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THE LARGEST EXPONENTIAL SPACING

Luc Devroye*

ABSTRACT. We consider the largest spacing M
n

defined by n independent exponentially distribu-

ted random variables. We give its limit law,

obtain some large deviation probabilities and derive

some laws of the iterated logarithm. For example,

it is shown that

lim inf M log log n = ~2 /6 almost surely,
n-- n

and that if x +~, P(M >x i.o.)=Oorln n n

according to t 1 exp(-x ) < ~ or = ~.
n=l n n

O. Introduation.

The maximal spacing defined by a sample of size n drawn from

the uniform distribution on [O,lJ is close to ~. Its exact distribu-
n

tion (Whitworth (1897)},asymptotic distribution (Levy (;l.939)), large

deviation properties (Devroye (1981» and almost sure behavior (Devroye

(1981,1982) and Deheuvels (1982» are well-known. When the data are

not uniformly distributed, but have a density f on [O,lJ that stays

bounded away from 0 and satisfies some smoothness conditions, the maximal

spacing will behave as for a properly normalized uniform distribution.

But if one considers for example a density f with support [O,~) and

nonincreasing hazard rate, the spacings in the tail tend to be larger

than the other spacings, and the problem becomes asymmetric.

111, , x ';
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Partially because it has a constant hazard rate, and partially lim su
because it occupies an i~portant place in probability and statistics, n+oo

be mol
we will take a close look at the exponential distribution. In deriving

deviat
the properties of the maximal spacing, a good understanding of the

asymmetry inherent in the problem is needed.
.\ LEMMA

In what follows, we let Xl,X2,...,Xn"" be a sequence of ','

independent exponentially distributed random variables. Let -I
Then

X(l ) < ...< X( ) be the order statistics of Xl ""'X' and let
,n n,n n (2)

S(i,n) be the spacings X(i,n)-X(i-l,n)' 1 ~ i ~ n, where X(O,n) = 0

(3)
by convention. Finally, we set M = max S(i ) .

n l <i < ,n--n Let J!

1. The Limit Diatribution. (4) P

One of the crucial properties needed in this note is due to and-

Sukhatme (1937) (see also the survey paper by Pyke (1965)):
(5)

LEMMA 1.1. S( ) ""'S (l) are diatributed aa Y l !1'Y2!2,...,Y!nn,n ,n n Proof
~here Yl"'" Yn are independent exponentially distributed random

variablea.

Because
n n

P(M < x) = p( n S(i ) < x) = 11 P(Y. < ix)
n i=l,n i=l 1-

n 00
-ix -ix= 11 (l-e ) '" 11 (l-e ), all x> 0,

i=l i=l This p

a = a(

we have proved

log F(

LEMMA 1.2. [Limit distribution.]
00 valid
11 -ix(1) lim P(Mn < x) = F(x) = (l-e), x > O. can fo

n-- i=l
Mitrin

It is easy to check that F has a density. Thus, the maximal

spacing, unnormalized, tends in distribution to a nondegenerate random 0

variable. Since this limit random variable has support [0,00), with a

little work one can show that M oscillates wildly:
n .
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I

1im sup M = 00 a.s. and 1im inf M = 0 a.s.. In order to be able to
n n

n+oo n+oo
be more specific about how fast M oscillates, we need a few large

n
deviation results.

I

i LEMMA 1.3. [Large deviations.]

Let F be the limit distribution function of Lemma 1.2.

Then
2

(2) F(x) 'V exp(-~ (T+ 0(1») as x '" 0, and

(3) 1-F(x) 'Vexp(-x) as x + 00 .

\ Let xn be a sequence of positive numbers. Then

1 2 nx
, (4) P(M < x ) 'Vexp(-- (~6 + 0(1») ",hen 1im x = 0, 1im -E- = 00

n n x n log n
n n-- n--

mid

(5) P(M > x ) 'Vexp(-x) ",hen 1im x = 00 .
n n n n

n--

PI'C>of of Lemma 1.3.

Let x > O. Then
00 00

-x -x ~ -ix ~ -ixe = l-(l-e ) ~ 1-F(x) ~ 1-(1- LJ e ) = LJ e
i=l i=l

-x -x -x= e !(l-e ) 'Ve (as x +00).

This proves (3). To prove (2), we let x '" 0, and choose integers

a = a(x) such that a + 00 and ax + 0 as x '" O. Now,

( ~ -ix ~ ~ n n
log F x) = LJ 10g(1-e ) = LJ + LJ. By the inequality n! > (e) ,

i=l i~a i>a

valid for n ~ 1 (this is a special form of Stirling's inequality and

can for example be deduced from Buchner's inequality (Buchner (1951);
/

Mitrinovic (1970, pp. 181-185», we havea1

~ -ix ~ ax0 ~ LJ 10g(1-e ) ~ LJ 10g(ix) = a log x + log a! ~ a log (-)
i~a i~a e

1 ax 1= -(ax 10g(-» = 0 (-) .
x e x

"

j
~!
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Also, foIl.

~ -ix
f~ -ux -ax

0 ~ .l... log(l-e ) -log(l-e )du ~ -log(:l-e }
i>a a

1 1= 0(-) = 0(-) .
ax X I '"'1 2 ~

Next, by the integral f (log y)/(l-y)dy = -1r 16 (Gradshteyn and

Ryzhik (1980, formula 4~23l.2», we have

~ 1 2
f -ux 1 f 1 l ( 1r ( )}10g(1-e )du = -(log y) (l-y)dy = ---

6 + 0.1 .wherE
x xa l-exp(-ax)

hSOW!

Combining all the estimates gives us log F(x) = ~(-1r2/6 + 0(1)) as x '" O.

Results (4) and (5) follow with little extra work. Let x L~
n

be a positive number sequence. Clearly, P(A)
n

~ ~ .

-ix -J.X11 (l-e n) ~ F(x )/p(M < x ) ~ 1. But n (l-e n)
.n n n

i D-- jJ.=n =n ';-.LVO
~ -nx

L en~ 1- exp(-ix) = 1 -exp(-nx )/(l-exp(-x » = 1 -(1+0(1»-
.n n n xJ.=n n

\

= 1 -0(1) when nx + log x +~, x '" O. The former condition is as mi

n n n

implied by the condition nx 110g n + ~. Thus, (4) follows from (2). rando

n

Finally, (5) follows from

.-x -(n+l)x-x -x n -J.x n nn n ~ n e -ee = l-(l-e ) ~ P(M > x ) ~ .l... e =
n n i=l l-exp(-xn) Next,

-x
n'" e .

2. The Limi t Supremum .

THEOREM 2.1. Let x t~. Then
n

0 ~ -x < ~
P(M > x i.o.) = according to LIe n where

n n n
1 n=l ~ T '

n-l
as X

Proof of the first half of Theorem 2.1. rando;

We know that P(M > x i.o.) = 0 when P(M > x ) + 0 and need I
n n n n

~P(M ~x ,M l >x +1) < ~ (Barndorff-Nielsen (1961». The first condition.l... n n n+ n
n (
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: I
follows from (5). Also, by the monotonicity of x,n

~
P(M S x , M +1 > x +1 ) S P(X +l ? max X. +x +l }n n n n n lSiSn J. n

= E(exp(- max Xi -x +1» = exp(-x +1) E( min Ui)
lSiSn n n lSiSn

-1= (n+l) exp(-xn+l)

where Ul,...,Un are independent uniform [O,lJ random variables. This

shows the first half of Theorem 2.1.I,

LEMMA 2.1. Let A be the event [x > max X. + x J. Then
n n i J. n

1 <n
P(A) = -exp(-x) and P(A A.) S 2P(A )P(A j )' nfj, U1henever x > O.

n n n ..nJ n n

Proof of Lelluna 2.1.

'" -TDefine T = X( ) = max Xi .Because e n is distributed
n n,n i <-n

as min(Ul,...,Un) where Ul,...,Un are independent uniform [O,lJ

random variables, we have

1P(A) = E(exp(-T -x») ==- exp(-x ) .
n n-l n n n

I Next, if j < n, we have

P(A nA.) = p(X. > Tj l +x., X > T l +x)n J J -J n n- n

= E(I exp(-T -x)
Xj>Tj-l+Xn n-l n

= exp(-x ).E(I X T +x exp(-T _1))
n .> j 1 .n

J -J

where I is the indicator function of an event. We note that on Aj'

T 1 = max(X., ,X 1). In particular, on Aj ' T l is distributed
n- J n- n-

as Xj + max(Xi,...,XN) where Xi,.. .'XN are independent exponential

random variables and N is binomial (n-j-l, exp(-X.)). We will now
J

need the fact that for a binomial (n,p) random variable B,

>n
(
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n+l

E(l/(l+B» = (.1-(l-p) )/(p(n+l». Thus, ProOj

E(IA exp(-T -1)1x"Xj-l,...,Xl) = IA exp(-X.} E(iiI1Xj}

j n J j J tail

1 n-j= n:j (l-(.1-exp(-Xj» ) IA exp(-Xj}. we C1

j 00

Th P( U
us,

n=1]

P(A nA.) = exp(-x ) .E(I
A -1- j (l-{.1-exPC-X j }}n-j»

n J n j n-

00 thus

= exp(-Xn) E( f e-y(l-(l-e-y)n-j) dy)

T +x
n-j j-l j

1 all

= exp(-Xn) E( f ( )(l-un-j) du) (by a change of ErdBf

n-j l-exp -Tj-l-Xj variables)

exp

( -x

)= n E(H(exp(-T. -x »)

.J-l j

n-J

\ 1 n-j+l
where H(x) = x -n=I+I (l-(l-x) ), 0 ~ x ~ 1. Using the obvious

inequality H(x) ~ x, we obtain (8)

-x -x

n J.

exp(-x) e e

(6) P(AnnAj) ~ --~~ .exP(-xj). E(exP(-Tj-l» = (n-j)j.

~2
But we also have H(x) ~ x (this follows from

(l-x)n-j+l ~ l-(n-j+l)x + (n-~+l) x2) .We will need the value This

E(exp(-2Tj-l»:

1

, Remaz 2 j-l -2 E(exp(-2Tj-l» = E(min (Ul,...,Uj-l» = {2Y(1-y) dy -T(j+I).

Thus,

-x -x. We ha

P A A ) exp(-x) ~ 2 e ne J(7) ( nn j ~ -~. 2 .exp(-2xj).T(j+I) S j(j+l).

n+l n

We combine (6) and (7) and note that m~n max(n-j,j+l) ~ 2 ~ 2. From

J
this and the first part of the Lemma, we conclude that acco~

P(A nA j ) ~ 2 exp(-x )exp(-x.)/(nj) = 2P(A )P(A

j ), which was to be shown.n n J n

(
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Proof of the seaond hatf of Theorem 2.1.

Clearly, [M > x i.o.]? [A i.o.]. Since P(A i.o.) is a
n n n n

tail event, we need only show that P(A i.o.) > O. This follows if
n

we can show that there exists a constant c> 0 such that

I m

I P( U An) ~ c, for all m.
n=m

From Lemma 2.1 we remember that P(A) = exp(-x }/n, and
n n

m m
In.. thus that L P(An) :, m. Lemma 2.1 also implies that P( U An} ~ t,
II!: n=l , n=m

all m: to see this, just apply the Chung-ErdBs inequality (Chung and

ErdBs (1952»

M

m M (L P(A »2nn=mP( U A ) = sup P( U A ) ~ suP
Mn n M M

n=m M>m n=m M>m ~ ~ P(A A ) + ~ P(A)
L.. L.. n n' '"' n
n=m n'=m n=m

(8)
M

(L P(A »2n
n=m 1~ sup M M = '2 .

M>m 2( L P(An»2 + L P(An)
n=m n=m

This concludes the proof of Theorem 2.1.

Remark. We have shown that

.lim sup M flog log n = 1 almost surely.
n

n-+m

We have also shown that if logj is the j times iterated logarithm, then

P(Mn > 10g2n+ 10g3n+... + logj-ln + (l+£)logjn i.o.) = 0 (1)

according to £ > 0 (£.s 0), all j ~ 2.

[1.

t
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3. The Limit Infirmgn. wher4

and
THEOREM 3.1. we hI

2
1[lim inf Mn log log n = «5 ' almost surely.

n--

Proof of Theoroem 3.1.

1 2 }/For E > 0, we define b = _6 1[ (l+E log log n. Let h o 1n w ].c
ni = [exp(i log i)] where [.] denotes the largest integer contained in a repll

given real number. Let M! be the largest spacing defined by the sub-

sample X., n. 1 < j $ ni only: We know thatJ ].-

P(There exists iO such that for all i ~ iO(ni-l,ni]

contains a record, i.e. Xj = max(Xl"."Xj) for some

j E (n. l ,no]) = 1
].- ].

(this follows from Renyi (1962) or Strawderman and Holmes (1970». Thus,

P(M < b i.o.) = 1 when P(M~ < bn i.o.) = 1. By the independent version
Forn n ]. i

of the Borel-Cantelli lemma, it suffices to verify that ~ P(M*
i < b ) = 00 .the I

i niBut, by Lemma 1.3, from

1+ (1) ) 1+0(1) P(Mi* < b ) = exP(- l o log log ni = (i log i) l+E ,
ni +E

and this is not summable in i. Thus, lim inf Mn log log n $ i 1[2

almost surely. I

For the second half, we take 0 < E < 1, and set a equal to
1 2 n which_6 ~ (l-E)/log log n. Now, P(M < a i.o.) = 0 when P(M < a ) ~ 0

n n n n
(a consequence of Lemma 1.2) and ~ P(Mn < an,Mn+l ~ an+l) < 00. We note

nfirst that

P (Mn < an' Mn+l ~ an+l)

$ P(Mn < an+l , Mn+l ~ an+l) + P(an+l $ Mn < an>

$ P(X +1 = max(X l '" .,X +1 )' M < a +l )+P(a +1 $ M < a )n n n n n n n The i
~-z ~n+l -(l-cS)log n$ E e I[Zn+l $ (l-cS)log n +e P(Mn < an+l)

'+P(a +1 $ M < a )
n n n= I + II + III ,
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log lo~ nwhere Z = max(Xl ""'X), and 6 = £ 1 .We verify that I, II
n n og n

and III are all summable in n. The easiest term is II: by Lemma 1.3,

we have

-(1-6 ) -1+0(1) (10 n)£
II = n (log n) 1-£ = lJ.og nJ 1+0(1) ,

1-£

n (log n)

1which is summable in n in view of ---1 > 1 + £. To bound I, we can
-£d in a

replace Zn+l by Zn' Thus,
sub-

l-Z ) 1 (-Z \
I S E, nI[Zn«1-6)10g n] = ~ p\e nI[Zn«1-6)1~g n]> jdt

] 1
1Ie = S P(Z < min(log(-), (1-6)10g n) )dt

0 n t

1-(1-6) 1= n P(Z «1-6)10g n) + S P(Z < log(-»dt.
Thus n -(1-6) n t

, n

version For a 0, we have P(Z a) = (l-e-a)n exp(-ne-a). Using this twice,
n1i) = m .the right-hand-side of the last chain of inequalities is further bounded

from above by
m 6

-(1-6) -n6 r -nt -n -(1-6) 1, n e + J e dt = e (n + -)
n

-(1-6)n

<5 £-n _ (1-6 ) (loa n)"'e n = ,--~ --,
£ '

(log n)n e
11 to

which is summable in n. To handle III, we have the identity

note n ( -ia ) n( -ia )P(M ~ [a +l ,a ]) = n l-e n -n l-e n+l

n n n i=l i=l( -ia )n -ia n 1 n+1

= II (l-e n) 1- n (~ra- ) .
i=l i=l 1-e n

The i-th term in the second product of the last expression is

.
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( -ian+~ ( -ian+l -i~)l-e -/ l-e e (where ~ = an-an+l)

( ~( ) -ia -ia -ia -ia n+l
~ l-e n+l l-e n+l+i~e n+l ~ l-i~ e -1a .

l-e n+l [ 2}

n n
Using the obvious inequality n (l-ui) ~ 1- ~ ui for ui ~ 0 , we obtain [ 3~

i=l i=l

-ia
n ( -tan ) n ie n+l [4')

P(M E [a +l ,a J) S l-e .(a -a +l ).~ -in n n i=l n n i=l an+l
l-e

[ SJ
= IV. V. VI.

1+0(1)-l-e: [ 6) ,
By Lemma 1.3, IV = (log n) .Also,

~I'1 2 1 1 ,"
V = -11 l-e: -I6 ( ) (log log n log log(n+l) ) ; [ 1,..

I 2 I
'\,-11 (l-e:).6 n log n (log log n)2 [ 8]

Finally, I 3-a -CD -ia -a -I[ 9J
VI -- 1 n+l i n+l -- I n+l -3 ~ -e e" -e '\, a ,

i=l n [10] ,

'\, 6 log log n 3 [11]'
2 .," ",

11 (I-e:) ~
;;

[12]
Clearly, IV. V. VI does not exceed a constant times

loR lOR n I1 + !:!:5?J.!.) [1
n (log n) l-e: I

which is summab1e in n. This concludes the proof.
[1 ,~.
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