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LAWS OF THE ITERATED LOGARITHM FOR ORDER STATISTICS
OF UNIFORM SPACINGS

BY LUC DEVROYE I
McGill University

Let X1, X2 , • . . be a sequence of independent uniformly distributed
random variables on [0, 1], and let Kn be the kth largest spacing induced by
the order statistics of X 1 , • • • , X,_ 1 . We show that

lira sup (nKn - log n) /2 logen = 1/k almost surely,
and

lim inf(nKn - log n + log3n) = c almost surely,
where -log 2 <_ c < 0, and log, is the j times iterated logarithm .

l. Introduction. Consider a sequence X 1 ,X2 , . . . of independent identic all y distrib-
uted random variables with a uniform distribution on [0, 1] . If X(1) <X(2) < . . . < X(n_1> are
the order statistics corresponding to X 1 , • • •,Xn_ 1i then the maximal uniform spacing (or,
the maximal gap) Mn is defined by

Mn =maxi.i.nSi

where Sl = X(1) , Si = X(i ) - X(i_1) for 1 < i < n, and Sn = 1 - X(n_1) . The Se's are called the
spacings ; see Pyke (1965) .

Slud (1978) showed that nMn - log n = O(log2n) a.s. ; we will refine Slud's result and
show that

(1 .1)

	

lim sup(nMn - log n) /2 logen = 1 a.s.

and that

(1 .2)

	

lim inf nMn -- log n + log3n = c a.s .

where -log 2 < c < 0. Along the way, we will obtain a few large deviation results for Mn.
In Section 2, we state without proof a few known results about the distribution and the
weak convergence ofMn. In Sections 4 and 5, we will establish (1 .1) and (1 .2) forKn , the
k th largest spacing among Sl , ..•, Sn , when the constant "1" in (1 .1) is replaced by 1/k .

2. Auxiliary results . It is well-known that (51 , ..•, Sn) is uniformly distributed on
the simplex { (xl,..•, xn) xe >_ 0 ; >2xi = 1), and that, therefore

P(S1 > a1 ; . . . ; Sn > an) = ( 1 -

	

1 ae )n-1'

	

ai < 1

= 0,

860

otherwise,

where a1 , ..•, an are nonnegative numbers . From this, one can get Whitworth's formula
(Whitworth (1897) ; see also Kendall and Moran (1963)) :

P(Mn >x) =P(U 1 [Si>x]) = P(Si>x) -> e<;P(Se>x;S;>x) +

_ ~,k?1;kx<1 (-1)k+1(1 - kx)n-1 n ,

	

all x > 0.k
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A very useful property of uniform spacings is the following .

LEMMA 2.1 . If Y1, ..•, Yn are independent identically distributed exponential ran-
dom variables, and if T n = >2Yi , then (S1 , ..•, Sn ) is distributed as (Y1/T,..•,
In particular, Mn is distributed as L n/Tn where L n = max(Yi) .

For a proof of Lemma 2 .1, see Pyke (1965) .

LEMMA 2.2. (Sukhatme, 1937) . If Y1, ..•, Yn are independent identically distributed
exponential random variables with corresponding order statistics Y (1) < Y(2) < • • • <
Y(n) , then the following random variables are also independent and exponentially
distributed :

nY(1) , (n - 1)(Y(2) - Y(1)), . . ., 2(Y(n -1) - Y(n-2)), Y(n) - Y(n-1) .

An immediate consequence of Lemma 2 .2 is the following.

LEMMA 2.3. Mn is distributed as

i (Yi/i)l ~ 1 Yi

where Y1 , ..•, Yn are independent exponentially distributed random variables .

The limit distribution of Mn was found by Levy (1939) and was rederived later by
Darling (1952, 1953) and others .

LEMMA 2.4 . For all x E R, P(nMn < log n + x) -~ exp(-exp(-x)) as n -~ 00 .

LEMMA 2.5 . nMn/log n -~ 1 in probability as n -~ 00 .

Note . If Gn is the distribution function of nMn - log n and G(x) = exp(-exp(-x)), and if
an log n -+ oo as n -+ 00, then

P(I nMn/log n - 1 > an ) = G(-an log n) + 1 - Gn(an log n)

(2 .1)

	

< 2supx I Gn(x) - G(x)

+ G(-an log n) + 1 - G(an log n) -+ 0 .

The distribution function G(x) = exp(-exp(-x)) has mean y = 0.5772157 . . . (the Euler
constant) and variance 1T 2 /6 ; see Gnedenko (1943), Gumbel (1958), Barndorff-Nielsen
(1963) and David (1970) for a closer analysis of its properties . A careful application of
Lemma 2.3 also gives

LEMMA 2.6 . E(nMn - log n) -~ y as n -~ 0°, and Var(nMn )

	

as n -~ 00 .

3. Large deviation results . We will first derive exponential estimates for the
probability in the tail of the gamma density . We recall here that the sum Tn of n
independent exponentially distributed random variables has the gamma density gn(x) _
xn _ l e-x/(n - 1)!, x >_ 0 .

LEMMA 3.1 . For all x >0,

P(Tn/n - 1 > x) < exp(-nx 2 (1 - x)/2)

and

P(Tn/n - 1 < -x) < exp(-nx 2/2) .
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PROOF . Here and throughout the paper we will use these analytic inequalities, valid
for all x?0:
(3 .1)

	

ex-x2/2 <l+x<ex <l+x+x2ex/2

(3 .2)

	

1 - x < e-x-x 2/2-xi/3 < e-x-x 2/2 < e-x < 1 - x + x 2/2.

Lemma 3.1 is now easily proved by Chernoff's classical technique (Chernoff, 1952) . For
any 0 < s < 1, we have P(Tn/n - 1 > x) < e -snxE(e s(Tn-n) ) = e-sn(1+x)(1 _ S )-n
This expression is minimal when 1- s =1/ (1 + x) (s = x/(1 + x) ), so that the said proba-
bility is not greater than (ex(1 + x))n < ((1- x + x 2/2)(1 + x))n = (1- x 2/2 + x 3/2) n <_
e-nx2(12, Similarly, for all s > 0, P(Tn/n -1 < -x) < e-snxE(e-s(Tn-n) ) = esn(1-x)(1 + s)-n
_ (e x(1- x))n < (e x-x-x2/2 )n = e-nx2/2 where we let s = x/(1 - x) whenever x < 1. For x ?
1, the result is trivially true.

LEMMA 3 .2 . Let k ? 1 be a fixed integer, and let a n -~ 0 and a n log n -~ oo . If Kn is the
k-th largest spacing among S l , • • •, Sn , then

P(nKn/log n -1 > an ) N n kan/k !

and

P(nKn/log n -1 < -an ) N n(k-1)a exp(-n an)/(k -1)! .

PROOF. We will use the following fact about the tail of the binomial distribution . IfB
is a binomial random variable with parameters n and p, then np --* 0 implies P(B ? k) N
P(B = k), and np -+ o implies P(B < k) N P(B = k -1) (Feller,1957, page 140) .
Kn is distributed as Ln/Tn where L;~ is the kth largest of n independent identically

distributed random variables with exponential density and whose sum is Tn (Lemma 2.1) .
For arbitrary a, b > 0 we have

P(Ln < (1- a - b)log n) - P(Tn <n(1 - b)) < P(nKn/log n < 1- a)

<

(3 .3)

P(Ln < (1- a + b) log n) + P(Tn > n(1 + b))

and

P(L;~ > ( 1 + a + b)log n) - P(Tn > n(1 + b)) < P(nKn/log n > 1 + a)

(3 .4)

_< P(Ln > (1 + a - b)log n) + P(Tn <_ n(1- b)) .

Let us take a = a n and b = n-1/4. Lemma 3.2 follows if we can show the following things :

(i) P(L;~ < ( 1- a)log n) N exp(-n a)n (k-1)a/(k -1)! ;
(ii) P(Ln > ( 1 + a)log n) N n-ka/k! ;
(iii) P(l Tn - n > bn)/min(P(L;~ < (1- a)log n), P(Ln > (1 + a)log n)) -~ 0;
(iv) P(L;~ < (1- a - b)log n) N P(L;~ < ( 1- a + b)log n) ;
(v) P(Ln > ( 1 + a + b)log n) N P(L;~ > (1 + a - b)log n) .

Clearly, P(Ln < (1- a)log n) = P(B < k) where B is binomial with parameters n and p
= exp(-(1 - a)log n) = na/n . Since np -+ oo, we have P(B < k) P(B = k - 1) _

k
n 1 p k-1 (1 _ p)n-k+1

	

(np)k-1 exp(-np)/(k - 1)! _ n(k-1)a eXp(_na)/(k - 1)! .

Similarly, P(Ln > ( 1 + a)log n) = P(B >_ k) where now B is binomial with parameters n
and p = exp(-(1 + a)log n) = 1/n l+a Since np -+ 0, we have P(B ? k) N P(B = k) N
1/n kak ! . This proves (i) and (ii) . The same asymptotic results are valid if in (i) and (ii) we
replace a by (a + b) or (a - b) on both sides. The ratio of the two terms of (v) (left divided
by right) is Nn -2kb r„ 1. The ratio of the two terms of (iv) is -n2(k-1)b exp(n (a-b) - n')(a+
N 1 .
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To prove (iii) we first use Lemma 3 .1 : P(I Tn - n > bn) <_ 2 exp(-nb 22/4) for n large
enough. It remains to check that nka exp(-nb 2/4) -+ 0 and that n (k-i)a exp(n a - nb2/4)
-~ 0. This follows from a -~ 0 .

4. Outer Bounds . In 1961 Barndorff-Nielsen (and independently Robbins and Sieg-
mund (1970) and Deheuvels (1974)) established laws of the iterated logarithm for Zn =
min (Xi , • . ., Xn ) where X 1 , • . ., Xn is a sequence of independent uniform [0, 1 ] random
variables. These results can be summarized as follows. Let an be positive and nonincreasing .
Then,

(i) Zn < an i .o . (f.o .) when an = oo (~ an < oo) . See Geffroy (1958) for the first proof.
(ii) Zn > an i .o . (f.o.) when an exp(nan ) = oo (~ an exp(-nan ) < oo) under the

assumption that nan is ultimately non-decreasing (Robbins and Siegmund, 1970) .
Barndorff-Nielsen's result uses the series

	

loge n (1 - an )n/n instead of
an exp(-nan ) . For related work, see Frankel (1972) and Wichura (1973) . For a

short proof of the first order result : Zn > (1 + e)log 2n/n i .o . (f.o .) when e = 0 (e > 0),
see Kiefer (1970) . For a survey, with proofs, see Galambos (1978) .

In this section we derive sufficient conditions (of the summability type) for nKn >
(1 + an )log n finitely often a .s . and nKn < (1 - an )log n finitely often a.s.

LEMMA 4.1 . Let Ai, A 2 , • . . be a sequence of events with P(A n ) -+ 0 as n -+ oo . If
either P(An fl An+i) < oo or P(An fl An+i) <00, then P(An f.o .) = 1 .

PROOF . See Barndorff-Nielsen (1961) .

THEOREM 4.1 . Let an -~ 0 and an log n -~ oo as n -~ oo such that (1 + a n)log n/n is
ultimately nonincreasing . Then, P(nKn > (1 + a n )log n i.o .) = 0 when
(4.1)

	

~n i log n/n i+kan < oo .

PROOF . Let An be the event nKn > (1 + a n)log n. By (2 .1), P(An ) -~ 0 as n -~ oo . Then,
for n large enough,

P(An fl An+i) <_ P(nKn > (1 + an)log n)2k(1 + an+i)(log(n + 1)/(n + 1))
= 2k(1 + o(1))n -kan k! -i log n/n,

from which Theorem 4 .1 follows after applying Lemma 4.1 .

THEOREM 4.2 . Let an -~ 0 and an log n -~ oo as n -~ oo such that (1 - an )log n/n is
ultimately nonincreasing. Then, P(nKn < (1 - an ) log n i .o .) = 0 when
(4.2)

	

i (log n/n)n ka n exp(-n) <00 .

PROOF . Let An be the event nKn < (1 - an)log n. Once again, we will use Lemma 4 .1 .
Obviously, P(An ) ^' n(k-1)an exp(-nan)/(k - 1)! -~ 0 as n -~ oo . Also, if Kn is the (k + 1)st
largest spacing among S 1 ,

	

, Sn , then for n large,

P(An fl An+i) = P(An fl An+1 fl [Kn < (1 - an+i)log(n + 1)/(n + 1)])

<_ P(Kn < (1 - an)log n/n)2k log n/n
= 2k(1 + o(1))n kan exp(-n a" )k! -i log n/n .

REMARK 4.1. It follows trivially from Theorems 4 .1 and 4 .2 that nKn/log n -+ 1 a.s. as
n -+ oo. Of course, we have done too much work by invoking Lemma 3 .2. For a short proof
of nMn/log n -~ 1 a.s ., see Slud (1978) or Devroye (1979) .

REMARK 4.2. Condition (4.1) is satisfied if for some S > 0, J >_ 2, we have

a n = (k log n) -i (log2n + ~ 2 log;n + S logjn) .
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In particular, it is satisfied if we take a~ _ (2 + S)log2n/(k log n), S > 0 . Hence,
(4.3)

	

lim sup(nKn - log n)/2 log2n <_ 1/k a.s.

REMARK 4 .3 . Condition (4.2) is satisfied if for some J >_ 3, S > 0, we have

an = ( log n)-1(log(2 log2n + k log3n + ~ 3 log in + S log Jn)),

or when for some S > 0, a, = log((2 + S)log2n)/log n . Hence,
(4 .4)

	

lim inf (nK~ - log n + log3n) ? - log 2 a .s .,

independent of k . The influence of k on the lower outer bound is only in the second order
term of the sequence a~ . In other words, whenever Mn is small, it is very likely that the
second and third largest spacings are very close in magnitude to M~ .

5. Inner Bounds . In this section we will prove the following theorems :

THEOREM 5 .1. lim sup(nKn - log n)/2 log2n =1/k a.s .

THEOREM 5 .2. lim inf(nKn - log n + log3n) = c a .s . for some c E [-log 2,0].

We will use the notation [ .1 for the integer part of a number . Furthermore, we will need
two lemmas.

LEMMA 5 .1 . If b; = exp(a/ log j), where a >0, then

(b ±i -bj)/b1--alogj/2'I

	

as f-900.

The same is true for cj = [bj ] .

PROOF . In view of (j + 1- j) 1/2 and log(1 + 1/j) 1/j, we have (b1 ±1- bj)/bj
a(

	

log(j + 1) -

	

log j) a log j/2 .

LEMMA 5.2 . If bj = exp (j log j ), then
bj/bj +1 1/ej

	

as j-~ 00 .

The same is true for cj = [bj ] .

PROOF. By (3.1) and (3 .2) we have bj_1/bj = (j - 1) -1 exp(j log(1 - 1/j)) <
1/(e(j - 1)), and bj_1/bj >_ (j - 1)-1 exp(-1 - 1/j) ? (j -1)-1e_1(1-1/j) =1/ej.

PROOF OF THEOREM 5 .1 . In view of (4 .3) we need only show that nKn - log n > (2/k
- S)log 2n i.o. almost surely, for all S > 0 . We define the following sequences :

nj = [ exp( log j)],
tj = [nj (2/k - S/2)log2nj/log nj ],

aj = (2/k - S)log2 j/log j,

dj = (1 + aj)log j/j,

d' _ (1 + ( 3/k)log 2nj/log nj)log n1/n,

dj' _ (1- log(3 log2nj )/log nj )log n /n ..

Let us define the following events: AN is the event that K, E (dj', d;) for all j > N; BN is
the event that for some j > N, none of the random variables X,, . . ., X,,± _1 belong to the
set Cj , where Cj is the union of k intervals of length d; each, with the restriction that the
leftmost point of each interval coincides with the leftmost point of one of the k largest
spacings.
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We will see that t; + n; < n;+i for all j large enough, and that d;' > dn,+t, for allj large
enough. Thus, AN f1 Br C [K,~~+t, > for some j >_ N] . The theorem now follows if we
can show that P(AN) + P(B) -~ 0 as N-~ oo . From Theorems 4 .1 and 4 .2 we deduce that
P(AN) -~ 0 as N -~ oo . Furthermore,

P(Br) < [J7=N (1 - (1 - kd;)t') <_ exp(-~7=N (1 - kd;)t') = 0

whenever

~; 1 (l - kdi)t' = 00 •

Because (1 - kd;)t' > exp(-d'kt; - k 2dft;/2) and d7t; -+ 0, it suffices to check whether
exp(-kd;t;) _ oo . We have exp(-kd t;) exp(-(2 - Sk/2)log2n;. (1 + (3/k)log2n;/log

n; )) ^exp(-(2 - dk/2)log2n;) ^(v log j)22' which is not summable with respect to j.
We will now show that n; + t; < n;+l for allj large enough. Indeed, n;+l - n; n; log

j/2' (Lemma 5.1), while t; (1/k -
Finally, let us establish that d;' >

	

for all j large enough . Clearly,

= log(n; + t;)/(n; + t;) + (2/k - S)log 2(n; + t;)/(n; + t;)

< log n;/ (n; + t;) + t;/n; + (2/k - S)log2n;/n;

< (log n;/n;) (l - (1 + o(1))t;/n;) + o(1)/n; + (2/k - S)log 2n;/n;

< log n;/n; - ((2/k - /2)(1 + o(1))log2n; - ( 2/k - 5)log2n;)/n;

= log n;/n; - (S/2)(1 + o(1))log2n;/n; .

Also, d;' = log n;/n, - log(3 loge n;) /n; > d,~~ +t~ for all j large enough .

PROOF OF THEOREM 5.2 . We will show that for all S > 0, the inequality nKn < log n
- logsn + S is satisfied i .o . almost surely, that is, a .s . lim inf(nKn - log n + logs n) <_ 0. This
result together with (4.4) imply the statement of Theorem 5.2 .

For given S >0, define n; _ [exp (2j log j) ], d; _ (log n; - logsn; + )/n,, t; = n; - n;-1 and
a; _ (logsn; - S/2)/log n; . Let further N; be the kth largest gap defined by X,, • • •, X,
on [0, 1] . Obviously, N; < d; i .o. implies that K,~, < d; i .o . Since the N;'s are independent, N;
<d; i .o . almost surely whenever P(N; < d;) _ oo . By Lemma 3 .2,

P(N; < (log t;/t;) (l - a;)) tjk-1)aJ exp(-t;i)/(k - 1) !

because a; log t; -~ 0. Also, exp(-t;') >_ exp(-n;') = exp(-c' log2n;) (2j log j) for some
c' < l . Thus, P(N; < d;) _ 00 if d; > (log t;/t;) (1 - a;) for all j large enough. Now,

d;t;/log n, >_ (t;/n;) (l - (logsn; - S)/log n;) _ (1 - O(j-2 )) (1 - (logsn; - S)/log n; )

which is greater than 1 - a; = 1 - (logs n; - S/2)/log n; for all j large enough .

6. Applications .

EXAMPLE 6.1. Random covers . Assume that we try to cover [0, 1] by intervals of
length centered at X 1 , • . ., Xn_1 (where the Xi's are independent and uniformly
distributed on [0, 1]) . Let An be the event [[0, 1] is entirely covered]. Then, if n = log n
-logsn+S,

P(An i .o .)

	

1 _

	

if

	

> 0
0,

	

if S+log2<0 .

If n = log n + (2 + S)log 2n, we have

P(An i.o.) _
[1,

	

if S < 0
Lo,

	

if S >0.
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It is perhaps interesting to compare this result with Shepp's covering theorem (1972) :
let ~ > ~2 > • . . ? 0 be the lengths of arcs thrown at random on the circle with unit
circumference (~1 < 1) . Then the circle is covered almost surely if and only if

Z:=i n-2 eXp (tl1 + . . . + en) = oo,

If ~n = ( 1/n)(1 - (1 + S)/log n), then this condition is satisfied when S _< 0 and is violated
when >0.

EXAMPLE 6 .2 . Uniform convergence of nonparametric estimates . Assume that f is a
uniformly continuous function on [0, 1], and that f is estimated by

n

	

-

	

n

	

-
fn(x) _ ~`_ i f (Xl)K

Xl x
~`=1

K Xl x

~nn

where X1 , • • •,Xn are independent identically distributed uniform [0,1] random variables,
and K(u) is a nonincreasing nonnegative function of u when u > 0, and a nondecreasing
nonnegative function of u when u <0. Let the support of K be a compact set [a, b] (clearly,
a<0_<b) with a<b.

It is clear that supx I fn(x) - f (x) I -~ 0 as. for all uniformly continuous f if and only if
Mn > (b - a) f.o . almost surely . Now, if we take n(b - a) = log n + (2 + S)logn n, then

supx I fn(x) - f (x) -~ 0 a .s .

	

as n -+ 00

for all uniformly continuous f if S > 0; the statement is false if S < 0 .

EXAMPLE 6.3. Estimating the minimum ofa density . Let f be a uniformly continuous
density on [0, 1], and let z be the unique point with the property that f (z) = minx f (x) .
Assume that X1 , X2 , is an independent sample from f, and that z is estimated by Zn ,
the midpoint of the largest interval created by X 1 , ..•, Xn . From nMn/log n -+ 1 a.s. for
uniform distributions, one can show that Zn-+ z a .s . as n -+ 00 . For the study of laws of the
iterated logarithm ofMn in the non-uniform case, additional assumptions about the rate of
increase of f near z seem necessary. Notice also that if the maximum of f were estimated
by the midpoint of the smallest interval, then one would not obtain almost sure convergence
as in the case of Zn .

EXAMPLE 6 .4 . Rate of convergence of nearest neighbor estimates . Let f and X1 , X2,
be as in Example 6.2, but consider now the nearest neighbor estimate fn(x) = f (XN(x))

where X '(x) is the nearest neighbor to x among X l , • • •, Xn . If f is Lipschitz with constant
C, then supx I fn(x) - f (x) I <_ max(CMn+1/2; CX(1) ; C(1- X(n) )) where X(1) <

	

< X( n) are
the order statistics obtained from X l , • • •,Xn . From the properties of X(1) andMn (Theorem
4.1) we have the following rate of convergence result :

supx fn(x) - f (x) (2n/C log n) > 1 + an f.o . a .s.

when an log n -+ 00, (1 + an )log n/n is ultimately nonincreasing and 1 log n/n1+an <
0° . On the other hand, iff (x) = Cx, then the supremum is equal to the maximum of the
three given terms, so that we may conclude, by Theorem 5 .1, that there exists a Lipschitz
function with constant C such that

supx fn(x) - f (x) 12n/(C log n) > 1 + (2 - S)log2n/log n

	

i .o . a .s . for all S > 0 .
In other words, in the class Lip (C ), we have

(6.1)

	

lim sup((2n/C)supx fn(x) - f (x) - log n)/log2n < 2

	

a.s.

but there always exists an f in Lip(C) for which (6.1) is valid with equality .
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