A Note on the Average Depth of Tries

L. Devroye, Montreal

Received September 16, 1981

Abstract - Zusammenfassung

A Note on the Average Depth of Tries. Let A_{n} be the average root-to-leaf distance in a binary trie formed by the binary fractional expansions of n independent random variables X_{1}, \ldots, X_{n} with common density f on $[0,1)$. We show that either $E\left(A_{n}\right)=\infty$ for all $n \geq 2$ or $\lim E\left(A_{n}\right) / \log _{2} n=1$ depending on whether $\int f^{2}(x) d x=\infty$ or $\int f^{2}(x) d x<\infty$.

Key words and phrases: Trie, average depth, binary tree, random tree, successful search time.
Eine Bemerkung über die mittlere Höhe von Bäumen. Sei A_{n} der mittlere Wurzel-zu-Blatt-Abstand in einem binären Baum, der durch die Dualbruchentwicklungen von n unabhängigen Zufallsveränderlichen X_{1}, \ldots, X_{n} mit gemeinsamer Dichte f auf $[0,1)$ entsteht. Wir zeigen, daß entweder $E\left(A_{n}\right)=\infty$ für alle $n \geq 2$ oder $\lim _{n} E\left(A_{n}\right) / \log _{2} n=1$, je nachdem, ob $\int f^{2}(x) d x=\infty$ oder $\int f^{2}(x) d x<\infty$.

1. Introduction

A trie is a kind of binary search tree originally introduced by Fredkin (1960). We are given n countable strings of 0 's and 1's, say X_{1}, \ldots, X_{n}, and we consider the infinite binary tree formed by the paths that correspond to the X_{i} 's (" 0 " stands for a left turn down the tree, and " 1 " indicates a right turn). The trie formed by X_{1}, \ldots, X_{n} is the smallest subtree of this tree with the property that all n truncated paths are pairwise different. The X_{i}^{\prime} 's are then associated with the n leaves of this binary tree. For a fairly comprehensive treatment of tries, with applications, see Knuth (1973b).

Let $D_{n i}$ be the depth of X_{i} (distance from the root) in the trie formed by X_{1}, \ldots, X_{n}. The average successful search time for the given trie is equal to the average depth:

$$
A_{n}=\frac{1}{n} \sum_{i=1}^{n} D_{n i}
$$

We would like to say something meaningful about the average depth of a trie, and it is clear that this would require some knowledge about the distribution of X_{1}, \ldots, X_{n}. To make things rigorous, we assume that X_{1}, \ldots, X_{n} are the binary (fractional) representations of independent random variables with common density f on $[0,1$). In
that case, A_{n} too is a random variable, with expected value

$$
E\left(A_{n}\right)=\frac{1}{n} \sum_{i=1}^{n} E\left(D_{n i}\right)=E\left(D_{n 1}\right) \quad \text { (by symmetry) }
$$

A trie with n leaves has at least $2 n-1$ nodes, and the average distance to the root $\left(A_{n}\right)$ is at least equal to the average distance to the root of the leaves in a complete binary tree with $2 n-1$ nodes, and thus,

$$
\begin{equation*}
A_{n} \geq\left[\log _{2}(2 n-1)\right]-1 \sim \log _{2} n . \tag{1}
\end{equation*}
$$

The actual value of A_{n} increases as the X_{i} 's become more clustered. Smooth distributions of the X_{i} 's lead to lower values of A_{n}. In this note, we will see to what extent the distribution of the X_{i} 's influences $E\left(A_{n}\right)$.

Theorem 1: If f is the uniform distribution on $[0,1)$, then

$$
0 \leq E\left(A_{n}\right)-\log _{2}(n-1)-\frac{\gamma}{\log 2} \leq 1+\frac{1}{(2 n-2) \log 2}, n \geq 2
$$

where $\gamma=0.5572156649 \ldots$ is Euler's constant. Thus,

$$
\lim _{n} E\left(A_{n}\right) / \log _{2} n=1
$$

Thus, the expected average depth of a trie varies as $\log _{2} n$ for uniform distributions, and in view of (1), this is the optimal asymptotic rate. The same result can also be found in Knuth (1973b), but we include a new short proof anyway. The main result of this note is Theorem 2, where Theorem 1 is generalized towards all densities on $[0,1)$.

Theorem 2: Let f be a density on $[0,1)$. Then either

$$
E\left(A_{n}\right)=\infty \text { for all } n \geq 2,
$$

or

$$
\lim _{n} E\left(A_{n}\right) / \log _{2} n=1
$$

according to whether $\int f^{2}(x) d x=\infty$ or $\int f^{2}(x) d x<\infty$.
Theorem 2 states that either tries are on the average asymptotically optimal $\left(\lim _{n} E\left(A_{n}\right) / \log _{2} n=1\right)$ or they are bad for all $n\left(\inf _{n \geq 2} E\left(A_{n}\right)=\infty\right)$. There are no intermediate situations. The crucial condition is the square integrability of f (which is a condition on the peak(s) of the density). Theorem 2 offers at the same time a nice characterization of densities that are square integrable: $\int f^{2}(x) d x<\infty$ if and only if $E\left(A_{2}\right)<\infty$ (i.e. if and only if the expected length of the largest common left substring of X_{1} and X_{2} is finite).

We remark that the second statement of Theorem 2 follows from (1) and the inequality

$$
\begin{equation*}
E\left(A_{n}\right) \leq \log _{2} n+1+\left(\gamma+\frac{1}{2 n-2}\right) / \log 2+192 \int f^{2}(x) d x \tag{2}
\end{equation*}
$$

valid for all $n \geq 2$. Inequality (2) is not tight, but suffices to prove the Theorem. Also, notice that $\int f^{2}(x) d x$ influences only the constant term, and not the coefficient of $\log _{2} n$.
We notice finally that no continuity conditions are imposed on f in Theorem 2. This will force us to use some advanced measure theoretical tools in the proof.

2. Proofs

Partition $[0,1)$ into sets

$$
A_{k i}=\left\{x: \frac{i-1}{2^{k}} \leq x<\frac{i}{2^{k}}\right\}, 1 \leq i \leq 2^{k}
$$

If $x, y \in A_{k i}$, then the first k bits in the binary fractions of x and y are identical. We let $A_{k}(x)$ be the set $A_{k i}$ to which x belongs, and define the function g_{k} by

$$
g_{k}(x)=\int_{A_{k}(x)} f(y) d y
$$

Then,

$$
\begin{align*}
E\left(A_{n}\right) & =E\left(D_{n 1}\right)=\sum_{k=0}^{\infty} P\left(D_{n 1}>k\right) \\
& =\sum_{k=0}^{\infty} \int f(x) P\left(\bigcup_{j=2}^{n}\left[\text { first } k \text { bits of } X_{j} \text { and } x \text { are identical }\right]\right) d x \tag{3}\\
& =\sum_{k=0}^{\infty} \int f(x)\left(1-\left(1-g_{k}(x)\right)^{n-1}\right) d x
\end{align*}
$$

Formula (3) will be our starting point.
Proof of Theorem 1:
(3) is equal to

$$
\sum_{k=0}^{\infty}\left(1-\left(1-2^{-k}\right)^{n-1}\right)
$$

for the uniform distribution. This quantity in turn lies between a_{n} and $a_{n}+1$ where

$$
a_{n}=\int_{0}^{\infty}\left(1-\left(1-2^{-x}\right)^{n-1}\right) d x
$$

By the transformation

$$
1-2^{-x}=y\left(2^{x}=(1-y)^{-1} ; x=-\log _{2}(1-y) ; d x=d y /(1-y) \log 2\right)
$$

we see that

$$
\begin{gathered}
a_{n}=\int_{0}^{1}(\log 2)^{-1} \frac{1-y^{n-1}}{1-y} d y=\int_{0}^{1}(\log 2)^{-1}\left(1+y+\ldots+y^{n-2}\right) d y \\
=(\log 2)^{-1} \sum_{i=1}^{n-1} \frac{1}{i}
\end{gathered}
$$

By using inequalities for the harmonic series (Knuth, 1973a, pp. 74, 111) we see that $a_{n} \log 2$ lies between $\gamma+\log (n-1)$ and $\gamma+\log (n-1)+\frac{1}{2 n-2}, n \geq 2$. This completes the proof of Theorem 1.

Proof of Theorem 2:

For $n \geq 2$, we have from (3)

$$
E\left(A_{n}\right) \geq \sum_{k=0}^{\infty} \int f(x)\left(1-1+g_{k}(x)\right) d x=\sum_{k=0}^{\infty} \int f(x) g_{k}(x) d x
$$

But by Fatou's lemma,

$$
\begin{gathered}
\liminf _{k} 2^{k} \int f(x) g_{k}(x) d x \geq \int f(x) \liminf _{k} 2^{k} g_{k}(x) d x \\
=\int f^{2}(x) d x
\end{gathered}
$$

where we also used the fact that for almost all $x, \lim 2^{k} g_{k}(x)=f(x)$ (Lebesgue density theorem (see Wheeden and Zygmund, 1977); also derivable from the martingale convergence theorem (see Breiman, 1968)). Thus,

$$
\inf _{n \geq 2} E\left(A_{n}\right) \geq \sum_{k=0}^{\infty} 2^{-k}\left(\int f^{2}(x) d x+o(1)\right)=\infty
$$

when $\int f^{2}(x) d x=\infty$. Theorem 2 now follows if we can show (2).
We introduce the Hardy-Littlewood maximal function (see Wheeden and Zygmund, 1977, pp. 155)

$$
f^{*}(x)=\sup _{r>0}(2 r)^{-1} \int_{|y-x|<r} f(y) d y
$$

It is clear that

$$
\begin{aligned}
2^{k} g_{k}(x) \leq & \sup _{r>0} \max \left(\frac{1}{r} \int_{0<y-x<r} f(y) d y, \frac{1}{r} \int_{-r>y-x<0} f(y) d y\right) \\
& \leq \sup _{r>0} 2\left((2 r)^{-1} \int_{|y-x|<r} f(y) d y\right)=2 f^{*}(x) .
\end{aligned}
$$

From (3),

$$
\begin{gather*}
E\left(A_{n}\right) \leq \sum_{k=0}^{\infty} \int_{f^{*}(x)<2^{k-1}} f(x)\left(1-\left(1-f^{*}(x) / 2^{k-1}\right)^{n-1}\right) d x \tag{4}\\
+\sum_{k=0}^{\infty} \int_{f^{*}(x) \geq 2^{k-1}} f(x) d x
\end{gather*}
$$

The last term in (4) does not exceed

$$
\begin{gather*}
\sum_{k=0}^{\infty} \int f(x) f^{*}(x) / 2^{k-1} d x \leq \sum_{k=0}^{\infty} \int f^{* 2}(x) / 2^{k-1} d x \tag{5}\\
=4 \int f^{* 2}(x) d x \leq 192 \int f^{2}(x) d x
\end{gather*}
$$

where we first used Chebyshev's inequality, and then used an inequality between the integrals of $f^{* 2}$ and f^{2} (see Wheeden and Zygmund, 1977, pp.156, and derive the constants by carefully analyzing Vitali's lemma (pp. 102) and the Hardy-Littlewood inequality (pp. 105)).

Consider now the first term on the right-hand-side of (4), and note that

$$
\begin{gathered}
\sum_{\substack{k=0 \\
2^{k-1}>f^{*}(x)}}^{\infty}\left(1-\left(1-f^{*}(x) / 2^{k-1}\right)^{n-1}\right) \\
\leq 1+\int_{2^{y}>2 f^{*}(x)}^{\infty}\left(1-\left(1-2 f^{*}(x) / 2^{y}\right)^{n-1}\right) d y \\
=1+a_{n}
\end{gathered}
$$

where a_{n} is defined as in the proof of Theorem 1 (the last step follows from the transformation $\left.z=1-2 f^{*}(x) / 2^{y}, d y=d z /(1-z) \log 2\right)$. Since $1+a_{n}$ does not depend upon x, we see that (4) is bounded from above by $1+a_{n}+192 \int f^{2}(x) d x$. Inequality (2) follows from the inequalities for a_{n} derived in the proof of Theorem 1.

Acknowledgement

The present problem was brought to the author's attention through discussions with Tim Merrett and Jack Orenstein at McGill University.

References

[1] Breiman, L.: Probability. Reading, Mass.: Addison-Wesley 1968.
[2] Fredkin, E. H.: Trie memory. Communications of the ACM 3, 490-500 (1960).
[3] Knuth, D. E.: The art of computer programming; Vol. 1: Fundamental algorithms. Reading, Mass.: Addison-Wesley 1973a.
[4] Knuth, D. E.: The art of computer programming; Vol. 3: Searching and sorting. Reading, Mass.: Addison-Wesley 1973b.
[5] Wheeden, R. L., Zygmund, A.: Measure and integral. New York: Marcel Dekker 1977.

L. Devroye
School of Computer Science
McGill University
805 Sherbrooke Street West
Montreal
Canada H3A 2K6

