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Let (X, Y), (X1 , Y1 ), • . ., (Xn , Yn ) be independent identically distributed

random vectors from Rd x (0, 1), and let Y be the k-nearest neighbor estimate
of Y from X and the (Xz , Y~)'s . We show that for all distributions of (X, Y),
the limit of Ln = P( Y Y) exists and satisfies

limn Ln <_ (1 + ak ) R *' ak =	ka3251 +	 k odd k ? 5

where R * is the Bayes probability of error and a = 0 .3399

	

and fi = 0.9749
are universal constants. This bound is shown to be best possible in a

certain sense.

0. Introduction . Consider a sequence (X, Y), (X 1 , Y1 ),..•, (Xn , Y~) of independent
Rd x (0,1) valued random variables with a common distribution. Let µ be the probability
measure of X and let

i(x) = P(Y =1 IX = x),

	

x E R d.

In discrimination problems, one considers estimates Y of Y where Y denotes a (0, 1)-
valued Borel measurable function of X and (X 1, Y1 ), •.., (X,~, Yn ) . For example, the k-
nearest neighbor estimate Yis defined as follows (Fix and Hodges,1951) : find the k nearest
neighbors of X among X 1 , • . . , X, ; break ties by comparing indices ; take a majority vote
among the Yi's that correspond to selected XD 's; set Y equal to the chosen integer; in case
of a voting tie, set Y equal to Y 1 where i is the smallest index among the selected X 1's .
Cover and Hart (1965) have shown that under some conditions on µ and r~, if Ln
P( Y Y) is the probability of error (error rate), then

(1)

	

lim supn Ln <_ ck R *,

where

R* = infg :Rd-+(o, 1) P(g(X) ` Y)

is the Bayes probability of error, and ck is a sequence of numbers such that c2k+1 = c2k,
ck J 1 as k - 00 and c 1 = 2. Stone (1977) has shown that if k varies with n in such a way
that k/n - 0, k - 00, then Ln - R * as n - 00 for all distributions of (X, Y) . Implicit in the
same paper is the following result (see also Devroye, 1981a) : for k = 1, and for all
distributions of (X, Y),

	

'

(2)

	

lim L~ = E[2r~(X)(1-

For other properties of the k-nearest neighbor estimate, see Wagner (1971), Fritz (1975),
Gyorfi (1980) and Devroye (1981b, c) . In this paper we will prove various results related to
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(1) and (2) . For example, we will show that for k > 5, k odd, and for all distributions of (X,
Y), (1) is valid with

(3)

	

ck=1+ak-3.25 l+J f3\3

	

some a, /3>0.

We will also see that this result is the best possible in the sense that

'

	

- 1 .(4)

	

limk +oo - Supall distributions of (X, Y) with R* > 0 (limn + Ln/R* - 1) -a

In other words, the best sequence ck in (1) must necessarily be of the form 1 + (a/~ )
(1 + o(1)} as k - oo . The exact values of the best possible constants are only known for a
couple of integers k, e .g . c 1 = 2, c 3 = (7J7 +17)/27 1.3155. They can be obtained by
numerical solution of high degree polynomial equations for k greater than 3. The numbers
ck have a considerable impact on the asymptotical error rate for other estimates Y as well,
and a couple of examples will be given in Section 3 .

1. Definitions and lemmas . We will define a class of estimates Y that are based on
a majority voting scheme . These estimates are completely determined by functions gn that
map Rd(n+1) to the subsets of (1, • • • , n} (there are 2 ' elements in the range of g,), and we
require that all gn's be Borel measurable. To save space, we will denote gn (x,X1, , Xn )
by Gx . In general, the cardinality Nx ofGx is a random variable . For the k-nearest neighbor
estimate, Nx = k and Gx is the collection of those indices that correspond to the k nearest
neighbors of x among X 1 , • • • , X, . We say that Y is an m .v . estimate when Y is determined
by taking a majority vote among the Y1's, i E Gx . In case of a voting tie, let Y = Yl where
i is the smallest index in Gx . If Nx = 0, then Y = 0. We will write Yx to make the
dependence upon x explicit whenever necessary .

Let us define further

rn(x) = r~(x)P( Yx = 0IX 1 , . . ., Xn ) + {1- r~(x)} P( Yx =1 I X1 ,

tk(x) = ~1(x) ~,0<a<k/2 k 1`(x)(1 - ~(x)} kl

+ (1- ~(x)} ~k/2<i<k k r~`(x)(1- r~(x)} k-t ,

	

k > 1, k odd,i

and

	

to(x) ='q(x), t2k(x) = t2k-1(x),

	

all k > 1 .

LEMMA 1 . If B 1 , ..•, B,, B i, ..•, B n are independent Bernoulli random variables
with probabilities Pi , • • • , pn, q1, • • • , qn, then

Supall subsets c of (0,1, • • • , n) I P (~i 1 B l E C) - P(= 1 B i E C) I

	

?=i I pc - qi

PROOF. One can use the following embedding argument . Let U1 , ..•, Un be indepen-
dent uniform [0, 1] random variables, and let A i = h U~~ pt~ and A' = h vt< gtJ where I is the
indicator function. Then A 1 , • . ., A n is distributed as B 1 , • . ., B, and A, • . ., A is
distributed as B i, • • . , B n . Thus, for any set C,

I P(~ 1 A 1 E C) - P(~ 1 Ai E C) I `- I P(~ 1 Ai

	

1 A~) I

	 , X),

LEMMA 2 . For any m.v. estimate,

I rn(x) - tN,Y (x) I S 3/2 ~IEGx 17,(X) - ~l(x)

n= i=1 p~ - q1

a .s ., all x E R d .
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PROOF . N = Nx is a Borel measurable function of x, X1 , • • •, X, . If Y, • • • , Y v are
independent Bernoulli random variables with probabilities all equal to r~(x), then, on
[N>0],

tN(x) _ ~(x) P ~N l Yi < N I N + (1- ~(x)}P ~N1 Yi > N I N2

	

2

+iP ~N1 Yi=NIN .
2

	

2

Given X1 , • • • , Xn , the random variables Y 1 , ..•, Yn are independent Bernoulli with means
	 . ., Also, on [N> 0],

rn (x) _ ~1(x) P ~iEG Yi < N I XI, . . . , Xn + 1 P iEG Yi = IN Xl, . . . , Xnx

	

2

	

2

	

~ x

	

2

N
+ {1 - ~(x)} P ~,iEGx Yi> 2 I

X 1 , . . . ,Xn

On [N = 0], we have r(x) = to(x) _ ~(x) . Lemma 2 now follows by a triple application
of Lemma 1 .

LEMMA 3 . For any m. v. estimate,

ILn-E{tNX(X)}I = I E{rn(X)}-E{tNX(X)}I <_ E{I rn(X) - tNX(X)I}

E {3/2~jEGX I (X) - ~(X)I} •

PROOF . Note that Ln = Ern(X), and apply Lemma 2 .

LEMMA 4. Consider m .v. estimates with the following properties :

(5)

	

1<Nx <k,allxER !,alln,

(6)

	

supiEGx IIXI - x II - 0 in probability as n - 00, almost all x(µ),

(7)

	

there exists a constant c such that for all [ 0,1] valued Borel
measurable functions g on R d,

E {~,iEGX g(Xi)} <_ cEg(X ) .

Then

(8)

	

Ln - EtNX(X) - 0

	

as n - oo .

This conclusion remains valid if (7) is replaced by the condition that ~1 is continuous almost
everywhere (µ) . Furthermore, whenever (8) holds and there is a random variable N such
that Nx

	

N > 1, almost all x (s ), we have

(9)

	

Ln ~ 1 P(N = j)Et;(X)

	

as n- oc .

PROOF . By Lemma 3, (8) follows if we can show thatE {>iEGX I (X1 ) - ( X) I) - 0 .
Let x be a point of continuity of r~, and let Dx = supiEGx II X1 - x II - 0 in probability . Then,

E {>IEGx Ii(X) i- i(x)I} k {suply-xll<r k(y) - i(x) I + P(Dx > r)},

and this can be made arbitrarily small by choosing r small enough and then letting
n - 00 . By the Lebesgue dominated convergence theorem, we may conclude that (8) holds
when ~1 is continuous for almost all x(µ) . For general r~, we may argue as follows. For any
E > 0, find r~' bounded and continuous such that E(I r~(X) - r~'(X) I) <€. Then

E {>,iEGX I i(Xj) - i (X) I }

	

E ()jEGX I i(Xi) - i ' (Xi) I }

+ E {~iEGX I '(X1 ) i'(X) I } + E {L,IEGX k(X) - ri'(X) I } •



By (7), the sum of the second and the fourth term in (10) is not greater than (c + k)€ . We
have already shown that the third term tends to 0 as n - oo, and thus (8) is proved.
Finally, the absolute value of the difference between E{tNX(X)} and the right-hand-side
of (9) is not greater than

E{>1 1) P(Nx =j)X) -P(N=j))} =Ea(X) .

For almost all x(), we have a(x) - 0 as n - oo . Also, 0 <_ a(x) < 2, and therefore Ea(X)
- 0 as n - oo . This concludes the proof of (9) .

LEMMA 5. Let d be a class of Borel sets from R", and let Cx, r be the closed sphere of
Rd centered at x with radius r . If there exists c > 0 such that

A C C0, 1 ,

	

cA(A) >_ A(Co , 1 ),

	

allA E d,

where A is the Lebesgue measure, and ifµ is a probability measure on the Borel sets o f R d

with density f, then there exists a set B such that p(B) = 1, and

supAE ,
µ(x + rA)

- f(x)A(x+rA)

PROOF . Apply the Lebesgue density theorem . See also Wheeden and Zygmund (1977,
pages 108-109) .

2. Main results. From Lemma 4 we see that the quantities Etk (X) are of great
importance for all m.v. estimates. In this section we study the asymptotic behavior as
k - oo, uniformly over all distributions of (X, Y) . We will need three universal constants
related to the tail of the normal distribution. If Q(t) = f r exp(-u 2/2) du/J then we
define

a = maxi>o 2tQ(t) = 0 .3399424150. . .,

and let 6 be the value of t for which this maximum is attained, namely

6 = 0.7517915241 . . . .

Furthermore, we let
~3 = max i>o 2t 2Q(t)/a = 0 .9749687445 . . . .

We define the sequence

/'

	

f3 )
ak=a

k-3.25 1+

The main result of this section is the following .

THEOREM 1 . Let

Etk (X)
Tk = supall distributions of (X, Y) with R' > 0 R *

	

- 1 .

Then, for k odd, k >_ 5, Tk <_ ak . Also, Tk a/ as k - oo .

PROOF . Note that for x E R d and k > 1, k odd,
tk(x) -
~(x)
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< supAE~r f

	

f(y) - f(x)) dy/A(x + rA)
x+rA

<_c f f(y) -f(x))dy/A(Cx, r)~0asr~0, all xEB.
Cx,r

1

=J1_2(x)1(x)

5
~i>ki2 (k)ii ~(x){_a
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If we can show that on A = {x I r~(x) < ½), tk (x)/'q(x) -1 <_ ak, and that on the complement
ofA,Ac,tk(x)/{1-i(x)}-1<_ak, then

Let b 1 (k, p) be the ith term of the binomial distribution with parameters k and p. It is
clear that we need only show that for k odd, k >- 5,

1- 2p
(11)

	

Bk = supo<p<_ 1/2

	

i>k/2 bl (k, p)

	

ak.
p

By the relation between the binomial and the beta distribution,

this expression can be rewritten as
/k-3

2q~k-3

where

Now, using the Cesaro-Buchner inequalities (Buchner, 1951 ; Mitrinovic, 1970, page
183),

we see that

Thus,

where

> i>k/2 bi(k, p) _

More conveniently, with

p

0

ck=k!

	

k-
2

1 ! 2k ,lk-3
2

	

-1

1 -1

(i2k+
4

< log

Ck-1k

1

	

1

	

z
p =

2
- q,x = 2 1-

~k-3 ,

z
ck

	

1- k -3

	

dz,

k

I 2~r(k - 3 (k 1) exp(- 1 + 12k 6k 223/4)

Next, because log(1- u) >- - u - u 2 /{2(1- u)}, u > 0, we have

)`-

ck < ck =

Yk = 1

{x(1- x)} (k-1)/2

1 (k - 1) !
2

k!
k

- f27rk
e

2

	

(k-1)/2

l k

	

11- k

	

eXp - -
2k-2

\/k
ir(k- 3) exp(Yk)2

1

	

2

< (12k)-1,

12k 2k-2 6k-23/4

k

dx .
2

2,

ckri .

Etk (X) = E{tk (X)IA (X)} + E{tk(X)IA~(X)}

<_ (1 + ak )[E(7 (X)IA (X)} + E{(1- r~(X))IA~(X)}]

_ (1 + ak )E[min('q(X), 1 - ~(X)}]

_ (1 + ak)R* .



Since for z > 2q Ik - 3, we have

2p =1- 2q = (1- 4g2)/(1 + 2q) > {1- z 2/(k - 3))/(1 + 2q),

Bk can be estimated from above as follows :
z2

	

(k-3)/2
Bk _< supo< q<1/2 (4q)(1 + 2q)ck

		

(i_
k

	 - 3

	

dz
2gJk-3

< supo<q<1/2 2(1 + 2q	
k

k -
3 (2q,lk - 3)

	

e -z2
/2 1

	

z.
2q~k-3

< k - 3 eY4a+supo>o2u2
Q(u)/~k - 3)

Yk	 ae (a+af3/,Ik_3)<_	 -

	

1+	k-3

	

k-3 1 yk

	

,/k-3

Now,

Bk<ak forallodd k>5if(k-3)(1-y k)>k -13 4.

But this follows from the observation that

for all k > 1 .
To prove the second half of Theorem 1, consider Y independent of X with

Clearly, R * = p, and

and Tk <_ ak

DISCRIMINATION ERROR RATE

1

	

1

	

1

	

1

	

1

	

49

	

1
-+--

-3)yk 12 2 3 4k k-1 72k-694

P(1'= 1) =p=p(k) = 2 (1

1- 2p

	

26 %fj2k P

	

(k-1)/2
Tk >

p
~i>k/2 b 1 (k, p) ~ -

	

{x(1- x)}

	

dx
o

26

	

Jk-1 1

	

z2

	

(k-1)/2

	

28

	

a

k-1

	

1-k-1

	

dz~ Q(6)=~ .
,I

	

s

Here we have used Stirling's formula to show that

k~{I k 2 1 1~}
l\

	

/ J

The last approximation follows from the dominated convergence theorem after noting that
{1 - z 2 /(k - 1)) (k-1) /2 <_ exp(-z 2 /2), all z < Jk -1 . Theorem 1 now follows from (13)

REMARK 1 . The proof of the theorem was based on the observation that Tk = Bk ; see
(11) . The "worst" p ( k), i .e ., the value ofp for which the supremum in (11) is reached, must
necessarily satisfy

p(k) =2 C1-

-2

(1 + o(1))

as k -* oc . Notice in particular that p ( k) -~ 1/2 as k -* oc .

s
Jk-i
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REMARK 2 . The following bound is valid for all k > 1 :

Etk (X) <_ 1 + j)
2

R* .
k

This bound is the best possible among all the bounds of the form 1 +

attainable for k = 2 . Another simple bound, valid for k >_ 3, is

Etk (X)<_ 1+
1
f

3. Examples .
The k-nearest neighbor estimate . The k-nearest neighbor estimate, mentioned in the

introduction, is an m.v. estimate with Nx = k, all x . Also, for all x E S = support(s), we
have Dx = suplEG x f i Xl - x ~~ - 0 a .s . as n - oo . (The notation S and Dx will be used
throughout this section .) Thus, (5) and (6) are satisfied . Finally, Stone (1977) has shown
that (7) holds with c = kc 1 where c 1 is a function of d only. We have without work the
following result .

THEOREM 2 . For the h-nearest neighbor estimate, lim Ln exists and is equal to
Etk (X ) . Thus,

lim L~ <_ (1 + ak)R*

and (4) is valid .

The sphere estimate. The sphere estimate is defined by a sequence of numbers h =
h (n) such that

where c > 0 is a constant, and L = A ( Co, 1 ) is the volume of the unit sphere of Rd. We let

iEGX if IIXl - xII<_h .

Clearly, Nx is binomial (n, µ(C.z, h)) . Lemma 5 implies that nµ ( Cx,h) - c f (x ), almost all
x ( µ ), when µ has a density f Therefore, for almost all x, Nx I(cf(x)) where ? is the
Poisson law . The condition nhd 00 would entail Nx - 00 in probability, almost all x . This
is the classical condition required for the Bayes risk consistency of sphere estimates :
Devroye and Wagner (1980) and Spiegelman and Sacks (1980) have shown that lim h +
(nhd ) -1 = 0 implies lim Ln = R * for all distributions of (X, Y). This result remains true for
the present h when µ is atomic, but it is false for (14) when µ has a density.

THEOREM 3. Whenever X has a density IE L 2(A), the sphere estimate with sequence
h as in (14) satisfies

_ E [=o t(X)
(cf(X)}'e	

PROOF . We will first show that (8) remains valid, modifying the proof of Lemma 4
very slightly . Since Dx <_ h -* 0 as n -* oo, (8) is valid when ~1 is continuous and lim sup
E (N) < oo, almost all x(µ). The latter condition is satisfied in view of E (Nx ) = nµ ( C.x,h )

-* cf(x), almost all x . For Borel measurable i, we use an argument as in (10) . By symmetry,
the sum of the second and fourth terms of (10) is

(15)

	

2E (LEGX 'n (X) - r~'(X) }

The third term of (10) is o(1) . Thus, we should just make sure that (15) is arbitrarily small

lim~~ co Ln

R* .

1/d

7~ R * since it is



µ(CX,h)/(Lhd) 11
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by choice of i" . Let i * be a [0,1]-valued Borel measurable function on R d . Then

(16)

	

E{>1iEGX ~1 * (X)} = E{nµ(Cx,h)q*(X)} _ (nhdL)E{µ(Cx, h )ii *(X)/(hdL)} .

The first factor on the right hand side of (16) tends to c as n -* 0 . The second factor tends
to E{ f(X)q*(X)} = ff2(x)q*(x) dx as h--~ 0, whenever fE L 2(A) . To see this, notice that

--~ f(x), almost all x a),

<- f *(x) = supr>0 µ(Cx,r)/(Lrd), all h > 0, x E Rd.

Since f * f q * _< f * 2 E L 1(A) whenever f E L 2(A) (Wheeden and Zygmund,1977, page 155),
the Lebesgue dominated convergence theorem can be applied . But for every E > 0, there
exists 8 > 0 such that ff (x) q *(x) dx < 8 implies ff 2(x) *(x) dx < E . Thus, since continuous
functions are dense in L 1 (µ), we can make (10) arbitrarily small, and (8) follows. The
remainder of the proof is similar to that of Lemma 4 .

REMARK 3 . For the kernel estimate, let us call L(c) = lim L n . We first note that

Supall distributions of (X, Y) with R * > 0 L (C) _ oc,

	

all fixed c > 0 .
R*

Indeed, from Theorem 3 we note that L(c) > E{~1(X)e_~f(x)} . If we let Y be independent
ofX and choose rj _- p > 1/2, then

E{r~(X)e-~f(x)}/R* = E{e - ~f (X) } p T
1

	

00 asp T 1 .
-p

Thus, distribution-free upper bounds for L (c) of the type derived in Theorem 2 for the k-
nearest neighbor estimate do not exist .
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