(C) Springer-Verlag 1984

A Probabilistic Analysis of the Height of Tries and of the Complexity of Triesort ${ }^{\star}$

Luc Devroye
School of Computer Science, McGill University, 805 Sherbrooke Street West, Montreal, Quebec, Canada H3A 2K6

Summary. We consider binary tries formed by using the binary fractional expansions of X_{1}, \ldots, X_{n}, a sequence of independent random variables with common density f on $[0,1]$. For H_{n}, the height of the trie, we show that either $E\left(H_{n}\right) \sim 2 \log _{2} n$ or $E\left(H_{n}\right)=\infty$ for all $n \geqq 2$ according to whether $\int f^{2}(x) d x$ is finite or infinite. Thus, the average height is asymptotically twice the average depth (which is $\sim \log _{2} n$ when $\int f^{2}(x) d x<\infty$). The asymptotic distribution of H_{n} is derived as well.

If f is square integrable, then the average number of bit comparisons in triesort is $n \log _{2} n+0(n)$, and the average number of nodes in the trie is $0(n)$.

1. Introduction

Tries were introduced by Fredkin in 1960. In its simplest (binary) form, a trie is a binary tree used to store data X_{1}, \ldots, X_{n} in the following manner: each X_{i}, considered as a countable string of 0 's and 1 's, defines an infinite path in the binary tree (" 0 " indicates a left turn, " 1 " a right turn); the trie defined by X_{1}, \ldots, X_{n} is the smallest binary tree T for which the paths truncated at the leaves of T are all pairwise different. The X_{i} 's are then associated with the leaves of T.

In a trie, the following quantities are of interest:

1) $D_{n i}$: the depth of X_{i} (distance from the root to the leaf corresponding to X_{i} in the trie formed by X_{1}, \ldots, X_{n});
2) $A_{n}: n^{-1} \sum_{i=1}^{n} D_{n i}$, the average depth;
3) $H_{n}: \max _{1 \leqq i \leqq n} D_{n i}$, the height.

The distribution of $D_{n i}, A_{n}$ and H_{n} depends upon the distribution of X_{1}, \ldots, X_{n}. We assume throughout that the X_{i}^{\prime} 's are independent identically distributed

[^0]random variables with density f on [0,1]. Clearly, the countable string of 0 's and 1's that we need for X_{i} is the binary fractional expansion of X_{i}. Under this assumption, the following is known:
Theorem 1 (Devroye, 1982). Either
$$
E\left(A_{n}\right)=\infty \quad \text { for all } n \geqq 2
$$
or
$$
\lim _{n \rightarrow \infty} E\left(A_{n}\right) / \log _{2} n=1
$$
according to whether $\int f^{2}(x) d x=\infty$ or $\int f^{2}(x) d x<\infty$.
Theorem 2 (Yao, 1980). If f is the uniform density on [0,1], then there exist constants c_{1}, c_{2} such that
$$
0<c_{1} \leqq E\left(H_{n}\right) / \log _{2} n \leqq c_{2}<\infty
$$

Strictly speaking, Yao (1980) showed Theorem 2 only when the number of X_{i} 's is N, a Poisson random variable with mean n, but the "de-Poissonization" step is simple. Regnier (1982) improved Theorem 2, also under the Poisson model and for f uniform, and showed that $E\left(H_{n}\right) \sim 2 \log _{2} n$. Flajolet and Steyaert (1982) considered our model with f uniform, and obtained a few terms in the asymptotic expansion of $E\left(H_{n}\right)-2 \log _{2} n$.

Theorem 1 implies that only one of two possible situations can occur: either tries are asymptotically optimal (i.e., $E\left(A_{n}\right) / \log _{2} n \rightarrow 1$ as $n \rightarrow \infty$) or they are disastrous (i.e., $E\left(A_{n}\right)=\infty$ for all $n \geqq 2$), according to whether the density f is in L_{2} or not. Implicitly, Theorem 1 characterizes the L_{2} densities: f is in L_{2} if and only if the expected length of the largest common left substring of X_{1} and X_{2} is finite. Yao's result about $E\left(H_{n}\right)$ for the uniform density is extendible to all densities in L_{2}, as we will see below. In fact, we will show that for all densities in $L_{2}, E\left(H_{n}\right) \sim 2 \log _{2} n$; in other words, the average height is approximately twice the average depth. The machinery used to obtain this result (a combination of a Poissonization argument and the Lebesgue density theorem) is strong enough to allow us to obtain much finer results such as the asymptotic distribution of H_{n}. All of these results are now stated.
Theorem 3 [Asymptotic distribution of H_{n}]. If $\int f^{2}(x) d x<\infty$ and α $=n^{2} \int f^{2}(x) d x / 2$, then

$$
\lim _{n \rightarrow \infty}\left|P\left(H_{n} \leqq \log _{2} \alpha+x\right)-\exp \left(-\alpha / 2^{\operatorname{int}\left(\log _{2} \alpha+x\right)}\right)\right|=0, \quad \text { all } x \in R
$$

(Here int(.) denotes the integer part of (.).)
Theorem 4 [Expected height]. Let $\int f^{2}(x) d x<\infty$, and let γ be Euler's constant. Then

$$
-1 \leqq \liminf _{n \rightarrow \infty} E\left(H_{n}\right)-(\ln \alpha+\gamma) / \ln 2 \leqq \limsup _{n \rightarrow \infty} E\left(H_{n}\right)-(\ln \alpha+\gamma) / \ln 2 \leqq 1
$$

If $\int f^{2}(x) d x=\infty$, then $E\left(H_{n}\right)=\infty$ for all $n \geqq 2$.

Theorems 3 and 4 qualify how close H_{n} is to $2 \log _{2} n$. In Theorem 3, we show that the distribution of $H_{n}-2 \log _{2} n-\log _{2}\left(\frac{1}{2} \int f^{2}(x) d x\right)$ is close to a suitably discretized version of the extreme-value distribution $\exp (-\exp (-x))$ (Johnson and Kotz, 1970, pp. 272-295). One of the corollaries of Theorem 4 is that

$$
\begin{equation*}
E\left(H_{n}\right) \sim 2 \log _{2} n \tag{1}
\end{equation*}
$$

for all f in L_{2}. The integral of f^{2} influences the values of H_{n} only in the constant term.

As a by-product of some of the Lemmas proved in Section 2, we will analyze the complexity of triesort for all densities f on [0, 1] in Section 3. We use the terminology "trie search" for searching for an element in a trie, and "triesort" for sorting by first constructing a trie and then traversing the trie in preorder. Other terms have been used in the literature such as digital tree search and radix sort.

2. Proofs

Lemma 1 [A density theorem]. Let f be a nonnegative integrable function on $[0,1]$, and let $A_{n i}$ be the set of all x in $\left[\frac{i-1}{n}, \frac{i}{n}\right), 1 \leqq i \leqq n$. Then,

$$
\lim _{n \rightarrow \infty} n \sum_{i=1}^{n}\left(\int_{A_{n i}} f(x) d x\right)^{2}=\int_{0}^{1} f^{2}(x) d x
$$

Proof. By Jensen's inequality,

$$
\begin{equation*}
n \sum_{i=1}^{n}\left(\int_{A_{n i}} f(x) d x\right)^{2} \leqq \sum_{i=1}^{n} \int_{A_{n i}} f^{2}(x) d x=\int_{0}^{1} f^{2}(x) d x \tag{2}
\end{equation*}
$$

For the lower bound corresponding to (2), we will need the Lebesgue density theorem (Wheeden and Zygmund, 1977) in the following form: let

$$
f_{n}^{*}(x)=\inf _{0<r \leqq 1 / n} \min \left(r^{-1} \int_{x}^{x+r} f(y) d y, r^{-1} \int_{x-r}^{x} f(y) d y\right)
$$

then, if $0 \leqq f, \int f(x) d x<\infty, f_{n}^{*}(x) \rightarrow f(x)$ for almost all x as $n \rightarrow \infty$; in particular, $f(x) \geqq f_{n}^{*}(x)$ for almost all x. We have for almost all $x \in A_{n i}$: $\left(\int_{A_{n i}} f(x) d x\right)^{2} \geqq f_{n}^{* 2}(x) / n^{2}$, and thus, by Fatou's Lemma,

$$
\begin{aligned}
& \liminf _{n \rightarrow \infty} n \sum_{i=1}^{n}\left(\int_{A_{n i}} f(x) d x\right)^{2} \geqq \underset{n \rightarrow \infty}{\liminf } n \sum_{i=1}^{n} n^{-1} \int_{A_{n i}} f_{n}^{* 2}(x) d x . \\
& =\liminf _{n \rightarrow \infty}^{1} \int_{0}^{1} f_{n}^{* 2}(x) d x \geqq \int_{0}^{1} \liminf _{n \rightarrow \infty}^{* 2} f_{n}^{* 2}(x) d x=\int_{0}^{1} f^{2}(x) d x .
\end{aligned}
$$

Lemma 2 [Poissonization inequalities]. Let n be an integer, and let n_{1}, n_{2} be real numbers such that $0<n_{1}<n<n_{2}<\infty$. Let $A_{i}=\left[(i-1) / 2^{l}, i / 2^{l}\right)$ where l is an
integer and $1 \leqq i \leqq 2^{l}$. Let $p_{i}=\int_{A_{i}} f(x) d x$. If $N(\lambda)$ is a Poisson random variable
with parameter λ, then
and

$$
P\left(H_{n} \leqq l\right) \leqq P\left(N\left(n_{1}\right) \geqq n\right)+\prod_{i=1}^{2 l}\left(1+n_{1} p_{i}\right) e^{-n_{1} p_{i}}
$$

$$
P\left(H_{n} \leqq l\right) \geqq \prod_{i=1}^{2^{l}}\left(1+n_{2} p_{i}\right) e^{-n_{2} p_{i}}-P\left(N\left(n_{2}\right) \leqq n\right)
$$

Proof. For integer k, we let $B_{l}(k)$ be the event that none of the sets $A_{i}, 1 \leqq i \leqq 2^{l}$ have more than one of the points X_{1}, \ldots, X_{k}. It is clear that the events $B_{l}(n)$ and $\left[H_{n} \leqq l\right]$ are equivalent. We thus have the following implications between events:

$$
\begin{aligned}
& {\left[H_{n} \leqq l\right]=B_{l}(n)} \\
& {\left[H_{n} \leqq l\right] \subseteq\left[N\left(n_{1}\right) \geqq n\right] \cup B_{l}\left(N\left(n_{1}\right)\right) ;} \\
& B_{l}\left(N\left(n_{2}\right)\right) \subseteq\left[H_{n} \leqq l\right] \cup\left[N\left(n_{2}\right) \leqq n\right] .
\end{aligned}
$$

Also, by a property of the Poisson distribution, for all $\lambda>0$,

$$
P\left(B_{l}(N(\lambda))\right)=\prod_{i=1}^{2^{l}}\left(1+\lambda p_{i}\right) e^{-\lambda p_{i}}
$$

This concludes the proof of Lemma 2.
Lemma 3 [Exponential inequalities]. For all $x \geqq 0$,

$$
e^{-x^{2} / 2} \leqq(1+x) e^{-x} \leqq e^{-x^{2} / 2(1+x)}
$$

Proof. Note that

$$
(1+x)(\log (1+x)-x)=\left(-2+\frac{1}{1+\xi}\right) \frac{x^{2}}{2} \leqq-\frac{x^{2}}{2}, \quad 0 \leqq \xi \leqq x
$$

and that

$$
\log (1+x)-x=-\frac{1}{(1+\xi)^{2}} \frac{x^{2}}{2} \geqq-\frac{x^{2}}{2}, \quad 0 \leqq \xi \leqq x
$$

Lemma 4 [Tail of the Poisson distribution]. Let $\varepsilon \in\left(0, \frac{1}{2}\right), n_{1}=n(1-\varepsilon), n_{2}=$ $n(1+\varepsilon)$. Then, if $N(\lambda)$ is a Poisson random variable with parameter λ,
and

$$
P\left(N\left(n_{2}\right) \leqq n\right) \leqq e^{-n \varepsilon^{2} / 4}
$$

$$
P\left(N\left(n_{1}\right) \geqq n\right) \leqq e^{-n \varepsilon^{2} / 2}
$$

Proof. If X is gamma (n) distributed, then, by inequalities for the tail of the gamma distribution (Devroye, 1981)
and

$$
P\left(N\left(n_{2}\right) \leqq n\right)=P\left(X \geqq n_{2}\right)=P(X-n \geqq n \varepsilon) \leqq e^{-n \varepsilon^{2}(1-\varepsilon) / 2}
$$

$$
P\left(N\left(n_{1}\right) \geqq n\right)=P\left(X \leqq n_{1}\right)=P(X-n \leqq-n \varepsilon) \leqq e^{-n \varepsilon^{2} / 2}
$$

Proof of Theorem 3. Let ε, n_{1} and n_{2} be as in Lemma 4. Combining Lemmas 2, 3 and 4 gives for integer l,

$$
\begin{aligned}
& P\left(H_{n} \leqq l\right) \geqq \prod_{i=1}^{2^{l}} \exp \left(-\left(n_{2} p_{i}\right)^{2} / 2\right)-\exp \left(-n \varepsilon^{2} / 4\right) \\
& \geqq \exp \left(-\frac{1}{2} n_{2}^{2} 2^{-l} \int_{0}^{1} f^{2}(x) d x\right)-\exp \left(-n \varepsilon^{2} / 4\right) \quad(\text { by }(2)) \\
& =\exp \left(-\alpha(1+\varepsilon)^{2} / 2^{l}\right)-\exp \left(-n \varepsilon^{2} / 4\right)
\end{aligned}
$$

Now,

$$
\begin{align*}
& P\left(H_{n} \leqq \log _{2} \alpha+x\right)=P\left(H_{n} \leqq \operatorname{int}\left(\log _{2} \alpha+x\right)\right) \\
& \geqq \exp \left(-\alpha(1+\varepsilon)^{2} / 2^{\operatorname{int}\left(\log _{2} \alpha+x\right)}\right)-o(1) \\
& \geqq \exp \left(-\alpha / 2^{\operatorname{int}\left(\log _{2} \alpha+x\right)}\right) \cdot \exp \left(-2\left(2 \varepsilon+\varepsilon^{2}\right) / 2^{x}\right)-o(1), \tag{3}
\end{align*}
$$

and the right hand side of (3) is arbitrarily close to $\exp \left(-\alpha / 2^{\operatorname{int}\left(\log _{2} \alpha+x\right)}\right)$ by the choice of ε.

Next,

$$
\begin{aligned}
& P\left(H_{n} \leqq l\right) \leqq \exp \left(-n \varepsilon^{2} / 2\right)+\exp \left(-\sum_{i=1}^{2^{l}}\left(n_{1} p_{i}\right)^{2} / 2\left(1+n_{1} p_{i}\right)\right) \\
& \leqq \exp \left(-n \varepsilon^{2} / 2\right)+\exp \left(-\sum_{i=1}^{2^{l}}\left(n_{1} p_{i}\right)^{2} / 2(1+\varepsilon)\right) \cdot \exp \left(\frac{1}{2} \sum_{i=1}^{2^{l}}\left(n_{1} p_{i}\right)^{2} I_{\left[n_{1} p_{i}>\varepsilon\right]}\right)
\end{aligned}
$$

where I is the indicator function of an event. By Lemma 1,

Thus,

$$
2^{l} \sum_{i=1}^{2^{l}} p_{i}^{2}=\int_{0}^{1} f^{2}(x) d x+o(1) \quad \text { as } l \rightarrow \infty
$$

$$
\begin{align*}
& P\left(H_{n} \leqq l\right) \leqq \exp \left(-n \varepsilon^{2} / 2\right) \\
& \quad+\exp \left(-\alpha \frac{(1-\varepsilon)^{2}}{1+\varepsilon} 2^{-l}(1+o(1))\right) \exp \left(\frac{1}{2} \sum_{i=1}^{2^{t}}\left(n_{1} p_{i}\right)^{2} I_{\left[n_{1} p_{i}>\varepsilon\right]}\right) \tag{4}
\end{align*}
$$

We can argue as for (3), and thus make $P\left(H_{n} \leqq \log _{2} \alpha+x\right)$ arbitrarily close to $\exp \left(-\alpha / 2^{\operatorname{int}\left(\log _{2} \alpha+x\right)}\right)$ for all n large enough by choice of ε, if we can show that for all $\varepsilon>0$,

$$
\begin{equation*}
\sum_{i=1}^{2^{1}}\left(n_{1} p_{i}\right)^{2} I_{\left[n_{1} p_{i}>\varepsilon\right]}=o(1) . \tag{5}
\end{equation*}
$$

If f^{*} is the maximal function corresponding to f (Wheeden and Zygmund, 1977, pp. 105), then $n_{1} p_{i} \leqq 2 n f^{*}(x) / 2^{l}$ for all $x \in A_{i}$. Thus,

$$
\begin{align*}
& \sum_{i=1}^{2^{l}}\left(n_{1} p_{i}\right)^{2} I_{\left[n_{1} p_{i}>\varepsilon\right]} \\
& \leqq \sum_{i=1}^{2^{l}} 2^{l} \int_{A_{i}}\left(2 n f^{*} / 2^{l}\right)^{2} I_{\left[2 n f^{*} / 2^{l}>\varepsilon\right]} \\
& =\left(\frac{4 n^{2}}{2^{l}}\right) \int f^{* 2} I_{\left[f^{*}>\varepsilon 2^{l-1} / n\right]} \\
& =o(1) \tag{6}
\end{align*}
$$

when $l=\operatorname{int}\left(\log _{2} \alpha+x\right)$. Here we used the fact that $n^{2} / 2^{l}$ remains bounded, that $2^{l} / n \rightarrow \infty$ and that $\int f^{* 2}<\infty$ when $\int f^{2}<\infty$. This concludes the proof of Theorem 3.

Proof of Theorem 4. In this proof, we will repeatedly use the fact that a random variable with distribution function $\exp (-\exp (-x))$ has mean γ (Johnson and Kotz, 1970), i.e.

$$
\int_{0}^{\infty}\left(1-e^{-e^{-x}}\right) d x-\int_{-\infty}^{0} e^{-e^{-x}} d x=\gamma
$$

From the first chain of inequalities in the Proof of Theorem 3, we see that

$$
\begin{aligned}
& E\left(H_{n}\right)=\sum_{l=0}^{\infty} P\left(H_{n}>l\right)=\sum_{l=0}^{n-1} P\left(H_{n}>l\right) \\
& \leqq n \exp \left(-n \varepsilon^{2} / 4\right)+\sum_{l=0}^{\infty}\left(1-\exp \left(-\alpha(1+\varepsilon)^{2} / 2^{l}\right)\right) \\
& \leqq o(1)+\int_{-1}^{\infty}\left(1-\exp \left(-\alpha(1+\varepsilon)^{2} \exp (-t \ln 2)\right)\right) d t \\
& =o(1)+\int_{-\ln 2-\ln \alpha(1+\varepsilon)^{2}}^{\infty}\left(1-e^{-e^{-u}}\right) \frac{d u}{\ln 2} \\
& =o(1)+1+\left(\gamma+\ln \left(\alpha(1+\varepsilon)^{2}\right) / \ln 2 .\right.
\end{aligned}
$$

This shows the limit supremum half of Theorem 4, because ε can be chosen arbitrarily small.

For the other half of Theorem 4, we use Fatou's lemma and a tail estimate. We have

$$
\begin{aligned}
& \liminf _{n \rightarrow \infty} E\left(H_{n}\right)-\log _{2} \alpha \\
& =\underset{n \rightarrow \infty}{\liminf }\left[\int_{0}^{\infty} P\left(H_{n}-\log _{2} \alpha>t\right) d t-\int_{-\infty}^{0} P\left(H_{n}-\log _{2} \alpha<t\right) d t\right] \\
& \geqq \int_{0}^{\infty} \liminf P\left(H_{n \rightarrow \infty}-\log _{2} \alpha>t\right) d t-\lim \sup _{n \rightarrow \infty} \int_{-\infty}^{0} P\left(H_{n}-\log _{2} \alpha<t\right) d t
\end{aligned}
$$

Now,

$$
\begin{aligned}
& P\left(H_{n}-\log _{2} \alpha>t\right) \geqq 1-\exp \left(-\alpha / 2^{\operatorname{int}\left(\log _{2} \alpha+t\right)}\right)+o(1) \\
& \geqq 1-\exp \left(-2^{-t}\right)+o(1) \sim \int_{0}^{\infty}\left(1-e^{-e^{-u}}\right) d u / \ln 2
\end{aligned}
$$

Also, as we will show,

$$
\begin{align*}
& \int_{-\infty}^{0} P\left(H_{n}-\log _{2} \alpha<t\right) d t \leqq o(1)+\int_{-\infty}^{0} \exp \left(-\frac{1}{2} 2^{-t}\right) d t \cdot(1+o(1)) \\
& \sim\left(\int_{-\infty}^{0} e^{-e^{-u}} d u+\int_{0}^{\ln 2} e^{-e^{-u}} d u\right) / \ln 2 \\
& \leqq\left(\int_{-\infty}^{0} e^{-e^{-u}} d u+\ln 2\right) / \ln 2 \tag{7}
\end{align*}
$$

A combination of these bounds shows that

$$
\liminf _{n \rightarrow \infty}\left(E\left(H_{n}\right)-\log _{2} \alpha\right) \geqq \frac{\gamma}{\ln 2}-1
$$

We need show the first inequality in (7). Since $H_{n}<n$, we see that the integration interval can be taken as $[-n, 0]$ without loss of generality. Let $\beta=\frac{1}{3} \log _{2} \alpha$. Let ε be an arbitrary positive number smaller than 1 . Then, clearly, by (4),

$$
\begin{aligned}
& P\left(H_{n}-\log _{2} \alpha<t\right) \leqq P\left(H_{n} \leqq \log _{2} \alpha+t\right) \\
& \leqq \exp \left(-n \varepsilon^{2} / 2\right)+\exp \left(-\alpha \frac{(1-\varepsilon)^{2}}{1+\varepsilon} 2^{-\log _{2} \alpha+t}(1-\varepsilon)\right)
\end{aligned}
$$

for all $t \geqq-\frac{1}{2} \log _{2} \alpha+A$, where A is a positive number depending upon ε and f only (this requires a careful verification of the $o(1)$ terms in (4) and (6)). Thus,

$$
\begin{aligned}
& \int_{-\infty}^{0} P\left(H_{n}-\log _{2} \alpha<\mathrm{t}\right) d t \\
& \leqq n \exp \left(-n \varepsilon^{2} / 2\right)+\int_{-\infty}^{0} \exp \left(-\alpha \frac{(1-\varepsilon)^{3}}{1+\varepsilon} 2^{-\widetilde{\log _{2} \alpha+t}}\right) d t \\
& \quad+n P\left(H_{n} \leqq \log _{2} \alpha-\frac{1}{2} \log _{2} \alpha+A\right)
\end{aligned}
$$

The first term is $o(1)$, the second term is not greater than

$$
\int_{-\infty}^{0} \exp \left(-\frac{(1-\varepsilon)^{3}}{1+\varepsilon} \cdot 2^{-(t+1)}\right) d t
$$

which, by our choice of ε, is arbitrarily close to $\int_{-\infty}^{0} \exp \left(-2^{-(t+1)}\right) d t$. For the third term, we use, once again, bound (4) with $l=\frac{-\infty}{\frac{1}{2} \log _{2} \alpha+A}$:

$$
\begin{aligned}
& n\left[\exp \left(-n \varepsilon^{2} / 2\right)+\exp \left(-\sum_{i=1}^{2^{l}} \frac{\left(n_{1} p_{i}\right)^{2}}{2\left(1+n_{1} p_{i}\right)}\right)\right] \\
& \leqq n\left[\exp \left(-n \varepsilon^{2} / 2\right)+\exp \left(-2^{l} \frac{\left(n_{1} / 2^{l}\right)^{2}}{2\left(1+n_{1} / 2^{l}\right)}\right)\right]
\end{aligned}
$$

(by Jensen's inequality and the convexity of $v^{2} /(1+v)$)

$$
\begin{aligned}
\leqq & n\left[\exp \left(-n \varepsilon^{2} / 2\right)+\exp \left(-\frac{n_{1}^{2}}{2\left(n_{1}+2^{A+1} n \sqrt{\int f^{2}}\right)}\right)\right] \\
& \left(\text { since } 2^{p}<2^{A+1} \sqrt{\alpha}<2^{A+1} n \sqrt{\int f^{2}}\right) \\
= & o(1)
\end{aligned}
$$

3. Triesort

Tries can be used to sort n elements as follows:
(1) Construct the trie sequentially by inserting X_{1}, \ldots, X_{n}, one element at a time. This takes C_{n} comparisons.
(2) Traverse the trie in preorder and note all the leaves (X_{i}^{\prime} 's) as they are visited. This takes time proportional to the number of nodes N_{n} in the trie.

Since C_{n} and N_{n} are appropriate measures of the complexity of this algorithm, we will not bother to analyze other quantities. It is clear that $E\left(C_{n}\right)=E\left(N_{n}\right)$ $=\infty$ for all $n \geqq 2$ if $\int f^{2}(x) d x=\infty$, so we will assume throughout that f is in L_{2}.
Theorem 5. If $\int f^{2}(x) d x<\infty$, then

$$
E\left(C_{n}\right)=n \log _{2} n+0(n)
$$

and

$$
E\left(N_{n}\right) \leqq n\left(1+\sqrt{18 \int f^{2}(x) d x}\right)
$$

Proof. Since

$$
C_{n}=D_{11}+\ldots+D_{n n},
$$

we leave

$$
E\left(C_{n}\right)=\sum_{i=1}^{n} E\left(D_{i i}\right) \geqq \sum_{i=1}^{n}\left(\operatorname{int}\left(\log _{2}(2 i-1)-1\right)=n \log _{2} n+0(n)\right.
$$

and

$$
\begin{aligned}
E\left(C_{n}\right) & \leqq \sum_{i=1}^{n}\left(\log _{2} i+1+\left(\gamma+\frac{1}{2 n-2}\right) / \ln 2+192 \int f^{2}(x) d x\right) \\
& \leqq n \log _{2} n+0(n)
\end{aligned}
$$

where we used inequality (2) of Devroye (1982).
Because an internal node indicates that an interval of the type $\left[(i-1) / 2^{l}, i / 2^{l}\right)$ has at least two elements, we have the following equality for $E\left(N_{n}\right):$

$$
E\left(N_{n}\right)=n+\sum_{l=0}^{\infty} \sum_{i=1}^{2^{l}}\left(1-\left(1-p_{l i}\right)^{n}-n p_{l i}\left(1-p_{l i}\right)^{n-1}\right)
$$

where $p_{l i}$ is the integral of f over $\left[(i-1) / 2^{l}, i / 2^{l}\right)$. Now,

$$
\begin{aligned}
& \left(1-p_{l i}\right)^{n}+n p_{l i}\left(1-p_{l i}\right)^{n-1} \geqq \max \left(0,1-n p_{l i}+n p_{l i}\left(1-n p_{l i}\right)\right) \\
& \geqq \max \left(0,1-\left(n p_{l i}\right)^{2}\right)
\end{aligned}
$$

Choose an integer $L \geqq 0$, and note that by (2) and the last inequality,

$$
\begin{aligned}
& E\left(N_{n}\right) \leqq n+\sum_{l=0}^{L} 2^{l}+\sum_{l=L+1}^{\infty} n^{2} \sum_{i=1}^{2^{l}} p_{l i}^{2} \\
& \leqq n+2^{L+1}+n^{2} \int f^{2}(x) d x \sum_{l=L+1}^{\infty} 2^{-l} \\
& =n+2^{L+1}+n^{2} \int f^{2}(x) d x / 2^{L} .
\end{aligned}
$$

If we take $L=\operatorname{int}\left(\log _{2} \sqrt{n^{2} \int f^{2}(x) d x / 2}\right)$, then trivial bounding techniques give

$$
E\left(N_{n}\right) \leqq n+n \sqrt{\int f^{2}(x) d x}(\sqrt{2}+2 \sqrt{2})
$$

which was to be shown.

References

1. Devroye, L.: Laws of the iterated logarithm for order statistics of uniform spacings. Ann. Probability 9, 860-867 (1981)
2. Devroye, L.: A note on the average depth of tries. Computing 28, 367-371 (1982)
3. Flajolet, Ph., Steyaert, J.M.: A branching process arising in dynamic hashing, trie searching and polynomial factorization. Proceedings of the 9th ICALP Colloquium, Lecture Notes in Computer Science, Vol. 140, pp. 239-251. Berlin-Heidelberg-New York: Springer 1982
4. Fredkin, E.H.: Trie memory. Comm. ACM 3, 490-500 (1960)
5. Johnson, N.L., Kotz, S.: Distributions in statistics: Continuous univariate distributions -1. New York: John Wiley 1970
6. Regnier, M.: On the average height of trees in digital search and dynamic hashing. Information Processing Lett. 13, 64-66 (1982)
7. Yao, A.C.: A note on the analysis of extendible hashing. Information Processing Lett. 11, 84-86 (1980)
8. Wheeden, R.L., Zygmund, A.: Measure and Integral. New York: Marcel Dekker 1977

Received March 24, 1982/December 13, 1983

[^0]: * Research of the author was supported in part by FCAC Grant EQ-1678

