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Abstract --- Zusammenfassung

Moment Inequalities for Random Variables in Computational Geometry . Let Xl , . . ., X~ be in-
dependent identically distributed R d-valued random vectors, and let An = A (X1 , . . .,Xn) be a subset of
{X 1 , . . ., Xn}, invariant under permutations of the data, and possessing the inclusion property (X 1 E A n
implies X 1 E A~ for all i ~ n) . For example, the convex hull, the collection of all maximal vectors, the set of
isolated points and other structures satisfy these conditions .
Let Nn be the cardinality of A n . We show that for all p ? 1, there exists a universal constant C, > 0 such
that E(N)_C~C p max (1, E~ (N,)) where q ='. This complements Jensen's lower bound for the p-th
moment : E (Nn) ? E' (N n) .
The inequality is applied to the expected time analysis of algorithms in computational geometry . We also
give necessary and sufficient conditions on E (Nn) for linear expected time behavior of divide-and-conquer
methods for finding A n .
AMS Subject Classifications : Primary 60E 15 . Secondary 68C25, 60D05 .

Key words and phrases : Moment inequalities, computational geometry, convex hull, maximal vector,
divide and conquer, average complexity, analysis of algorithms .

Momentenungleichungen fur Zufallsvariable bei geometrischen Berechnungsverfahren. Xl , . . ., Xn
seien unabhangige and gleichartig verteilte Zufallsvektoren im R d, ferner sei An = A (X1 , . . ., X ~) eine
Teilmenge von {X 1 , . . ., X n}, die invariant ist gegenuber einer Permutation der Daten and die die
lnklusionseigenschaft (X 1 EAn X 1 E Ai fur i E n) besitzt . Beispielsweise erfullen die konvexe Hulle, die
Menge der Maximal-Vektoren, die Menge der isolierten Punkte and andere Strukturen diese
Bedingungen .
Sei Nn die Kardinalzahl von An . Wir zeigen, dab es fur jedes p? 1 eine universelle Konstante Cp gibt, so
daa E (Nn) < C, max (1, E" (N njq)) gilt, mit q =''. Dies ist das Gegenstuck zur unteren Schranke in Jensen
fur das p-te Moment : E (N~) ~ E" (NJ .
Die Ungleichung wird zur Analyse der erwarteten Laufzeit von Algorithmen fur geometrische
Berechnungen verwendet . Ferner werden notwendige and hinreichende Bedingungen bezuglich E (N n )
angegeben, damn ein, lineares Laufzeitverhalten bei Divide-and-Conquer-Methoden zur Berechnung
van A n zu erwarten ist .
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1. Introduction
Let X1 , . . . , X~ be independent identically distributed Rd-valued random vectors and
let An = A (X 1 , . . ., Xn) be a subset of X 1 , . . ., X, such as, for example, the set of all X ri's
that belong to the convex hull of X 1 , . . ., X,, . In general, we assume that A satisfies

(i) A (x1, . . ., xn) = A (x~~ 1) ,

	

for all x 1 , , . ., xn E Rd ,
and all permutations ci(1), . . .,an) of 1, . . .,n .

	

(1 )
(ii) x l E A (x 1 , . . . , xn ) implies x 1 E A (x 1 ,	x), all iS n .

n

LetN=E '[x4 EAn] where I is the indicator function . In this note, we are interested in
i=1

inequalities linking E (N") to EP (N), and in the application of these inequalities in
the study of the average complexity of various algorithms in computational
geometry .
From Jensen's inequality, we know that

E (N)>_pEP(N), all p >_ 1 .

	

(2)

Regardless of (1), we always have the partial converse

E (Np) < nP -1 E (N), all p >_ 1 .

	

(3)

But (3) is too weak for most applications . If we exploit the structure of A given in (1),
stronger converses of (2) are obtainable . Our main result is the following theorem

Theorem 1 : Assume that (1) holds, and that p >_ 1 is fixed . Let q = p, and let N„ be
defined as N, to make the dependence upon n explicit . Then there exist universal
positive constants C and D only depending upon p such that

E (Nn) < max (C, DE" (N)) .

	

(4)

We can always take C = (2 q)" (e - l) ~q and D = (2 q2)p (e -

The proof of theorem 1 is given in section 2. Some direct applications of it are
outlined in section 3 . In section 4, we derive some results about the average
complexity of divide-and-conquer algorithms that use inequality (4) in crucial
places .

Remark 1 : If E (N„) is nondecreasing in n, then we have a converse of (2) :
E (N,P,) < max (C, DEp (N„))

	

(S)

for some universal positive constants. C, D only depending upon p. The monoto-
nicity condition for E (N„) is often hard to check . The most useful farm of (4) is the
following : if E (N„) < a„ and a„ is nondecreasing, then

E (Nn) < max (C, D at) .

an

	

an
o <lim mf <lim sup < cc .

bn b~

(6)

Remark 2 : An important notion in computer science is that of comparable
sequences: two sequences a„ > 0 and b;, > 0 are said to be comparable (written
a„ = 9 (b„)) when

(7)
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For example, (2) and (5) imply that E(N„) and E" (N a ) are comparable when (1)
holds, E (N„)--> cc, and E (N n ) is nondecreasing in n . The same remains true when
E (N n) ' a n where a„-~ oo and a„ is nondecreasing in n.

Remark 3 : In most applications we know that E (N„) ~ for some nondecreasing
sequence a„, and thus remark 2 applies . In some rare instances, E (N„) oscillates .
When the oscillations are slight, theorem 1 is still powerful enough to imply that
E (Nn) = 8 (EP (N„)) : for example, it suffices that E (N„) is regularly varying or that
E (N n ) ~ a n where ari is regularly varying, and that E (N„)-> ao (a sequence a„ is said to
be regularly varying if for some finite number r, lim acn/a„ = C r for all c > 0). This
follows from (2) and (4) after noting that

E (Nn~q) 'q - r E (N„) .u
Remark 4 : Theorem 1 gives us information about polynomial moments . It can also
be used to obtain upper bounds for other moments, as we will now illustrate onone
important example . Let C j D, be the constants of theorem 1 for p = 2 . Then,

E (N log (N„ + e)) < /E (N 2) E (log e (N„ + e)) (Cauchy's inequality)

<_ Vmax (C, DE Z (N,))log(E~2 (Nn + e)) (concavity of log e , Jensen's inequality, andu

< max (/C, vD E (N, ~z))log (E (Nn + e)) .

By the convexity of u log (u + e), we also have

E (N log (N„ + e)) >_ E (N„) log (E (N„ + e)) .

Assume thus that (1) holds and that E (N„)-+ oo . Then

E (N„ log (N„ + e)) = 8 (a„ log (a„))

when E (N„) ' a„ for a„ nondecreasing or regularly varying .

2. Proof of Theorem 1

Assume first that p is integer, p ? 2, and that n is a multiple of p . Define B1 , . . . , Bp by

1 ~i~p, .

By the independence of the X i 's and (1),
n

	

p
E(N)=E

	

X~EAn

p

	

n
C ~ zp

	

P.~X1 , . . ., Xi E And
i=1
p

i=1

theorem 1)

n
ip

	

flP(X e B)~

	

~\ij j=1
P

< ~ pp [nP(X1EB1)]`/i! .

Zen . .

(g)
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Let a = pp (e -1).

Now, ifnP (X 1 E B 1 ) < 1, (8) is less than a . If nP (X, E B 1 ) >_ 1, it is less than or equal to
(nP (X1 E B 1 ))p a . Thus, we have shown that

E (N„) <_ a max (1, Ep (N 1 )„ P pp) .

	

(9)
If

p is integer but n is not a multiple of p, then let m = p •

	

Note that n - p <_ m < n,
and that, by (1), N„ _< N„, + p . Thus, applying (9),

E (N„) <_ E ((Nm + P)p) <_ 2p max (pp, E (Nm)) <_ 2P a max (1, pp Ep (Nmip ))

= max (cr , Dp Ep (Nm1p))

	

(10)

where Cp= 2" a = (2 p)p (e -1) and Dp = (2 p)p a = (2 p 2)p (e -1).

When p is not integer; we let q=p, and apply Jensen's inequality :
E (Nn) < (E (N))'„~q _< max (C/,q 9 Dq~q Ep (N„,))

where m = (ni ~q)r This concludes the proof of theorem 1 .

3. Applications

Inequalities for the Binomial Distribution

Let X . be {0,1 }-valued with P (X ~ =1) =1- P (X~ = 0) = q E (0,1), and let A„ be the
collection of X i's taking the value 1 . By the independence of the X D 's, N is binomial
(n, p) and E (N) = n p . Clearly, (1) holds and remark 1 applies . In particular, (5) holds :

E (Np) < max (C, D (nq)p) .

The Number of Convex Hull Points

We say that Xi E Rd is isolated (X 1 E A„) if the closed sphere of radius r centered at X,
contains no X~, 1 <_ j < n, j # i. Here too, (1) holds . Let N be the total number of
isolated points among X1 , . . . , X,, . Often E (N) = n P (X 1 E A„) is easy to compute or
bound. The moments E (N'') can be bounded by (2) and (4) .

The Number of Convex Hull points

When A„ is the convex hull of X 1 , . . . , X„, the distribution of N is generally hard to
find . For many distributions, the asymptotical behavior of E (N) is known . In these
cases, theorem 1 can be used to get upper bounds for E (NP), p >_ 1 . Among the known
results, we cite

1 . E (N) = o (n) whenever X 1 has a density (Devroye, 1981) .

2. For the normal distribution in Rd, E (N) = 0 ((log n)(d_ 1) i 2) (Raynaud, 1970). For
d = 2, it is known that E (N) 's 2j/2 rc log n (Renyi and Sulanke, 1963/1964) .
Remark 1 applies in the former case, and remark 2 in the latter .

3 . When X 1 is uniformly distributed in the unit hypersphere of R d, then
E(N)=O(n) od-1 ~i~a+ 1~(Raynaud, 1970) .
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4 . When X1 is uniformly distributed on a polygon of R 2 with k vertices, then

E (N) ' 2k log n (Renyi and Sulanke, 1963, 1964, 1968) . Once again, remark 2
3

applies .

5 . The behavior of E (N) for radial distributions on R2 is quite exhaustively treated
by Carnal (1970) . For example, if P ( ~~ X 1 II > u) = u -" L(u)for some r>_ 0, where L
is slowly varying (i .e ., L (c x)/L (x)-> 1 as x-~ oo for all c > 0), then E (N) --> c (r) > 0 .
In another example, let P ( ~ I X1 II > u) ' c (1- u)r for some c > 0, r >_ 0, when u T 1,
and let it be 0 for u > 1 . Then E(N)c(r)n 2 ' 1~ + ~ for some constant c(r)>0 . The
uniform distribution on the unit circle satisfies the said condition with c = 2, r =1 .
In all these examples, remark 2 applies .

Minimum Covering Spheres and Ellipsoids

The minimal covering ellipsoid (sphere) is the ellipsoid (sphere) of minimal volume
that covers X1 , . . .,Xn . It can be found by first finding the convex hull A n of
X1 , . . . , x„ and then performing some operations on the convex hull points, at least
when d = 2 . For example, it is known that the minimal covering circle has either
three points of A„ on its perimeter, or two points (in which case they define the
diagonal of.the circle) . Thus, given A n , the most naive algorithm to find the minimal
covering circle takes time proportional to N 4 . The average time of the entire
algorithm is equal to the average time of the convex hull algorithm plus a constant
times E(N4) . By (6), E (N4) = 0 (n) whenever E (N) = 0 (n 114 ), The latter condition is
satisfied for most distributions cited in the previous paragraph . Of course, we could
also use the 0 (N 2) algorithm of Elzinga and Hearn (1972) (see also Francis (1974)) or
the 0 (N log (N)) algorithms of Shamos (1978) or Preparata (1977) . By (6) and
remark 4, the construction of the minimum covering sphere from A n takes on
average time 0 (n) when E (N) = 0 (/) and E (N) = 0 (n/log (n)) respectively. To end
A„ in average time 0 (n), see section 4 below and the survey paper of Devroye and
Toussaint (1980) .

Silverman and Titterington (1980) find the minimal covering ellipse in R Z from A„ in
time bounded by cN6 . Thus, their algorithm has linear expected time if A n can be
found in linear expected time and if E (N) = 0 (n" 6 ) (by Theorem 1) .

The Diameter of a Set of Points

The diameter D =D (X 1 , . . . , X n) of X1 , . . . , X„ is the maximal distance between any
two points X ~ and X~ . Since both X ~ and X~ that are furthest apart must belong to A„,
one can find D by first finding An and then comparing all (Z ) distances between
points belonging to A„ (see Bhattacharya (1980) for a development of this algorithm
and a comparison with other algorithms for finding D). By theorem 1, it is clear that
the total average complexity is 0 (n) when A„ can be found in average time 0 (n), and
when E (N) = 0 (1/) . Notice that the latter condition is satisfied for all dimensions d
when X 1 is normally distributed, or when X 1 is uniformly distributed in the unit
cube of Rd .
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The Number of Maximal Vectors

Let An be the collection of maximal vectors of X 1i . . ., X„, that is, X 1 e An if and only if
no other X~ dominates X~ in all its components . One can easily check that (1) is valid .
Also, whenever X 1 has a density and its components are independent, E (N) is
monotone (Devroye, 1980) . In fact,

E (N) ^' flog n )d -1 /(d 1)!

(Barndorff-Nielsen and Sobel, 1966 ; Devroye, 1980) . Thus, by remark 2, E (N") and
(log n)P(d - ') are comparable for all p >_ 1 .

The Throw-Away Principle

The convex hull of X 1 , . . ., X„ can be found very rapidly by finding the extremes in
the directions d l , . . . , ds , throwing away all the X i's that are strictly interior to the
polyhedron formed by these extremes, and then finding the convex hull of all the
remaining points via a simple convex hull algorithm (see for example, Jarvis (1973) for
an 0 (n2 ) convex hull algorithm in R 2 , and ' Graham (1972) for an 0 (n log n)
algorithm in R 2 ; and see Devroye (1981) and Devroye and Toussaint (1981) for the
throw-away principle. It is essential that one has a good upper bound for E (N2) or
E (N log + N) where log + N = max (log N, 0), and N is the number of points not
thrown away (and collected in A„) . It is easy to check that An satisfies (1) . Thus, by
theorem 1, Jarvis' algorithm will yield 0 (n) average time when E (N) = 0 (/). By
remark 4, Graham's algorithm will do the same when E (N) log + E (N) = O (n) . In
essence, one must only end the asymptotical behavior of E (N) to study the average
complexity of these throw-away algorithms. For some results along this line, see
Devroye (.19$1) and Devroye and' Toussaint (1981) .

4. Divide and Conquer Methods

Because of property (1) (ii), A n can be found very elegantly by divide-and-conquer
methods . Assume for simplicity that n = 2k for some integer k ~ 1, and consider the
following algorithm :

(i) Set i-2 . FLet A 1 _-A(X), ~1 ~ j ~ n .
(ii) Let A i = A (A1 _ 12 1 , Ai _ 1 z ), 1 ~ j ~ n/2~ T 1 . (Thus .merge the solutions

A_ 12 _ 1 and A_ 12 .)
(iii) If i = k, A n +- Ak z and exit .

Otherwise, i *- i + 1, go to (ii) .

The crucial observation here is that if N n is the cardinality of A n , then each

	

has on
the average

E

	

'[Xm E Azj} = E (N 2 )~
m=1

elements .



Theorem 2 : . Assume that two A-sets of sizes k l and k 2 can be merged and edited in
time bounded by c (f(ki)+f(k2))for some constant c and some nondecreasing function
f, and assume that E (f(N)) S b„ for some nondecreasing sequence b,, . Then the divide
and conquer algorithm given above finds A„ in average time

2n

0 n ~ b~/i 2 ,
i=1

-which is O (n) if
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If the merging and editing takes time bounded from below by c' (f(k 1)+f (k2)) and
E (f(N)) >_ c" b,,, all n large enough (c', c" are positive constants ; b„ and f are
nondecreasing), then condition (11) is necessary as well for 0 (n) average time behavior
of the given divide and conquer algorithm .

Proof of Theorem 2 :
The average time for the entire algorithm does not exceed, for n = 2 k , k >_ l,

k

	

k

	

2i+1-1

c ~ n2 - `b 2< <_cn ~ 2 -2i ~ b

k 21+ 1 -1

< 4 c n ~ : b/J2
~i=o;=2i

2n

< 4 c n ~ b/j2 ,~
j =1

from which the sufficiency of (11) follows. The necessity follows by a similar
argument since the average time of the algorithm is bounded from below by

k

	

k

	

2'

c'c" ~ n2 -i bZZ >c,

	

~ 2 -c2 -

i=Q i=1 j2' 1- + 1

C'c"n

	

2r

i=1 J=21 -1 +12

	

'

=2

so the average time cannot be bounded by K n for any K > 0, if (11) diverges .

Example 1 : Finding the maximal vectors .
Let A„ be the set of maximal vectors among X 1 , . . ., X,, . Merging and editing in the
divide and conquer algorithm is accomplished by the brute force method : (i) merge
the sets ; (ii) by pairwise comparisons, end all the maximal vectors in the merged set,
and delete the other X1's from it . Theorem 2 applies with f (n) = n 2 for both the upper
and lower time bound for the merging and editing . Assume that we know that
E (N) ~ a„ for some nondecreasing function a n-> oo . Then, by theorem 2, the divide
and conquer algorithm runs in linear average time if and only if

Cln/Y1 2 G 00 .
n~1
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Here we also needed remark 2 . For example, when X 1 has a density and its
components are independent, then an = (log n )d _ '/(d -1) ! . Clearly, (12) holds for any
d . For such distributions, the convex hull can be found in average time 0 (n) as well
since a„ + 1 = 0 (n) : just notice that the convex hull is a subset of A n that can be
obtained from A n in time D(Nd+l), and that E(Na+~~-O(an+l)-0(n) .

Example 2 : Convex hulls in R 2 .
Two convex hulls with angularly ordered elements in the plane can be merged in
time proportional to the total number of elements involved, and the result is a new
convex hull with angular ordering (Shamos,1978) . Theorem 2 applies with f (n) = n if
a divide and conquer method is used to find the convex hull of X 1 , . . . , Xn . Thus, if
E (N) = 0 (a„), and a„ is nondecreasing, then

n=1

an/n2 < co
n= i

is sufficient for linear average time behavior of the algorithm . If lim infE (N)/an >0,
then (13) is necessary too. This improves a result by Bentley and Shamos (1978) who
required that E (N) = 0 (n 1 - a ) for some S > 0 for linear average time of their divide
and conquer convex hull algorithm . Notice that (13) follows when a„ = O (n/logs +a n)
or a„= 0 (n/(log n log s + 8 log n)) for some 8 > 0 . All the planar distributions of
section 3 satisfy these requirements .

Example 3 : Convex hulls in R d .
Let A„ be the convex hull of X,, . . ., Xn , and let us merge and edit in step (ii) in the
most trivial possible way : merge to the two sets, consider all d-tuples of elements,
and check if all the remaining elements fall on the same side of the halfspace
determined by the d-tuple. Such an algorithm takes time

o((ki +k2)a+I)_ O(k+k2+ ~)

when the two sets involved have k l and k2 elements, respectively . For average linear
time of the divide and conquer algorithm it is sufficient that E (N) = 0 (a„) for some
nondecreasing function a,,, and that

an+1/nz ~ oo .
n=1

(Just combine theorem 2 and remark 1 .) Condition (14) is satisfied for all d for the
normal distribution, and for the uniform distribution on the unit cube of R d . Because
two convex hulls of sizes kl and k2 can be merged in time

p ((k, + k2)~cd+ 1)/2, + (k 1 + k2) log (k1 + k2))
(Seidel, 181), condition (14) can be replaced by

: (a')!- +aloga)/n2 <cx;;a + 2~

	

n

	

n (15)

whenever E (N) = 0 (a„) for some nondecreasing function . a n :

(13)
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