Moment Inequalities for Random Variables in Computational Geometry

L. Devroye*, Montreal

Received December 10, 1980

Abstract - Zusammenfassung

Moment Inequalities for Random Variables in Computational Geometry. Let X_{1}, \ldots, X_{n} be independent identically distributed R^{d}-valued random vectors, and let $A_{n}=A\left(X_{1}, \ldots, X_{n}\right)$ be a subset of $\left\{X_{1}, \ldots, X_{n}\right\}$, invariant under permutations of the data, and possessing the inclusion property ($X_{1} \in A_{n}$ implies $X_{1} \in A_{i}$ for all $i \leq n$). For example, the convex hull, the collection of all maximal vectors, the set of isolated points and other structures satisfy these conditions.
Let N_{n} be the cardinality of A_{n}. We show that for all $p \geq 1$, there exists a universal constant $C_{p}>0$ such that $E\left(N_{n}^{p}\right) \leq C_{p} \max \left(1, E^{p}\left(N_{n / q}\right)\right.$ where $q=\bar{p}$. This complements Jensen's lower bound for the p-th moment: $E\left(N_{n}^{p}\right) \geq E^{p}\left(N_{n}\right)$.
The inequality is applied to the expected time analysis of algorithms in computational geometry. We also give necessary and sufficient conditions on $E\left(N_{n}\right)$ for linear expected time behavior of divide-and-conquer methods for finding A_{n}.
AMS Subject Classifications: Primary 60E15. Secondary 68C25, 60D05.
Key words and phrases: Moment inequalities, computational geometry, convex hull, maximal vector, divide and conquer, average complexity, analysis of algorithms.

Momentenungleichungen fuir Zufallsvariable bei geometrischen Berechnungsverfahren. X_{1}, \ldots, X_{n} seien unabhängige und gleichartig verteilte Zufallsvektoren im R^{d}, ferner sei $A_{n}=A\left(X_{1}, \ldots, X_{n}\right)$ eine Teilmenge von $\left\{X_{1}, \ldots, X_{n}\right\}$, die invariant ist gegenüber einer Permutation der Daten und die die Inklusionseigenschaft $\left(X_{1} \in A_{n} \Rightarrow X_{1} \in A_{i}\right.$ für $\left.i \leq n\right)$ besitzt. Beispielsweise erfüllen die konvexe Hülle, die Menge der Maximal-Vektoren, die Menge der isolierten Punkte und andere Strukturen diese Bedingungen.
Sei N_{n} die Kardinalzahl von A_{n}. Wir zeigen, daß es für jedes $p \geq 1$ eine universelle Konstante C_{p} gibt, so daß $E\left(N_{n}^{p}\right) \leq C_{p} \max \left(1, E^{p}\left(N_{n / q}\right)\right)$ gilt, mit $q=\bar{p}$. Dies ist das Gegenstück zur unteren Schranke in Jensen für das p-te Moment: $E\left(N_{n}^{p}\right) \geq E^{p}\left(N_{n}\right)$.
Die Ungleichung wird zur Analyse der erwarteten Laufzeit von Algorithmen fur geometrische Berechnungen verwendet. Ferner werden notwendige und hinreichende Bedingungen bezüglich $E\left(N_{n}\right)$ angegeben, damit ein lineares Laufzeitverhalten bei Divide-and-Conquer-Methoden zur Berechnung von $A_{n} \mathrm{zu}$ erwarten ist.

[^0]
1. Introduction

Let X_{1}, \ldots, X_{n} be independent identically distributed R^{d}-valued random vectors and let $A_{n}=A\left(X_{1}, \ldots, X_{n}\right)$ be a subset of X_{1}, \ldots, X_{n} such as, for example, the set of all X_{i} 's that belong to the convex hull of X_{1}, \ldots, X_{n}. In general, we assume that A satisfies:
(i) $A\left(x_{1}, \ldots, x_{n}\right)=A\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)$ for all $x_{1}, \ldots, x_{n} \in R^{d}$, and all permutations $\sigma(1), \ldots, \sigma(n)$ of $1, \ldots, n$.
(ii) $x_{1} \in A\left(x_{1}, \ldots, x_{n}\right)$ implies $x_{1} \in A\left(x_{1}, \ldots, x_{i}\right)$, all $i \leq n$.

Let $N=\sum_{i=1}^{n} I_{\left[X_{\left.i \in A_{n}\right]}\right.}$ where I is the indicator function. In this note, we are interested in inequalities linking $E\left(N^{p}\right)$ to $E^{p}(N)$, and in the application of these inequalities in the study of the average complexity of various algorithms in computational geometry.
From Jensen's inequality, we know that

$$
\begin{equation*}
E\left(N^{p}\right) \geq E^{p}(N), \text { all } p \geq 1 \tag{2}
\end{equation*}
$$

Regardless of (1), we always have the partial converse

$$
\begin{equation*}
E\left(N^{p}\right) \leq n^{p-1} E(N), \text { all } p \geq 1 \tag{3}
\end{equation*}
$$

But (3) is too weak for most applications. If we exploit the structure of A given in (1), stronger converses of (2) are obtainable. Our main result is the following theorem:

Theorem 1: Assume that (1) holds, and that $p \geq 1$ is fixed. Let $q=\bar{p}$, and let N_{n} be defined as N, to make the dependence upon n explicit. Then there exist universal positive constants C and D only depending upon p such that

$$
\begin{equation*}
E\left(N_{n}^{p}\right) \leq \max \left(C, D E^{p}\left(N_{n / q}\right)\right) \tag{4}
\end{equation*}
$$

We can always take $C=(2 q)^{p}(e-1)^{p / q}$ and $D=\left(2 q^{2}\right)^{p}(e-1)^{p / q}$.
The proof of theorem 1 is given in section 2 . Some direct applications of it are outlined in section 3 . In section 4 , we derive some results about the average complexity of divide-and-conquer algorithms that use inequality (4) in crucial places.

Remark 1: If $E\left(N_{n}\right)$ is nondecreasing in n, then we have a converse of (2):

$$
\begin{equation*}
E\left(N_{n}^{p}\right) \leq \max \left(C, D E^{p}\left(N_{n}\right)\right) \tag{5}
\end{equation*}
$$

for some universal positive constants C, D only depending upon p. The monotonicity condition for $E\left(N_{n}\right)$ is often hard to check. The most useful form of (4) is the following: if $E\left(N_{n}\right) \leq a_{n}$ and a_{n} is nondecreasing, then

$$
\begin{equation*}
E\left(N_{n}^{p}\right) \leq \max \left(C, D a_{n}^{p}\right) . \tag{6}
\end{equation*}
$$

Remark 2: An important notion in computer science is that of comparable sequences: two sequences $a_{n}>0$ and $b_{n}>0$ are said to be comparable (written $a_{n}=\theta\left(b_{n}\right)$) when

$$
\begin{equation*}
0<\lim \inf \frac{a_{n}}{b_{n}} \leq \lim \sup \frac{a_{n}}{b_{n}}<\infty . \tag{7}
\end{equation*}
$$

For example, (2) and (5) imply that $E\left(N_{n}^{p}\right)$ and $E^{p}\left(N_{n}\right)$ are comparable when (1) holds, $E\left(N_{n}\right) \rightarrow \infty$, and $E\left(N_{n}\right)$ is nondecreasing in n. The same remains true when $E\left(N_{n}\right) \sim a_{n}$ where $a_{n} \rightarrow \infty$ and a_{n} is nondecreasing in n.

Remark 3: In most applications we know that $E\left(N_{n}\right) \sim a_{n}$ for some nondecreasing sequence a_{n}, and thus remark 2 applies. In some rare instances, $E\left(N_{n}\right)$ oscillates. When the oscillations are slight, theorem 1 is still powerful enough to imply that $E\left(N_{n}^{p}\right)=\theta\left(E^{p}\left(N_{n}\right)\right)$: for example, it suffices that $E\left(N_{n}\right)$ is regularly varying or that $E\left(N_{n}\right) \sim a_{n}$ where a_{n} is regularly varying, and that $E\left(N_{n}\right) \rightarrow \infty$ (a sequence a_{n} is said to be regularly varying if for some finite number $r, \lim a_{c n} / a_{n}=c^{r}$ for all $c>0$). This follows from (2) and (4) after noting that

$$
E\left(N_{\underline{n / q}}\right) \sim q^{-r} E\left(N_{n}\right) .
$$

Remark 4: Theorem 1 gives us information about polynomial moments. It can also be used to obtain upper bounds for other moments, as we will now illustrate on one important example. Let C, D be the constants of theorem 1 for $p=2$. Then,

$$
E\left(N_{n} \log \left(N_{n}+e\right)\right) \leq \sqrt{E\left(N^{2}\right) E\left(\log ^{2}\left(N_{n}+e\right)\right)} \text { (Cauchy's inequality) }
$$

$\leq \sqrt{\max \left(C, D E^{2}\left(N_{n / 2}\right)\right)} \log \left(E\left(N_{n}+e\right)\right.$) (concavity of $\log ^{2}$, Jensen's inequality, and theorem 1)

$$
\leq \max \left(\sqrt{C}, \sqrt{D} E\left(N_{n / 2}\right)\right) \log \left(E\left(N_{n}+e\right)\right)
$$

By the convexity of $u \log (u+e)$, we also have

$$
E\left(N_{n} \log \left(N_{n}+e\right)\right) \geq E\left(N_{n}\right) \log \left(E\left(N_{n}+e\right)\right)
$$

Assume thus that (1) holds and that $E\left(N_{n}\right) \rightarrow \infty$. Then

$$
E\left(N_{n} \log \left(N_{n}+e\right)\right)=\theta\left(a_{n} \log \left(a_{n}\right)\right)
$$

when $E\left(N_{n}\right) \sim a_{n}$ for a_{n} nondecreasing or regularly varying.

2. Proof of Theorem 1

Assume first that p is integer, $p \geq 2$, and that n is a multiple of p. Define B_{1}, \ldots, B_{p} by

$$
B_{i}=A\left(X_{i}, X_{i+p}, X_{i+2 p}, \ldots, X_{n+i-p}\right), 1 \leq i \leq p, i \leq n
$$

By the independence of the X_{i} 's and (1),

$$
\begin{align*}
E\left(N_{n}^{p}\right) & =E\left(\left(\sum_{i=1}^{n}{ }_{\left[X_{\left.i \in A_{n}\right]}\right.}\right)^{p}\right) \\
& \leq \sum_{i=1}^{p} i^{p}\binom{n}{i} P\left(X_{1}, \ldots, X_{i} \in A_{n}\right) \\
& \leq \sum_{i=1}^{p} i^{p}\binom{n}{i} \prod_{j=1}^{i} P\left(X_{j} \in B_{j}\right) \tag{8}\\
& \leq \sum_{i=1}^{p} p^{p}\left[n P\left(X_{1} \in B_{1}\right)\right]^{i} / i!
\end{align*}
$$

Let $a=p^{p}(e-1)$.
Now, if $n P\left(X_{1} \in B_{1}\right) \leq 1,(8)$ is less than a. If $n P\left(X_{1} \in B_{1}\right) \geq 1$, it is less than or equal to ($\left.n P\left(X_{1} \in B_{1}\right)\right)^{p} a$. Thus, we have shown that

$$
\begin{equation*}
E\left(N_{n}^{p}\right) \leq a \max \left(1, E^{p}\left(N_{n / p}\right) p^{p}\right) \tag{9}
\end{equation*}
$$

If p is integer but n is not a multiple of p, then let $m=p \cdot(n / p)$. Note that $n-p \leq m \leq n$, and that, by (1), $N_{n} \leq N_{m}+p$. Thus, applying (9),

$$
\begin{align*}
E\left(N_{n}^{p}\right) \leq E\left(\left(N_{m}+p\right)^{p}\right) & \leq 2^{p} \max \left(p^{p}, E\left(N_{m}^{p}\right)\right) \leq 2^{p} a \max \left(1, p^{p} E^{p}\left(N_{m / p}\right)\right) \tag{10}\\
& =\max \left(C_{p}, D_{p} E^{p}\left(N_{m / p}\right)\right)
\end{align*}
$$

where $C_{p}=2^{p} a=(2 p)^{p}(e-1)$ and $D_{p}=(2 p)^{p} a=\left(2 p^{2}\right)^{p}(e-1)$.
When p is not integer, we let $q=\bar{p}$, and apply Jensen's inequality:

$$
E\left(N_{n}^{p}\right) \leq\left(E\left(N_{n}^{q}\right)\right)^{p / q} \leq \max \left(C_{q}^{p / q}, D_{q}^{p / q} E^{p}\left(N_{m}\right)\right)
$$

where $m=(n / q)$. This concludes the proof of theorem 1 .

3. Applications

Inequalities for the Binomial Distribution

Let X_{i} be $\{0,1\}$-valued with $P\left(X_{i}=1\right)=1-P\left(X_{i}=0\right)=q \in(0,1)$, and let A_{n} be the collection of X_{i} 's taking the value 1 . By the independence of the X_{i} 's, N is binomial (n, p) and $E(N)=n p$. Clearly, (1) holds and remark 1 applies. In particular, (5) holds:

$$
E\left(N^{p}\right) \leq \max \left(C, D(n q)^{p}\right)
$$

The Number of Convex Hull Points

We say that $X_{i} \in R^{d}$ is isolated $\left(X_{i} \in A_{n}\right)$ if the closed sphere of radius r centered at X_{i} contains no $X_{j}, 1 \leq j \leq n, j \neq i$. Here too, (1) holds. Let N be the total number of isolated points among X_{1}, \ldots, X_{n}. Often $E(N)=n P\left(X_{1} \in A_{n}\right)$ is easy to compute or bound. The moments $E\left(N^{p}\right)$ can be bounded by (2) and (4).

The Number of Convex Hull points

When A_{n} is the convex hull of X_{1}, \ldots, X_{n}, the distribution of N is generally hard to find. For many distributions, the asymptotical behavior of $E(N)$ is known. In these cases, theorem 1 can be used to get upper bounds for $E\left(N^{p}\right), p \geq 1$. Among the known results, we cite:

1. $E(N)=o(n)$ whenever X_{1} has a density (Devroye, 1981).
2. For the normal distribution in $R^{d}, E(N)=O\left((\log n)^{(d-1) / 2}\right)$ (Raynaud, 1970). For $d=2$, it is known that $E(N) \sim 2 \sqrt{2 \pi \log n}$ (Renyi and Sulanke, 1963/1964). Remark 1 applies in the former case, and remark 2 in the latter.
3. When X_{1} is uniformly distributed in the unit hypersphere of R^{d}, then $E(N)=O\left(n^{(d-1) /(d+1)}\right)$ (Raynaud, 1970).
4. When X_{1} is uniformly distributed on a polygon of R^{2} with k vertices, then $E(N) \sim \frac{2 k}{3} \log n$ (Renyi and Sulanke, 1963, 1964, 1968). Once again, remark 2 applies.
5. The behavior of $E(N)$ for radial distributions on R^{2} is quite exhaustively treated by Carnal (1970). For example, if $P\left(\left\|X_{1}\right\|>u\right)=u^{-r} L(u)$ for some $r \geq 0$, where L is slowly varying (i.e., $L(c x) / L(x) \rightarrow 1$ as $x \rightarrow \infty$ for all $c>0$), then $E(N) \rightarrow c(r)>0$. In another example, let $P\left(\left\|X_{1}\right\|>u\right) \sim c(1-u)^{r}$ for some $c>0, r \geq 0$, when $u \uparrow 1$, and let it be 0 for $u>1$. Then $E(N) \sim c(r) n^{1 /(2 r+1)}$ for some constant $c(r)>0$. The uniform distribution on the unit circle satisfies the said condition with $c=2, r=1$. In all these examples, remark 2 applies.

Minimum Covering Spheres and Ellipsoids

The minimal covering ellipsoid (sphere) is the ellipsoid (sphere) of minimal volume that covers X_{1}, \ldots, X_{n}. It can be found by first finding the convex hull A_{n} of X_{1}, \ldots, X_{n} and then performing some operations on the convex hull points, at least when $d=2$. For example, it is known that the minimal covering circle has either three points of A_{n} on its perimeter, or two points (in which case they define the diagonal of the circle). Thus, given A_{n}, the most naive algorithm to find the minimal covering circle takes time proportional to N^{4}. The average time of the entire algorithm is equal to the average time of the convex hull algorithm plus a constant times $E\left(N^{4}\right)$. By (6), $E\left(N^{4}\right)=O(n)$ whenever $E(N)=O\left(n^{-1 / 4}\right)$. The latter condition is satisfied for most distributions cited in the previous paragraph. Of course, we could also use the $O\left(N^{2}\right)$ algorithm of Elzinga and Hearn (1972) (see also Francis (1974)) or the $O(N \log (N))$ algorithms of Shamos (1978) or Preparata (1977). By (6) and remark 4 , the construction of the minimum covering sphere from A_{n} takes on average time $O(n)$ when $E(N)=O(\sqrt{n})$ and $E(N)=O(n / \log (n))$ respectively. To find A_{n} in average time $O(n)$, see section 4 below and the survey paper of Devroye and Toussaint (1980).
Silverman and Titterington (1980) find the minimal covering ellipse in R^{2} from A_{n} in time bounded by $c N^{6}$. Thus, their algorithm has linear expected time if A_{n} can be found in linear expected time and if $E(N)=O\left(n^{1 / 6}\right)$ (by Theorem 1).

The Diameter of a Set of Points

The diameter $D=D\left(X_{1}, \ldots, X_{n}\right)$ of X_{1}, \ldots, X_{n} is the maximal distance between any two points X_{i} and X_{j}. Since both X_{i} and X_{j} that are furthest apart must belong to A_{n}, one can find D by first finding A_{n} and then comparing all $\binom{N}{2}$ distances between points belonging to A_{n} (see Bhattacharya (1980) for a development of this algorithm and a comparison with other algorithms for finding D). By theorem 1, it is clear that the total average complexity is $O(n)$ when A_{n} can be found in average time $O(n)$, and when $E(N)=O(\sqrt{n})$. Notice that the latter condition is satisfied for all dimensions d when X_{1} is normally distributed, or when X_{1} is uniformly distributed in the unit cube of R^{d}.

The Number of Maximal Vectors

Let A_{n} be the collection of maximal vectors of X_{1}, \ldots, X_{n}, that is, $X_{i} \in A_{n}$ if and only if no other X_{j} dominates X_{i} in all its components. One can easily check that (1) is valid. Also, whenever X_{1} has a density and its components are independent, $E(N)$ is monotone (Devroye, 1980). In fact,

$$
E(N) \sim(\log n)^{d-1} /(d-1)!
$$

(Barndorff-Nielsen and Sobel, 1966; Devroye, 1980). Thus, by remark 2, $E\left(N^{p}\right)$ and $(\log n)^{p(d-1)}$ are comparable for all $p \geq 1$.

The Throw-Away Principle

The convex hull of X_{1}, \ldots, X_{n} can be found very rapidly by finding the extremes in the directions d_{1}, \ldots, d_{s}, throwing away all the X_{i} 's that are strictly interior to the polyhedron formed by these extremes, and then finding the convex hull of all the remaining points via a simple convex hull algorithm (see for example, Jarvis (1973) for an $O\left(n^{2}\right)$ convex hull algorithm in R^{2}, and Graham (1972) for an $O(n \log n)$ algorithm in R^{2}; and see Devroye (1981) and Devroye and Toussaint (1981) for the throw-away principle). It is essential that one has a good upper bound for $E\left(N^{2}\right)$ or $E\left(N \log _{+} N\right)$ where $\log _{+} N=\max (\log N, O)$, and N is the number of points not thrown away (and collected in A_{n}). It is easy to check that A_{n} satisfies (1). Thus, by theorem 1, Jarvis' algorithm will yield $O(n)$ average time when $E(N)=O(\sqrt{n})$. By remark 4 , Graham's algorithm will do the same when $E(N) \log _{+} E(N)=O(n)$. In essence, one must only find the asymptotical behavior of $E(N)$ to study the average complexity of these throw-away algorithms. For some results along this line, see Devroye (1981) and Devroye and Toussaint (1981).

4. Divide and Conquer Methods

Because of property (1) (ii), A_{n} can be found very elegantly by divide-and-conquer methods. Assume for simplicity that $n=2^{k}$ for some integer $k \geq 1$, and consider the following algorithm:
(i) Set $i \leftarrow 2$. Let $A_{1 j}=A\left(X_{j}\right), 1 \leq j \leq n$.
(ii) Let $A_{i j}=A\left(A_{i-12 j-1}, A_{i-12 j}\right), 1 \leq j \leq n / 2^{i-1}$. (Thus, merge the solutions $A_{i-12 j-1}$ and $A_{i-12 j}$.
(iii) If $i=k, A_{n} \leftarrow A_{k 1}$ and exit.

Otherwise, $i \leftarrow i+1$, go to (ii).
The crucial observation here is that if N_{n} is the cardinality of A_{n}, then each $A_{i j}$ has on the average

$$
E\left(\sum_{m=1}^{2 i} I_{\left[X_{m} \in A_{2 i}\right]}\right)=E\left(N_{2 i}\right)
$$

elements.

Theorem 2: Assume that two A-sets of sizes k_{1} and k_{2} can be merged and edited in time bounded by c $\left(f\left(k_{1}\right)+f\left(k_{2}\right)\right)$ for some constant c and some nondecreasing function f, and assume that $E(f(N)) \leq b_{n}$ for some nondecreasing sequence b_{n}. Then the divide and conquer algorithm given above finds A_{n} in average time
which is $O(n)$ if

$$
O\left(n \sum_{i=1}^{2 n} b_{i} / i^{2}\right)
$$

$$
\begin{equation*}
\sum_{n=1}^{\infty} b_{n} / n^{2}<\infty \tag{11}
\end{equation*}
$$

If the merging and editing takes time bounded from below by $c^{\prime}\left(f\left(k_{1}\right)+f\left(k_{2}\right)\right)$ and $E(f(N)) \geq c^{\prime \prime} b_{n}$, all n large enough ($c^{\prime}, c^{\prime \prime}$ are positive constants; b_{n} and f are nondecreasing), then condition (11) is necessary as well for $O(n)$ average time behavior of the given divide and conquer algorithm.

Proof of Theorem 2:

The average time for the entire algorithm does not exceed, for $n=2^{k}, k \geq 1$,

$$
\begin{aligned}
c \sum_{i=0}^{k} n 2^{-i} b_{2 i} & \leq c n \sum_{i=0}^{k} 2^{-2 i} \sum_{j=2^{i}}^{2 i+1-1} b_{j} \\
& \leq 4 c n \sum_{i=0}^{k} \sum_{j=2^{i}}^{2 i+1-1} b_{j} / j^{2} \\
& \leq 4 c n \sum_{j=1}^{2 n} b_{j} / j^{2}
\end{aligned}
$$

from which the sufficiency of (11) follows. The necessity follows by a similar argument since the average time of the algorithm is bounded from below by

$$
\begin{aligned}
c^{\prime} c^{\prime \prime} \sum_{i=0}^{k} n 2^{-i} b_{2 i} & \geq c^{\prime} c^{\prime \prime} n \sum_{i=1}^{k} 2^{-(2 i-1)} \sum_{j=2^{i-1}+1}^{2^{i}} b_{j} \\
& \geq \frac{c^{\prime} c^{\prime \prime} n}{2} \sum_{i=1}^{k} \sum_{j=2^{i-1+1}}^{2^{i}} b_{j} / j^{2} \\
& =\frac{c^{\prime} c^{\prime \prime} n}{2} \sum_{j=2}^{n} b_{j} / j^{2}
\end{aligned}
$$

so the average time cannot be bounded by $K n$ for any $K>0$, if (11) diverges.
Example 1: Finding the maximal vectors.
Let A_{n} be the set of maximal vectors among X_{1}, \ldots, X_{n}. Merging and editing in the divide and conquer algorithm is accomplished by the brute force method: (i) merge the sets; (ii) by pairwise comparisons, find all the maximal vectors in the merged set, and delete the other X_{i} 's from it. Theorem 2 applies with $f(n)=n^{2}$ for both the upper and lower time bound for the merging and editing. Assume that we know that $E(N) \sim a_{n}$ for some nondecreasing function $a_{n} \rightarrow \infty$. Then, by theorem 2 , the divide and conquer algorithm runs in linear average time if and only if

$$
\begin{equation*}
\sum_{n=1}^{\infty} a_{n}^{2} / n^{2}<\infty \tag{12}
\end{equation*}
$$

Here we also needed remark 2. For example, when X_{1} has a density and its components are independent, then $a_{n}=(\log n)^{d-1} /(d-1)!$. Clearly, (12) holds for any d. For such distributions, the convex hull can be found in average time $O(n)$ as well since $a_{n}^{d+1}=O(n)$: just notice that the convex hull is a subset of A_{n} that can be obtained from A_{n} in time $O\left(N^{d+1}\right)$, and that $E\left(N^{d+1}\right)=O\left(a_{n}^{d+1}\right)=O(n)$.

Example 2: Convex hulls in R^{2}.

Two convex hulls with angularly ordered elements in the plane can be merged in time proportional to the total number of elements involved, and the result is a new convex hull with angular ordering (Shamos, 1978). Theorem 2 applies with $f(n)=n$ if a divide and conquer method is used to find the convex hull of X_{1}, \ldots, X_{n}. Thus, if $E(N)=O\left(a_{n}\right)$, and a_{n} is nondecreasing, then

$$
\begin{equation*}
\sum_{n=1}^{\infty} a_{n} / n^{2}<\infty \tag{13}
\end{equation*}
$$

is sufficient for linear average time behavior of the algorithm. If $\lim \inf E(N) / a_{n}>0$, then (13) is necessary too. This improves a result by Bentley and Shamos (1978) who required that $E(N)=O\left(n^{1-\delta}\right)$ for some $\delta>0$ for linear average time of their divide and conquer convex hull algorithm. Notice that (13) follows when $a_{n}=O\left(n / \log ^{1+\delta} n\right)$ or $a_{n}=O\left(n /\left(\log n \log ^{1+\delta} \log n\right)\right)$ for some $\delta>0$. All the planar distributions of section 3 satisfy these requirements.

Example 3: Convex hulls in R^{d}.

Let A_{n} be the convex hull of X_{1}, \ldots, X_{n}, and let us merge and edit in step (ii) in the most trivial possible way: merge to the two sets, consider all d-tuples of elements, and check if all the remaining elements fall on the same side of the halfspace determined by the d-tuple. Such an algorithm takes time

$$
O\left(\left(k_{1}+k_{2}\right)^{d+1}\right)=O\left(k_{1}^{d+1}+k_{2}^{d+1}\right)
$$

when the two sets involved have k_{1} and k_{2} elements, respectively. For average linear time of the divide and conquer algorithm it is sufficient that $E(N)=O\left(a_{n}\right)$ for some nondecreasing function a_{n}, and that

$$
\begin{equation*}
\sum_{n=1}^{\infty} a_{n}^{d+1} / n^{2}<\infty \tag{14}
\end{equation*}
$$

(Just combine theorem 2 and remark 1.) Condition (14) is satisfied for all d for the normal distribution, and for the uniform distribution on the unit cube of R^{d}. Because two convex hulls of sizes k_{1} and k_{2} can be merged in time

$$
\left.O\left(\left(k_{1}+k_{2}\right)\right)^{(d+1) / 2}+\left(k_{1}+k_{2}\right) \log \left(k_{1}+k_{2}\right)\right)
$$

(Seidel, 1981), condition (14) can be replaced by

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(a_{n}^{(d+1) / 2}+a_{n} \log a_{n}\right) / n^{2}<\infty \tag{15}
\end{equation*}
$$

whenever $E(N)=O\left(a_{n}\right)$ for some nondecreasing function a_{n}.

References

[1] Barndorff-Nielsen, O., Sobel, M.: On the distribution of the number of admissible points in a vector random sample. Theory of Probability and its Applications 11, 249-269 (1966).
[2] Bentley, J. L., Shamos, M. I.: Divide and conquer for linear expected time. Information Processing Letters 7, 87-91 (1978).
[3] Bhattacharya, B.: Applications of computational geometry to pattern recognition problems. Ph. D. Dissertation, McGill University, Montreal, 1980.
[4] Carnal, H.: Die konvexe Hülle von n rotationssymmetrisch verteilten Punkten. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 15, 168-176 (1970).
[5] Devroye, L.: A note on finding convex hulls via maximal vectors. Information Processing Letters 11, 53-56 (1980).
[6] Devroye, L., Toussaint, G. T.: A note on linear expected time algorithms for finding convex hulls. Computing 26, $361-366$ (1981).
[7] Devroye, L.: How to reduce the average complexity of convex hull finding algorithms. Computing 7, 299-308 (1981).
[8] Elzinga, J., Hearn, D.: The minimum covering sphere problem. Management Science 19, 96-104 (1974).
[9] Elzinga, J., Hearn, D.: The minimum sphere covering a convex polyhedron. Naval Research Logistics Quarterly 21, 715-718 (1974).
[10] Francis, R. L., White, J. A.: Facility layout and location: an analytical approach. Prentice-Hall 1974.
[11] Graham, R. L. : An efficient algorithm for determining the convex hull of a finite planar set. Information Processing Letters 1, 132-133 (1972).
[12] Jarvis, R. A.: On the identification of the convex hull of a finite set of points in the plane. Information Processing Letters 2, 18-21 (1973).
[13] Preparata, F. P.: Steps into computational geometry. University of Illinois, Coordinated Science Laboratory, Report R-760, 1977.
[14] Raynaud, H.: Sur l'enveloppe convexe des nuages des points aléatoires dans R^{n}, I. J. of Applied Probability 7, 35-48 (1970).
[15] Renyi, A., Sulanke, R.: Über die konvexe Hülle von n zufällig gewählten Punkten, I. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 2, 75-84 (1963).
[16] Renyi, A., Sulanke, R. : Über die konvexe Hülle von n zufällig gewählten Punkten, II. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 3, 138-147 (1964).
[17] Renyi, A., Sulanke, R.: Zufällige konvexe Polygone in einem Ringgebiet. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 9, 146-157 (1968).
[18] Seidel, R. : A convex hull algorithm optimal for point sets in even dimensions. University of British Columbia, Department of Computer Science, Technical Report 81-14, 1981.
[19] Shamos, M. I.: Computational geometry. Ph. D. Dissertation, Yale University, 1978.
[20] Silverman, B. W., Titterington, D. M.: Minimum covering ellipses. SIAM J. Scientific and Statistical Computing 1, 401-409 (1980).
L. Devroye

School of Computer Science
McGill University
Burnside Hall
805 Sherbrooke St. West
Montreal, P.Q., H3A 2K6
Canada

[^0]: * Research of the author was sponsored by NSERC Grant A3456 and Quebec Ministry of Education Grant EQ-1678.

