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Abstract: Polya has shown that real even continuous functions that are convex on (0,oo), 1 for t = 0, and decreasing to 0 as 
t---, ~ are characteristic functions. Dugu6 and Girault (1955) have shown that the corresponding random variables are 
distributed as Y / Z  where Y is a random variable with density (2~) -1 (s in(x/2) / (x /2))  2, and Z is independent of Y and lfas 
distribution function 1 - ~ + tO', t > 0. This property allows us to develop fast algorithms for this class of distributions. This is 
illustrated for the symmetric stable distribution, Linnik's distribution and a few other distributions. We pay special attention to 
the generation of Y. 
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1. Introduction 

Some distributions are best described by their 
characteristic functions. In some cases, other de- 
scriptions (densities, distribution functions, etc.) 
are not known in a simple analytical form. We are 
thinking for example about the symmetric stable 
distribution with parameter a ~ (0,2]: it has char- 
acteristic function exp(-Itl"). Yet, except for a 
= ½, 1 and 2, the density can only be expressed by 
a convergent series, or an asymptotic expansion, or 
an integral (Bergstrom, 1952; Feller, 1966; 
Zolotarev, 1964; see Lukacs (1970) for a compre- 
hensive survey). For this distribution, algorithms 
can be derived that are based upon the integral 
representation of Zolotarev (see Chambers, Mal- 
lows and Stuck, 1976): for a :# 1, random variates 
can be generated as 

sin___( a___UU )_ cos((1 a)U) -")/" 
(cos g)l/a ( - -  ),1 

where U is uniform [4/2, 4/21 and E is exponen- 
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tial and independent of U. For a = 1, replace this 
by tan U. It seems possible to apply the 
Bergstrom-Feller series to obtain algorithms via 
the series method (Devroye, 1981a). Since this 
method requires good truncation bounds, the paper 
by Bartels (1981) would probably be very helpful. 
Both solutions are 'ad hoe': there is no general 
principle behind their development. One would 
like to have methods that are applicable to large 
classes of characteristic functions. 

One attempt in this direction (Devroye, 1981b) 
required the knowledge and finiteness of fl'/'l and 
fN'"l where ~ is the characteristic function in 
question. In the algorithm, at least one inversion 
integral 

f (x)  = (24)-' fe-  'q,(t)dt 

is needed. A necessary condition for the finiteness 
of these integrals is that f ,  the density, be bounded 
and O(x -2) as Ixl -~ o0. Of course, the fact that an 
integral has to be evaluated is a serious drawback. 

In this note, we would like to point out that for 
distributions with Polya-characteristic functions, 
i.e. real even continuous functions ~ with ~(0)= 1, 
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l i m , _ . ~ ( t ) = 0 ,  convex on (0,oo), there exists a 
simple general method for random variate genera- 
tion. The procedure requires the explicit knowl- 
edge of ~b and at least one derivative of ~b. It leads 
to fast competitive algorithms for very specific 
classes of distributions such as the symmetric sta- 
ble distribution. The examples that we will con- 
sider throughout this note are 

(A) ~( t )  = e -10., 0 < ct ~ 1 (for a = 1, this is the 
Cauchy distribution); 

(B) ~( t )  = 1/(1 + Ilia), 0 < a ~< 1 (for ot ~ (0,2], 
this is a characteristic function of a unimodal 
density; see Linnik (1953) and Lukacs (1970, pp. 
96-97)); 

(C) ¢ ( t )  = (1 -Ill)% Ill ~ 1, a >I 1; 
(D) 0 ( t )  = 1 - I l l  ~, Ill ~< 1, 0 < a ~< 1. 
The point of this note is that for these distribu- 

tions, we can generate random variates without 
ever trying to compute the density or distribution 
function. 

2. A property of Polya-type characteristic functions 

The generation of Y is a trivial problem, and 
will be discussed in Section 4. The intriguing prop- 
erty here is that the distribution function F is a 
simple function of ~, and ¢'. In a sense, we have 
switched from t-space to the real line. All of this 
can be summarized as follows: 

Property. Let *k be a Polya-type characteristic func- 
tion with right-hand derivative ~b'. Then X = Y / Z  
has this characteristic function, where Y, Z are 
independent random variables : Y has the FVP den- 
sity, and Z has distribution function 

F ( s ) = l - e p ( s ) + s C ' ( s ) ,  s > 0 ,  F(O) = O. 

In addition, if ¢ ( s ) - s ¢ ' ( s )  is absolutely continu- 
ous, then Z has density given by 

g(s)=sdp"(s),  s > 0 .  

This property leads to yet another integral rep- 
resentation of the density of X, but this matter 
won't be pursued here. 

The attentive reader is urged to read Section 4.3 
of Lukacs (1970). Dugu6 and Girault (1955) and 
Girault (1954) have shown that Polya-type char- 
acteristic functions can be decomposed as follows: 

 l)j(s) ,>o 
~b(t) = - t h ( t ) ,  t < 0 ,  

where ( .)+ is the positive part of ( .)  and F is a 
distribution function with F(0)=  0: 

F ( s ) = l - r k ( s ) + s 0 ' ( s ) ,  s > 0 .  

Here 0' is the right-hand derivative of 0 (which 
exists everywhere). 

But ( 1 -  It0+ is the characteristic function of 
the Fejer-de la Vallee Poussin (FVP) density 

( 2 q r ) - l ( s i n ( x / 2 )  ) 2" x / 2  

Thus, because we have a very simple mixture, we 
can conclude that if Y is an FVP random variable, 
and Z is an independent random variable with 
distribution function F, then X -  Y / Z  has char- 
acteristic function ~. 

3. Exam#es 

In this section, we consider the examples 
(A)-(E) of Section 1. For these distributions, we 
will derive F and mention how random variates 
with distribution function F can be obtained. 

A. Symmetric stable distribution 

It can easily be verified that Z has density g 
given by 

g(s)=(~t2S 2a-l + a ( 1 - a ) s ~ - l ) e  -s, s > O .  

But we note that Z ~ has density 

a ( s e - S ) + ( 1 - a ) ( e - ~ ) ,  s > 0 ,  

i.e. a mixture of a gamma (2) and an exponential 
density. Thus, Z is distributed as 

( E l  + ~2"[U<all  

where E 1, E 2 and U are independent random 
variables: E 1 and E 2 have an exponential density, 
and U is uniformly distributed on [0,1]. To save a 
uniform [0,1] random variate, we can replace 
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E2Itv<~ ] by max(E 2 + log a, 0). By using the 
property that an exponential random variable is 
distributed as minus the logarithm of a uniform 
[0,1] random variable, we obtain the result that Z 
is distributed as 

((o 1)) 
log 1/,, max U1U2' 1-I1 " 

where U1 and U2 are independent uniform [0,1] 
random variables. In some cases, the/-/1, U2 imple- 
mentation is faster than the E~, E 2 implementa- 
tion. In most cases, the generation of X as Y / Z  is 
competitive with the method of Chambers, Mal- 
lows and Stuck (1976). It is also worthwhile point- 
ing out that a Cauchy random variable is distrib- 
uted as Y log-l(1/(U1U2)) and as Y (E  1 + E2) -1. 

Mitra (1981) has shown that if a = 22-n, n >t 3, 
the random variable N1/(22n-~-lN2(N2) 1 . . .  
( N f )  2"-3) has characteristic function exp(- I t l  ~) 
when N1,..., Nn are independent normal (0,1) ran- 
dom variables. Our method for the symmetric 
stable distribution can be used for all a, and is fast 
because the distribution of Y is fixed (a-indepen- 
dent) and the generation of Z is fast because it 
does not involve any sin or cos evaluations. Unfor- 
tunately, there is no straightforward extension to 
all stable distributions, including those with skew- 
ness parameter fl ~ 0. For fl = 1, a = 2 - " ,  see 
Brown and Tukey (1946); for fl = 1 and all a, see 
Kanter (1975)who has a method based upon an 
integral representation of Ibra~mov and Chernin 
(1959). For general (a, fl), the method of Cham- 
bers, Mallows and Stuck (1976) remains unchal- 
lenged. 

B. Linnik" s distribution 

We verify that Z has density g given by 

g ( s )  = ( ( a  2 + a ) S  2a-1 + ( a - a 2 ) s * - X ) ( 1  + sa) -3, 

s > 0 .  

It is perhaps easier to work with the density of Za: 

s ( a +  1) + ( l - a )  
(1 + S)3 , S > 0 .  

This latter density has distribution function 

l + a  a 
1 - - q  

l + s  ( l + s )  2' 

and this is easy to invert. Thus, a random variate 
Z can be generated as 

( a + l _ ~ / ( a + l ) 2 _ 4 a U ) 1 / ,  

2U - 1 , 

where U is a uniform [0,1] random variate. If 
speed is important, the square root can be avoided 
if we use the rejection method for the density Z a, 
with dominating density 1/(1 + u) z (the density of 
( I / U )  - 1). A little work shows that Z can thus be 
generated as follows: 

Repeat Generate two independent uniform [0,1] 
random variates U, V. Set X ~  ( I / U )  - 1. 

Until 2aU < V. (Now, X is distributed as Za.) 
Exit with X ~ X 1/'~. ( X  is distributed as Z.) 

The average number of loops is 1 + a. 

C. ~ ( t ) =  (1 - I t l )+  

For a > 1, ~ -  s~' is absolutely continuous. 
Thus, Z has density g(s) = a(a  - 1)s(1 - s) ~-2, 
0 ~< s ~< 1. This is the beta (2, a - 1) density. Z can 
be obtained directly by means of  a fast beta gener- 
ator, or as G/(G + G*) where G, G* are indepen- 
dent gamma (2) and gamma (1 + a)  random 
variates. For beta and gamma generators, we refer 
to the surveys of Schmeiser (1980), Schmeiser and 
Babu (1980) and Tadikamalla and Johnson (1981), 
where further references are found to the algo- 
rithms of Ahrens and Dieter, Best, Cheng, 
Marsaglia and others. 

D. ~(t)- (1 -Itl')+ 

This example was chosen to illustrate the fact 
that F does not have to be absolutely continuous. 
In fact, F ( s ) =  ( 1 -  a)s ~ on (0,1) and F(1)=  1. 
Thus, F has an atom of weight a at 1, and has an 
absolutely continuous part of weight 1 - a  on 
(0,1). The absolutely continuous part has density 
as "-1, 0 ~< s ~< 1, which is the density of U ~/', 
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where U is uniform on [0,1]. Thus, we have: 

1 with probability a, 

Z = U1/~ , with probability I - a. 

Here too, we can use the standard trick of re- 
cuperating part of the uniform [0,1] random variate 
used to make the 'with probability a '  choice. 

4. The Fejer-de ia Vallee Poussin density 

In this section, we will briefly describe a rela- 
tively fast algorithm for generating a random 
variate Y with the FVP density 

(2~r)-1(sin(x/2) ) 2" x / 2  

It is clear that this random variate is distributed as 
2 / W  where W has density 

f ( x ) = l , r  sin2(xl--)" 

The density f is very tractable in view of 

f(x) ~< min( 1,~, ~rx 21 ) =--'rr4 min(~, -~x-'2) = 4h(x)'~r 

where h is the density of V s where V is uniform 
[-1,1] and B is + 1 a n d -  1 with equal proba- 
bility ½, and B and V are independent. Thus, 
simple rejection with dominating density h gives: 

Repeat Generate (U, V) uniformly in [ -  1,1] 2. 
If U <  0, set V*-- 1/V. (Vnow has density 
h.) 

Until [U[min(1, 1 / V  2) < sin2(l/V). 
Exit with W ~ V. 

A slight improvement can be obtained by im- 
plementing this as follows: 

Repeat Generate (U, V) uniformly in [ -  1,1] 2. 
I fU < 0, set (U, V) ~ ( -  U V  2, 1 / V ) .  

Until U <  sin2(1/V). 
Exit with W*-- V. 

In both cases, the average number of iterations 
is 4/4.  If the average time must be reduced by all 
means, it pays to avoid the sin computation. For 
an argument x in [0, ,r/2], sin2x is bounded from 

above by 

X 2 (useful in range [0, 4 ]  ) 

and 

(1 _ ½y2 + ~y4)2 ~r , y = - ~ - x  

(useful in range [ 4 , 2 ]  ) , 

and from below by 

( x - ~ x 3 )  = and (1-½y=)  2. 

These bounds can be used to accept or reject most 
of the time without having to evaluate the sinus. 
Arguments outside [0,,r/2] can of course always 
be reduced to arguments in this range. The point 
here is that generating W (and thus Y) can be 
made very fast, so that in most cases, the cost of 
generating X = Y / Z  is nearly equal to the cost of 
generating Z. 
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