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Let f be a density on R", and let f, be the kernel estimate off,

fn(x) _ (nh d ) - ' ~= 1 K((x - X1)lh)

where h = h n is a sequence of positive numbers, and K is an absolutely
integrable function with f K(x) dx =1 . Let J, = f l f ,(x) - f (x) ( dx. We show
that when limnh = 0 and limnnh d = oo, then for every e > 0 there exist
constants r, no > 0 such that P(Jn > e) <_ exp(-rn), n ? no. Also, when J, -p
0 in probability as n --p oo and K is a density, then limnh = 0 and limnnh d =
oo.

1. Introduction. The purpose of this paper is to point out that for the celebrated
Parzen-Rosenblatt density estimate (Parzen, 1962 ; Rosenblatt, 1956) all types of Li
consistency are equivalent. We consider a sample X i , . . ., Xn of independent R d-valued
random vectors with common density f, and estimate f (x) by

f (x) _ (nhd)-1 ~ 1 K((x - X)/h)
where h = hn is a sequence of positive numbers and K is a Borel measurable function
satisfying k > 0, f K=1. The natural measure of the closeness of f,~ to f is its L 1 distance,

Jn = J I fn (x) - f (x) dx.

Our main result is :

THEOREM 1 . Let K be a nonnegative Borel measurable function on R d with
f K(x) dx =1. Then the following conditions are equivalent: (i) Jn - 0 in probability as
n - 00, some f; (ii) Jn - 0 in probability as n - 00, all f; (iii) Jn - 0 almost surely as n

oo, all f; (iv) Jn - 0 exponentially as n - 00 (i.e . for all e >0, there exist r, n0> 0 such
that P(Jn >_ s) < e-", n > no ), all f; (v) limnh = 0 and limnnhd = 00 . Also, (v) implies (iv)
when K is merely absolutely integrable and f K(x) dx =1.0

A weak analogue of Theorem 1 for histogram estimates was obtained by Abou-Jaoude
(1976a,1976b,1976c) . Theorem 1 improves Devroye and Wagner (1979), where L 1 conver-
gence results are obtained from pointwise convergence results (such as Deheuvels,1974)
and Scheffe's Theorem (Scheffe,1947; see also Glick,1974 and Devroye,1979) .

2. Proof of Theorem 1 . We will try to extract the key facts needed in the proof of
Theorem 1 . They are condensed in several lemmas of independent interest . Lemmas 1 and
2 are integral and pointwise versions of the Lebesgue density theorem . Lemma 3 contains
a crucial inequality for the multinomial distribution, and in Lemma 4 we prove that (v)

(iv) . Lemma 5 is an L 1 version of the non-existence of unbiased kernel density estimates .
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The implication (i)

	

(v) is established in Lemma 6. Since (iv) = (iii)

	

(ii)

	

(i), this
would then complete the proof of Theorem 1 .

LEMMA 1 . (L1 version of Bochner's theorem) . Let K be an absolutely integrable
function on R d with f K(x) dx = 1, and let h = hn be a sequence of positive numbers
satisfying limnh = 0. For each density f, we have limn f I gh (x) - f (x) I dx =0, where gh(x)
= h_d f K((x - y) /h) f(y) dy.

PROOF OF LEMMA 1 . The proof is based on a technique of Kantorovich and Akilov
(1964) . I am grateful to Laszlo Gyorh for pointing this reference out to me . We let C =
f I K(x) I dx, and note that by a change of integral, for any function f,

( 1)

	

J I gh(x) I dx <_ JJ h-d I K((x - y)/h) I f(y) I dy dx = C

	

f (y) I dy .

For each e > 0 there exists a continuous function f* vanishing outside a com-
pact set, say SoR, where Sxr is the closed sphere of radius r centered at x, such that
f I f (x) - f * (x) dx < e . Thus, if we write gh(f, x) to make the dependence upon f explicit,
then

f gh(f, x) - f(x) dx

J I gh(f - f*, x) I dx + J I gh (f *, x) - f * ( x) dx + J I f*()x- f (x) I dx

<_ (C + 1) I f * (x) - f (x) I dx +

<_ (C + 1)e + J gh(f *, x) - f *(x) I dx .

Thus, we need only show the Lemma for all functions f* . For each e >0, find 8(e) > 0 such
that II x - y II <(e) implies I f * (x) - f * (y) I <e. Thus, if f * = 0 outside SoR , then

J Igh(f * , x) - f * ( x) dx =
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IIxiisR,IIyii~R

= Ce(2R) d + o(1),

where C1 = sup x f * (x) . This concludes the proof of Lemma 1 .

LEMMA 2 . (Lebesgue density theorem) . 1f f is a density on R d and B is a compact
set o f R d with A(B) > 0, then

limh~oX-1(hB) x

	

f(y) dy = f (x), almost all x .
+hB

gh (f *, x) - f * (x) dx

h-dK (x
	 y)

{ f * ( y) - f * (x)) dyh

<

	

+
IIxii~R

	

IIyiIsR,IIx-yll~s(E)

	

IIyii~R,IIx-yll>3(E)

<_

	

Ce+ Cl

	

h -d

IIxiiSR

	

IIyDsR,IIx-yll>3(E)

<_ Ce(2R) d + C1(2R)d

	

I K(y) I dy
Ilhyll>s(e)

K(~x

dx

yl
I

dx

dyl dx
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PROOF OF LEMMA 2 . We know that

limh~OA-1(Sxh)

	

f(y) - f(x) I dy - 0
'sxh

for almost all x, by the classical version of the Lebesgue density theorem ; see for example,
Stein (1970, pages 62-63) or Wheeden and Zygmund (1977, pages 100-109) . If SOR is the
smallest sphere containing B, then for almost all x,

A -1(x + hB)
x

	

l f()
- f(x) I dy (X(SOR)/X(B))X-1 (x + hSoR)

x

	

f(y) - f(x) dy
+hB

	

+hSOR

which tends to zero as h ,~ 0 .

LEMMA 3. (A multinomial distribution inequality) . Let (X1 , • • •,Xk ) be a multino-
mial (n, p 1 , • • •, pk) random vector. For all r E (0,1) and all k satisfying k/n <_ r 2/20, we
have

P(=1 IXi - E(X) I > nr) <_ 3 exp(-ne 2/25) .

PROOF OF LEMMA 3. The proof is based upon a Poissonization. Let N be a Poisson(n)
random variable independent of U1 , U2 , • . ., which is a sequence of independent
{1, ..•, k} -valued variables distributed according to P(U1 = i) = Pi, 1 <_ i s k . Let Xi be
the number of occurrences of the value i among U1 , ..•, Un , and let X' be the number of
occurrences of the value i among Ul , ..•, UN. It is clear that Xi, • • •, Xk are independent
Poisson random variables with means np 1 , ..•, npk, and that X1 , • • •, Xk is a multinomial
(n, p1, • • •, pk) random vector. Since E(X) = npi, we have

1

	

1

	

1
(2)

	

~ik--1n
I
Xi-npi s~k1n Xi-X'I +~k1n IXi-npi1 .

Now, when U is Poisson(A), then for t > 0,

E(et~ v_M ) < E {et(v-~) + etO-v) } = e~(et-1)-tX + eX(e-t-1)+ta < 2e~(et-1-t),

because a-t + t < e t - t. Thus,
(3) P( I U - A I , Xe) < E(e ti v-ai-tXe) < 2e -tae e A(et-1-t)

= 2e 1 " 1~{e-(+e)+e)} < 2e-~e2 /2(1+e) < 2 e-a ' ,

where we took t = ln(1 + r) . By a repetition of the previous argument, using (3) and making
the substitution t = ln(1 + 3e/5), we have

1

	

2r

	

k 1

	

3r
P ~kl n lXi-npil >E sP IN-n >_n

5
+P ~i-1nlXi-npil>n 5

(4)

< 2e-n(2e/5) 2/4 + e tn(3e/5) fl =i {2enpt(et-1~t) }

< 2e _,2h/25 + 2ke n(et-1-t-Set/5)

< 2e'25 + e k-n(3e/5)2 /4

< 3e21/25 when k <_ n~ 2/20 .

REMARK 1 . The original manuscript had the bound 1134/(n 2e8 ), valid for k s n£ 2/9 . I
am grateful to Laszlo Gyorfl for suggesting the exponential inequality of Lemma 3 .

LEMMA 4 . For any density f on R d, and any absolutely integrable function K with
f K(x) dx =1, Jn - 0 completely as n - oo whenever limnh = 0 and limnnhd = 00 .
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PROOF OF LEMMA 4 . Let gh be defined as in the statement of Lemma 3 . By Lemma 3,
it suffices to show that f I fn(x) - gh(x) dx - 0 completely as n - 00 • Let µn be the
empirical probability measure for X 1 , • • •, X,, and note that

fn(x) = h-d K (x y)
µn (dy) .

h

For given e > 0, find mite constants M, L, N, a 1 , ..•, aN and disjoint finite rectangles A 1 ,
•

	

• •, AN in R d such that the function

K* (x) _

	

1 aiIA A (x)

satisfies: I K* s M, K* = 0 outside [-L, Lid, and f I K(x) - K*(x)
I
dx < E. Define g and

as gh and fn with K * instead of K. Then

f I fn(x) - gh (x) I dx <_ f I f(x) - f n(x) dx

+ f I fn (x) - gh (x) I dx + J I g(x) - gh (x) I dx

I h -d f
I K*((x - y)/h) - K((x - y)/h) I 1(y)

dy dx

+

+ h-d
I K*((x -y)/h) - K((x - y)h) I

(dy) dx

f I fn (x) - gh (x) I dx

_ 2e + J I f (x) - g% (x) I dx

by a double change of integral . But ifµ is the probability measure for f, then

J
I fn(x) - g (x) I dxs~N l I ai

I J I
h-d

x

	

1(y) dy -
h-d

	

µ,z (dy) I dx
+hAt

	

x+hAt

< Mh -d ~ 1

	

µ(x + hA i ) -(x + hA i ) I dx.

Lemma 4 follows if we can show that for all finite rectangles A of Rd, h-d
f I µ(x + hA) -

µn(x + hA) I dx - 0 exponentially as n - 00 • Choose an A, and let e > 0 be arbitrary.
Consider the partition of R d into sets B that are d-fold products of intervals of the form
[(i -1)h/N, ih/N), where i is an integer, and N is a fixed constant to be chosen later. Call
the partition . Let A = [d 1 [xi, xi + as ), minai >_ 2/N and A* _ [J 1 [xi + 1/N, xi + ai
-1/N) . Define

Cx=x+hA-UBEp,BCX+hABCx+h(A-A*)=Cx.

Clearly,

(5)

	

I µ(x + hA) - µn(x + hA) dx

s J ~BE~,BSx+hA I µ(B) - µn(B) I dx + J {µ(Cx ) + µn(Cx)) dx .

The last term in (5) equals
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2A(h(A - A*)) = 2hdX(A - A*) = 2hd(fd 1 a, - fjd 1(a, - 2/N))

= 2hdX(A)(1 - fjd1 (1 - 2/(Nay))) <_ 4h dX (A) ~d1 a11/Ns eh'

by choice of N . We used the fact that for any set C, and any probability measure v on the
Bore! sets of R d, f v(x + hC) dx = A(hC) . For any finite constant R >0, we can bound the
first term in (5) from above by

( 6) ~,BEP,Bf1SOR µn( B) - µ(B) I f

	

dx + f

	

dx{µn(SOR) - µ(SR) + 2µ(SOR)) .
BCx+hA

	

BCx+hA

Here ( .) c denotes the complement of a set . Clearly, h-d fBCx+hA dx < A(A), and µ(Son ) <
e by our choice of R. Also,

P{µn(SOR) - Ii(SR) > e) < e 2' 2

by Hoeffding's inequality for binomial random variables (Hoeffding, 1963) . Finally, since
the collection of sets B E with B fl SOR 4) has at most (2RN/h + 2)d = o(n) elements,
we see that by Lemma 3, for all n large enough,

P(L,BEY,Bf1Soi# µn(B) - µ(B) I > e) - 3e-1i 225.

Now collect bounds. This concludes the proof of Lemma 4 .

LEMMA 5 . (Nonexistence of unbiased kernel density estimates) . Let K and f be
arbitrary densities on R d, and letgh be defined as in Lemma 1 . Then f f (x) - ga (x) I dx
> 0 or all a > 0. Also, when an is a positive number sequence, lora n f I f (x) - gan (x) I dx
= 0 implies that limn an = 0.

PROOF OF LEMMA 5 . Let 4) and be the characteristic functions of f and K respectively.
Clearly, ga(x) = E{fn(x)) has characteristic function >j(at)4)(t) . Now, f f (x) - ga(x) dx
= 0 implies f = ga for almost all x, and thus 4)(t) _ 4)(t)>j(at) for all t ERd. For 4)(t) 0, i .e.
at least in a neighborhood of the origin, ij(at) = 1. But since a # 0, this implies that
cannot be the characteristic function of a density on Rd, and we have a contradiction .
Thus, f f (x) - ga(x) dx = 0 implies a = 0 .

To prove the second statement of the Lemma, we assume first that lim nan = oo . By
Fatou's Lemma, f I f (x) - gan(x) dx - 0 implies !im infra I f (x) - gan(x) I = 0, almost all x .
But since ga (x) - 0 for almost all x, we have f (x) = 0 for almost all x, and this
is impossible. Assume next that lima = c E (0, oo) . Now, f I f (x) - gan(x) I dx >_
f I f (x) - gc (x) dx -f I gc (x) - gan(x) dx . By the first part of this Lemma, it suffices to
show that f I gc(x) - gan(x) I dx - 0 to reach a contradiction, thereby concluding the proof
of Lemma 5 . Let Ka(x) = a -"K(x/a) . For every e > 0 we can find a continuous bounded
function K * with compact support such that f K * (x) - K(x) I dx < e. Now, by (1),

J
Ig~(x) - ga n (x) I dx <_ I Kc(x) - Kan(x) dx <

	

Kc (x) - K~ (x) I dx

+1 1 K~ (x) - Kn (x) I dx +1 1 Kn (x) - Ln(x) I dx

=21 IK*(x) - K(x) I dx +1 1 K~ (x) - Kn(x) dx <_ 2e + 0(1)

where for the o(1) part we used the Lebesgue dominated convergence theorem .

LEMMA 6. Let K and f be densities on R d. If Jn - 0 in probability as n - oo, then
limnh = 0 and limnnhd = oo.

PROOF OF LEMMA 6 . Since Jn < 2 for all n, Jn - 0 in probability if and only if



(8)

(9)

Also,

J E( I fn(x) - g (x) dx) ? J E( fn (x) - g(x) I IA ) dx

g (x)P(A) dx - E(fn(x)IA) dx = Un - Vn .
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limnE(Jn ) = 0. Define gh as in Lemma 1. Then

E(J) = E

	

I f~(x) - f(x) I dx ? J I E(fn(x)) - f(x) I dx =

	

gh(x) - f(x) I dx.

Apply Lemma 5, and conclude that lim nh = 0. This will bQ assumed for the remainder of
the proof. For the second part, we note that by Lemma 1, lim,~E(f I f,~(x) - gh(x) dx) = 0 .
LetM be a large number, and let K*(x) be defined as K(x)IK(x) . Define fn and g as f1z ,
gh with K * instead of K . By (1),

J fn(x) - gh(x) dx

(7)

	

J I f n (x) - gh (x) dx - J I f(x) - fn (x) I dx -J I gh (x) - g (x)
I
dx

= f I fn (x) - gX(x) I dx _2f I K(x) - K * (x) I dx.

Let us introduce some more notation : L is another large number, A is the event that no X~,
1 < i < n, belongs to Sx hL, K' = K*Is0L , K" = K* - K', and fn and fri are defined as f,~
after replacement of K by K' and K" in the definition. Clearly,

We will need the following facts, all corollaries of Lemma 2 (see also Devroye and
Wagner, 1979) : for bounded K* with compact support, gh (x) - f(x) f K*(x) dx, almost all
x, and µ(Sy+hzhL)/X (Sy+hzhL) - f(y) for all z E Rd and almost all y E R d . Let C be the
volume of Soi , and assume that lim,~nhd = r E [0, oo) . By Fatou's Lemma, we have

lim infra U, > f lim infngh(x)lim infnP(A) dx

= f f(x)lim infra {1 - µ(SxhL))~ dx f K'(z) dz

f f(x)exp(-lim supn[nµ(SxhL)/{1- µ(SxhL))]) dx K'(z) dz

j
f(x)exp{-rCLdf(x)) dx

	

K*(z) dz .
^SOL

Vn < E 1
Jn

1 h-dK"((x - Xl)/h)IA dx
n

= f h -dK"((x - y)/h) Iy sxhLf(y) dy{1 - µ(SxhL))n -1 dx

= f f(y)

	

h-aK„ ((x - y)/h){1 - µ(SxhL)) n-1 dx dy
x%SyhL

f
f(y) z%SOL K"(z)exp{-(n -1)µ(Sy+hzhL)) dz dy.
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The integrand of the inner integral of (10) is bounded by an integrable function, K" . Thus,
by the Lebesgue dominated convergence theorem and an earlier remark, we can conclude
that

lim supnVn <_ J f (y)

	

K*(z)exp{-rCL df(y)} dz dy
z%SOL

J f(y)exp{-rCL df(y) } dy

	

K * (z) dz.
Z%SO L

Combining (7), (8), (9) and (11) gives

lim infra f E(Ifn (x) - gk(x) I) dx + 2 IK(x) - K * (x) I dx

>_ J f(x)exp{-rCLd '(x)} dx 21 K*(z) dz -1
OL

Keeping L fixed, and letting M grow large shows that the right-hand-side of (12) is <_ 0,
with K instead of K* in the last integral . Now, choose any finite L for which fsOL K(z) dz
> 1/2 . Then, (12) can only be 0 when r = 00, and this is a contradiction . Thus, no subsequence
of rah d can tend to a finite limit r, and therefore, we must have lim n rah d = 00 .

3. Discrimination. We would like to point out one important application of Theorem
1. In the discrimination problem, we are given a sequence (X 1, Y1 ), • . ., (X,, Y) of
independent Rd x {1, • • • , M)-valued random vectors distributed as (X, Y) but independ-
ent of (X, Y) . We construct an estimate Y from X and the data sequence, say, Y = gn(X ) .
The probability of error for the given estimate and data sequence is Ln = P{ gn(X) #
Y

I
X1 , Y1 , • • •, Xn , Yn}, and this is always at least equal to the Bayes probability of error

L* = infg:Rd_,{1, . . .,M} P{g(X) # Y}.

If X has a density f, and if we construct the density estimates

(13)

	

f(x) _ (nhd ) -1 ~j=1 K((x - Xj)/h)IY=j, 1 i <_ M,

and if we define gn (x) as the first integer i for which f(x) = maxi<k~r fnk(x), then how is
Ln related to L * ? In other words, in what senses does Ln converge to L * ? The simple rule
mentioned here can be found under the name "potential function method" in the Russian
literature (see e.g. Bashkirov, Braverman and Muchnik,1964) . Its properties were subse-
quently studied by Van Ryzin (1966), Rejto and Revesz (1973), Glick (1972, 1976), Greblicki
(1978), Devroye and Wagner (1980a, 1980b) and Spiegelman and Sacks (1980) . In this note,
we can offer the following result:

THEOREM 2 . Let K be an absolutely integrable function with positive integral over
R d , and let X have a density f. Then the discrimination rule defined by (13) satisfies

~n1 n ~P(L n - L * > E) < 00 , all q, E > 0,

whenever

limnh =0, and limn rah d = 00 .

REMARK 2. Theorem 2 contains all previously known consistency results for the
discrimination rule (13) that are based on the assumption that X has a density f. With
additional conditions on K (i .e., c iIs >_ K >_ c2Is for some cl, c2 , rl , r2> 0), we know thatz



< M~i=1

>j i pni

s 2 > pi

fl (x)
- fni (x)

pni
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Ln - L* in probability for all distributions of (X, Y) (Devroye and Wagner, 1980 ;
Spiegelman and Sacks, 1980) . If we also ask that r 1 = r2 and nh d/log n --~ oo, then Ln --~ L
almost surely for all distributions of (X, Y) . From our Theorem, it is clear that the
condition nh d/log n --~ oo is not needed whenever X has a density .

PROOF OF THEOR1 M 2 • We introduce some new notation : Pi = P(Y = i), pni -
(1/n) ~')=1 IyJ =i, fi is the density of X given that Y = i, and fno = ~M 1 fni . Then, by (12) of
Devroye and Wagner (1980b), and defining 0/0 by 0,

f ff,1 (x)

	

i i x
Ln - L* < M i

	

- p.f() f(x) dx
fno (x)

	

f (x)

J pi fi (x) - fni (x) I dx +

	

i J fni (x)

is

dx

f (x) - f(x)
pni

fi
(x) - fni (x)

pni

f(x)
fno (x)

dx + f I f (x) - fno(x) I dx + ~M1 pi - pni I

dx + ~M1 pi - pni I

Let us look at i = 1 only . By Hoeffding's inequality (Hoeffding, 1963), P( I pl - pni I > e)
<_ 2 exp(-2ne2 ), all e > 0. Assume that P i > ,0, and let N = npn l . Note next that
E{ fnl(x)/pnl I N) = gh(x), which is defined as in Lemma 1 when f is replaced by fi . Thus,

J
I f1(x) - gh(x) ( dxIN>O + gh (x)

fnl(x
pni

dx

dxIN>O + 21N=0

The first term on the right-hand-side of the inequality tends to 0 as h - * 0 by Lemma 1 .
Conditional on N, the second term is distributed as f I E(fN(x)) - fN(x) dxIN>o , where

fN(x) _ (Nhd)-1 ~N i K((x - X1)/h)

andX1 , • • •, XN are independent random vectors with common density Ii . In the proof of
Theorem 1, we have seen that for every e > 0 there exist positive constants ci only
depending upon e, K and fi such that P(f E(fN(x)) - fN(x) I dx > e I N) <_ cl/N', valid
when (c2/h + 1)d < c3N. Thus

P

	

gh(x) -
fpn(xl

) dx IN>o > e < P N< npl + cl npi
2

	

2

	

'

valid when (c2/h + 1)d< 1/2nplc3 .
Since nhd --~ oo, the last inequality is valid for all n large enough . The term

P(N < np i/2) does not exceed exp( -npl/2) by Hoeffding's inequality, and the last term of
(14) is treated similarly . Theorem 2 now follows by the arbitrariness of a and q .

Acknowledgments. The author wishes to thank Clark Penrod and Charles Baker
for their constant help, and Laszlo Gyorfi for pointing out a crucial improvement.
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