,

and that

(6)
H 1 (x, X2 , • • •, X)/h(x) -~ 1 in probability,

for almost all x(f ), all fE

Then, for estimate (1),

(7)

	

limn E

	

I fn - f I = 0, for all f E ~.

REMARK . The condition that K be a density which is decreasing along rays
is not very restrictive. It is satisfied for the optimal kernels in R", and for all
kernels K that are nonincreasing functions of II x ~~ .

EXAMPLE 1 . When Hni = Hn for all i, where Hn is a function of n and the
data, invariant under permutations of the data, (7) follows if for some sequence
of positive numbers hn , we have Hn/hn -~ 1 in probability, and

(8)

	

hmn~oohn = 0 ; limnnhn = 0 .

This result is strictly contained in a more general result of Devroye and Penrod
(1984), but the proof is quite a bit shorter .
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EXAMPLE 2 . (The kernel estimate) . When H 1 = hn , where hn is a sequence
of positive numbers, then the conditions of Theorem 1 are satisfied when hn is
as in (8), and K decreases along rays . It is known that (8) is necessary and
sufficient for weak convergence in the sense of (7) (Devroye, 1983 ; see also Abou-
Jaoude, 1977; and Devroye and Wagner, 1979) . Furthermore, the condition that
K be decreasing along rays can be dropped altogether (Devroye, 1983) .

EXAMPLE 3 (The variable kernel estimate) . For the variable kernel esti-
mate, the permutation invariance condition (5) is satisfied . In Theorem 1, take

_ }all continuous densities with compact support} (which is dense in in the
Ll sense), and

h(x) = a(kn/nCdf(x)) l ~d

where Cd is the volume of the unit sphere in Rd. ( The definition of h(x) when
f(x) = 0 is irrelevant, so we can set h(x) = 1 as well when f(x) = 0.) Clearly, (2)
and (3) are equivalent to
(9)

	

limn (kn/n) = 0, limn kn - 00 .

Condition (4) holds for all x with 1(x) > 0, by the continuity off. Thus, we need
only verify condition (6) . We observe now that if fn denotes the nearest neighbor
density estimate based on X2 , . . ., Xn (Fix and Hodges, 1951; Loftsgaarden and
Quesenberry, 1965), then we can write

(10)

	

fn(x) - knI nCd(Hnl(x, X2 . . . Xn)/a)d ,

and thus, Hnl(x, X2 , . . ., X)/h(x) _ (f(x)/fn(x))l~d. Thus, (6) is equivalent to
the almost everywhere convergence of the nearest neighbor estimate. In the
literature, only convergence at continuity points of f is given (Wagner, 1973 ;
Moore and Yackel, 1977; Devroye and Wagner, 1976; Mack and Rosenblatt,
1979). Thus, we include a short proof of this result here (see Theorem 2 below,
and its proof in Section 3) . The full statement about the Ll consistency of the
variable kernel estimate is given in Theorem 3 .

THEOREM 2 . Let f (x) be kn/(nCdDn(x)) where D(x) is the distance between
x and its k nth nearest neighbor among X 1 , . . . , Xn , and kn is a sequence of integers
satisfying (9) . Then fn(x) -~ f (x) in probability for almost all x .

THEOREM 3 . Let fn be the variable kernel estimate with arbitrary constant
a > 0, with kernel K decreasing along rays, and with k n as in (9) . Then, for all f,

limn E

	

I fn - f =0 .

2 . Proof of Theorem 1. Throughout this section, the conditions of Theo-
rem 1 are assumed to hold. We will need Scheffe's theorem (Scheffe, 1947), which
states that if gn is a sequence of densities converging at almost all x to f, then
f Ign - fI-p0asn -poo .
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LEMMA 1 . It suffices to prove (7) for all kernels K that decrease along rays, are
continuous and vanish outside a compact set .

PROOF OF LEMMA 1 . Consider fn as in (1) with kernel K, and fn as in (1)
with kernel Kt. Then

51 - t C 1 ~nfn f n I - n L,i=1 IKH,(x - Xi) -K ni(x - Xi)I dx=

Thus, it suffices to show that the kernels of Lemma 1 are dense (in the Ll sense)
in the class of kernels of Theorem 1 . This can be done by construction . First, we
construct a function K* as follows :

K*(x) =
A
K(y) dy

	

A
dy,

where
A = (Suxu(1+a) - S1111 ) n Ba, Sn = sphere Son,

and Ba is the cone of opening centered at 0 around the axis joining 0 and x, and
> 0 is a small positive constant .
Each Ka is continuous except possibly at 0, and each Ka decreases along

rays. Futhermore, by the Lebesque density theorem (see, e.g., Wheeden and Zyg-
mund, 1977), Ka -~ K as -~ 0 for almost all x . Thus, by Scheffe's theorem,
lima~ o f I K - K*/f K* I = 0. The construction is complete if we can take care of
the continuity at 0 and the compact support without upsetting the continuity or
monotonicity conditions . First approximate Ka by min(Ka , M) where M is a
large positive number . Then multiply this new function with a function L(x)
satisfying all the conditions of Lemma 1, and taking the value 1 on SM for a large
constant M. This function can be forced to vanish outside S2M and to be
continuous in-between. This concludes the proof of Lemma 1 .

LEMMA 2 . It suffices to prove (7) for kernels as in Lemma 1, and for the
(artificial) estimator

(11)

	

g(x) = ( 1/n)

	

Khn(X~)(x - X1 ) .

REMARK . Estimator (11) is quite a lot easier to handle than (1) because the
summands are independent. Clearly, it is in the proof of Lemma 2 that we will
use conditions (6) and (5) about the Hni 's . `

PROOF OF LEMMA 2 . Define the function w(u) by f I K - Kn I, and note that
by the continuity ofK and Scheffe's theorem lim n .1w(u) = 0. Also, w(u) 2, for
all u. Now,

(12)

	

If -gI < 1 n

	

IKH(x-XI) - Kh(Xi)(x -n

	

n

	

n ~,i 1

	

,u

	

n

	

Xi) I d x

- 1 n

	

1 n

	

hn(Xi)=

	

I K(x) - Khn(K),H, (x) I dx = -

	

i w
n

	

n

	

Hni
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By condition (5), each hn(Xj/H, is distributed as h n(X1)/Hn1, and thus,
E(f f n - gn () -- 0 for all f if

lim n E(w(hn(X1)/Hn1)) = 0,

for all f. By the Lebesgue dominated convergence theorem, it is clearly sufficient
that hn(x)/Hn1(x, X2 , • . ., Xn ) -~ 1 in probability for almost all x and all f, but
this is precisely condition (6) .

LEMMA 3. It suffices to prove that for the estimator (11) with kernels as in
Lemma 1, we have

(13)

	

lim n E

	

I gn - f I = 0, for all f E moo .

REMARK . Lemma 3 is crucial. It tells us that we need only prove the
consistency of gn on a nice subclass of densities that is dense in ~, such as the
class of all uniformly continuous densities with compact support . The proof of
Lemma 3 is based upon embedding .

PROOF OF LEMMA 3 . The embedding device. Let fn(x, X1 , • • •, Xn ) E L1 (R d )
be a density estimate of f based upon a sample X1 , • • • , Xn of i .i .d. random vectors
with common density f. Then, for another density g and corresponding sample

51 fn(x , Xl, . . ., Xn) - f(x) I dx

51 f (x, X1, . . ., Xn) - f (x, X 1 , . . ., Xn) I dx

+

	

I fn(x, X 1 , • . , Xn) - g(x) I dx +

	

I g(x)

	

f(x) I dx

I (14), the dependence between (X1 , • • • , Xn) and (X i , ..•, X n) is un-
restricted. Next, define 0 = f (f - min(f, g)) . By geometrical considerations,
f I f - g I = 20, f min(f, g) = 1 - 0 and f (g - min (f, g)) = 0 . Define also the
densities

Prnin = min(f, g)/(1 - O),

~f = (f - min(f, g))/0, ' = (g - min(f, g))/0 .

Next, consider three independent samples of i .i.d. random vectors:
U1, U2> • • •> Un (common density min) ;

V1 , V2 , • • •, Vn (common density f) ;
W1 , W2 , • • •, Wn (common density 'g ) .

Also, let N be a binomial (n, 0) random variable independent of the three
samples, and let (Q1 , • • •, o ) be a random permutation of (1, • • • , n), independent
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of N and the three samples . If we identify
(Xl . . . , Xn) _ ( U1, . . . , IJn_N, Vl, . . .

()C 1 , . . ., )Cn) = (Ul,

then it is clear that (X~ 1 , ..•, X~n ) is distributed as a sample of i .i .d. random
vectors drawn from f, and that (X~ 1 , • • •, X~n) is distributed as a sample of i .i .d .
random vectors drawn from g.

Let gn be the estimator (11) . Then

5 I gn(x, X~1, . . ., X )

	

gn(x, XQi, . . . X Qn) I dx

1

n

L

N~~=1 5 I Khn(v~)(x

	 . , Un_N, W1, . . .

VN),

WN),

2N
- Vi) - Khn(w) (x - Wi) I dx <_

n

Since (11) is permutation invariant, we can drop the random permutation to
make the notation simpler . Thus, by (14),

E

	

I gn(x, X1, . . . , Xn) - f(x) I dx

< 2E(N)
+ E

	

I g(x, X', • • • X)' - g(x) I dx +51 g(x) -- f(x) I dx(15)

	

n

	

1

	

nn

=251 g- f 1 + E

	

I gn(x, X 1, . . . , Xn) - g(x) I d x .

By (15), and the denseness of c70i (13) would imply lim n_,ooE(f I gn - f I) = 0 for
all f, which is all that is needed (Lemma 2) .

Theorem 1 is proved if we can show

LEMMA 4 . (13) holds for all kernels as in Lemma 1, and all sequences of
functions hn satisfying (2)-(4) .

PROOF OF LEMMA 4 . It suffices to show that gn - f -p 0 in probability at all
points x at which f (x) > 0, and conclude from Glick's extension of Scheffe's
theorem that f I gn - f I -~ 0 in probability, and thus that E(f I gn - f I) -- 0 .
Assume that we have shown that E(gn) -~ f for all x with f(x) > 0. Then, note
that

gn(x) - E(gn(x)) _ (1/n)

	

1 (Khn (x~) (x - X1) - E(Khn(x~) (x - Xt)) )

is a zero mean random variable with variance not exceeding

1

	

2

	

<

	

Khn(xi )(x - X1) <	 E(gn(x))
E(Khn(x1)(x - X1)) - 11 K 11 E

	

nhd X

	

- 11 K II n inf hdn

	

n( 1)

	

y n(y)

In view of (3), the variance tends to 0, and thus, by Chebyshev's inequality,
gn - E(gn) -p 0 in probability when f (x) > 0.



1
(1 + e)hn( )
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We will now prove that E(gn ) -p f when f > 0 . Let K vanish outside Sic and
let S denote the support of f. The point x is fixed throughout . For arbitrary e >
0, we find no and Q such that for y E S,, n > no ,

I h(y) - h(x) I /h(x) <c, If() - f(x) I /f(x) < c

(use Condition (4)) . Thus, for y E S rl Sxa ,

x-y

h (x)(1 - e)lid ` Khn(y)(x - y)

1/Y„ _ (n/(n + 1))(W/E(W)),

1

	

x-y

( 1

	

c)hn(x)

	

hn(x)(1 + c )1/d

Thus,

E(gn) = 5 f(y)Khn(y)(x - y) dy
> S

f(y)Khn(y)(x - y) dy
ns,o

~ f(x)(1 -
c

)2
-> f(x)(1 - e) Khn(y)(x y) dy -

snso

	

1+c

Also,

E(gn)

	

f(y)Khn (y) (x - y) dy +

	

f(y)Khn(y) (x y) dy
SnS

	

Sns,~

f(x) (1+c)2

	

-d+ 11111 ~ II KII
~
5

	

h(y) dy
.

1 - C

	

yEs, 8< p x y p <_chn (y)

The last integral in (17) does not exceed

J

	

Cd

yES ,a< II x-yll<ch(y) II x -

	

d dy .
- n

	

y II

The function II x - y II -dI[, s,px-yII>a] is integrable. Since for almost all y,
hn(y) -~ 0 (condition (2)), we conclude by the Lebesgue dominated convergence
theorem that (18) is o(1) . Combining (16) and (17) shows that E(g) -+f whenever
f > 0 and fE 33. This concludes the proof of Lemma 4 and Theorem 1 .

3. Proof of Theorem 2 . Fix x, and let A n denote the sphere centered at x
with radius Dn(x) . Let µ be the probability measure corresponding to f, and let A
be Lebesgue measure. We will use the following convenient (but unorthodox)
decomposition : fn(x) = YnZn where Yn = (kn/nµ(An)) and Z n = µ(A n)/ A(An ) .
From the probability integral transform and properties of uniform order statistics,
we recall that µ(A n ) is beta(kn , n + 1 - kn ) distributed . Thus, the distribution of
Yn is conveniently distribution-free . If W denotes a beta(kn , n + 1 - kn ) random
variable, then we have
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where
E(W) = kn/(n + 1), Var(W) = kn(n + 1 - k)/(n + 1) 2(n + 2) .

Thus, E(1/Yn ) = n/(n + 1) and Var(1/Yn ) _ ( n/(n + 1))2(n + 1 - kn)/(kn(n +
2)) <_ 1/kn . Thus, 1/Y, -~ 1 in probability if limnkn = 0 .

To treat Zn , we let S be the support set of f, and let B be the collection of
Lebesgue points for f (i .e ., the points at which µ(Sir)/A(S xr ) -+ f (x) as r 1, 0). By
the Lebesgue density theorem, A(BC) = 0 (see, e.g., Wheeden and Zygmund,
1977). Assume first that x S. Since S is closed, we can find e > 0 such that
S, C S ( . Thus, A(An ) > X(S) >0, and thus

E(µ(An)/X(An)) s kn/((n + 1)A(S, )) -+ 0 .
If x E S, then, by definition, for every e > 0, µ(S,) = p > 0 . Thus,

P(Dn(x) > e) = P(N < kn)

	

(where N is Binomial(n, p))

P(N - E(N) < kn - np)

<_

	

np(1 p)	
2

	

(by Cantelli's inequality)
np(1 - p) + (n -kp

	

n)

1-p
1 -

	

4

	

(when kn < np/2)
p + np/

= o(1) .
Thus, D(x) -~ 0 in probability for x E S. Therefore, Zn -~ f (x) in probability for
x E S (1 B. We conclude that YnZn -+ f(x) in probability except perhaps on a set
of zero Lebesgue measure .
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