Luc Devroye*

Abstract

We consider the largest spacing M_{n} defined by n independent exponentially distributed random variables. We give its limit law, obtain some large deviation probabilities and derive some laws of the iterated logarithm. For example, it is shown that $\lim _{n \rightarrow \infty} \inf _{n} \log \log n=\pi^{2} / 6$ almost surely, $n \rightarrow \infty$ and that if $x_{n} \uparrow \infty, P\left(M_{n}>x_{n}\right.$ i.o. $)=0$ or 1 according to $\sum_{n=1}^{\infty} \frac{1}{n} \exp \left(-x_{n}\right)<\infty$ or $=\infty$.

0. Introduction.

The maximal spacing defined by a sample of size n drawn from the uniform distribution on $[0,1]$ is close to $\frac{\log n}{n}$. Its exact distribution (Whitworth (1897)), asymptotic distribution (Levy (1939)), large deviation properties (Devroye (1981)) and almost sure behavior (Devroye (1981,1982) and Deheuvels (1982)) are well-known. When the data are not uniformly distributed, but have a density f on $[0,1]$ that stays bounded away from 0 and satisfies some smoothness conditions, the maximal spacing will behave as for a properly normalized uniform distribution. But if one considers for example a density f with support $[0, \infty)$ and nonincreasing hazard rate, the spacings in the tail tend to be larger than the other spacings, and the problem becomes asymmetric.
\square
n? $\mathrm{m} \cdot \mathrm{b}$

[^0]Partially because it has a constant hazard rate, and partially because it occupies an important place in probability and statistics, we will take a close look at the exponential distribution. In deriving the properties of the maximal spacing, a good understanding of the asymmetry inherent in the problem is needed.

In what follows, we let $X_{1}, X_{2}, \ldots, X_{n}, \ldots$ be a sequence of independent exponentially distributed random variables. Let
$X_{(1, n)}<\ldots<X_{(n, n)}$ be the order statistics of X_{1}, \ldots, X_{n}, and let $S_{(i, n)}$ be the spacings $X_{(i, n)}{ }^{-X_{(i-1, n)}, 1 \leq i \leq n \text {, where }} X_{(0, n)}=0$ by convention. Finally, we set $M_{n}=\max _{1 \leq i \leq n} S(i, n)$.

1. The Limit Distribution.

One of the crucial properties needed in this note is due to Sukhatme (1937) (see also the survey paper by Pyke (1965)):

1im su
$\mathrm{n} \rightarrow \infty$ be mor deviat

LEMMA

Then

Let
valid
can fo
Mitrin

It is easy to check that F has a density. Thus, the maximal spacing, unnormalized, tends in distribution to a nondegenerate random variable. Since this limit random variable has support $[0, \infty)$, with a 1ittle work one can show that M_{n} oscillates wildly:
$\lim \sup M_{n}=\infty$ a.s. and $\liminf M_{n}=0$ a.s. . In order to be able to $\mathrm{n} \rightarrow \infty \quad \mathrm{n} \quad \mathrm{n} \rightarrow \infty$ be more specific about how fast M_{n} oscillates, we need a few large deviation results.

LEMMA 1.3. [Large deviations.]
Let F be the limit distribution function of Lemma 1.2.
Then
(2)

$$
\begin{align*}
& F(x) \sim \exp \left(-\frac{1}{x}\left(\frac{\pi^{2}}{6}+o(1)\right)\right) \text { as } x+0 \text {, and } \\
& \quad 1-F(x) \sim \exp (-x) \text { as } x \rightarrow \infty . \tag{3}
\end{align*}
$$

Let x_{n} be a sequence of positive numbers. Then
(4) $P\left(M_{n}<x_{n}\right) \sim \exp \left(-\frac{1}{x_{n}}\left(\frac{\pi^{2}}{6}+o(1)\right)\right)$ when $\lim _{n \rightarrow \infty} x_{n}=0, \lim _{n \rightarrow \infty} \frac{n x_{n}}{\log n}=\infty$ and

$$
\begin{equation*}
P\left(M_{n}>x_{n}\right) \sim \exp \left(-x_{n}\right) \text { when } \lim _{n \rightarrow \infty} x_{n}=\infty \tag{5}
\end{equation*}
$$

Proof of Lemma 1.3.

$$
\begin{aligned}
& \text { Let } x>0 . \text { Then } \\
& \begin{aligned}
e^{-x} & =1-\left(1-e^{-x}\right) \leq 1-F(x) \leq 1-\left(1-\sum_{i=1}^{\infty} e^{-i x}\right)=\sum_{i=1}^{\infty} e^{-i x} \\
& =e^{-x} /\left(1-e^{-x}\right) \sim e^{-x}(\text { as } x \rightarrow \infty)
\end{aligned}
\end{aligned}
$$

This proves (3). To prove (2), we let $x+0$, and choose integers $a=a(x)$ such that $a \rightarrow \infty$ and $a x \rightarrow 0$ as $x \downarrow 0$. Now, $\log F(x)=\sum_{i=1}^{\infty} \log \left(1-e^{-i x}\right)=\sum_{i \leq a}+\sum_{i>a}$. By the inequality $n!>\left(\frac{n}{e}\right)^{n}$, valid for $n \geq 1$ (this is a special form of Stirling's inequality and can for example be deduced from Buchner's inequality (Buchner (1951); Mitrinovic (1970, pp. 181-185)), we have

$$
\begin{aligned}
0 & \geq \sum_{i \leq a} \log \left(1-e^{-i x}\right) \geq \sum_{i \leq a} \log (i x)=a \log x+\log a: \geq a \log \left(\frac{a x}{e}\right) \\
& =\frac{1}{x}\left(a x \log \left(\frac{a x}{e}\right)\right)=o\left(\frac{1}{x}\right)
\end{aligned}
$$

Also,

$$
\begin{aligned}
0 & \leq \sum_{i>a} \log \left(1-e^{-i x}\right)-\int_{a}^{\infty} \log \left(1-e^{-u x}\right) d u \leq-\log \left(1-e^{-a x}\right) \\
& =o\left(\frac{1}{a x}\right)=o\left(\frac{1}{x}\right)
\end{aligned}
$$

Next, by the integral $\int_{0}^{1}(\log y) /(1-y) d y=-\pi^{2} / 6$ (Gradshteyn and Ryzhik (1980, formula $4^{0.231 .2)}$), we have

$$
\int_{a}^{\infty} \log \left(1-e^{-u x}\right) d u=\frac{1}{x} \int_{1-\exp (-a x)}^{1}(\log y) /(1-y) d y=\frac{1}{x}\left(-\frac{\pi^{2}}{6}+o(1)\right)
$$

Combining all the estimates gives us $\log F(x)=\frac{1}{x}\left(-\pi^{2} / 6+o(1)\right)$ as $x+0$.
Results (4) and (5) follow with little extra work. Let x_{n} be a positive number sequence. Clearly,
$\prod_{i=n}^{\infty}\left(1-e^{-i x_{n}}\right) \leq F\left(x_{n}\right) / P\left(M_{n}<x_{n}\right) \leq 1$. But $\prod_{i=n}^{\infty}\left(1-e^{-i x_{n}}\right)$
$\geq 1-\sum_{i=n}^{\infty} \exp \left(-i x_{n}\right)=1-\exp \left(-n x_{n}\right) /\left(1-\exp \left(-x_{n}\right)\right)=1-(1+o(1)) \frac{e^{-n x_{n}}}{x_{n}}$
$=1-o(1)$ when $n x_{n}+\log x_{n} \rightarrow \infty, x_{n} \ngtr 0$. The former condition is implied by the condition $n x_{n} / \log n \rightarrow \infty$. Thus, (4) follows from (2). Finally, (5) follows from

$$
\begin{gathered}
e^{-x_{n}}=1-\left(1-e^{-x_{n}}\right) \leq P\left(M_{n}>x_{n}\right) \leq \sum_{i=1}^{n} e^{-i x_{n}}=\frac{e^{-x_{n}}-e^{-(n+1) x_{n}}}{1-\exp \left(-x_{n}\right)} \\
n e^{-x_{n}} .
\end{gathered}
$$

2. The Limit Supremum.

THEOREM 2.1. Let $\mathrm{x}_{\mathrm{n}} \uparrow \infty$. Then

$$
P\left(M_{n}>x_{n} \text { i.o. }\right)=\frac{0}{1} \text { according to } \sum_{n=1}^{\infty} \frac{1}{n} e^{-x_{n}<\infty}
$$

Proof of the first half of Theorem 2.1.
We know that $P\left(M_{n}>x_{n}\right.$ i.o. $)=0$ when $P\left(M_{n}>x_{n}\right) \rightarrow 0$ and
where $\mathrm{T}_{\mathrm{n}-1}$
as X
rando need
wher show

LEMM
$P\left(A_{n}\right)$

Proof
as mi rando
follows from (5). Also, by the monotonicity of x_{n},

$$
\begin{aligned}
& P\left(M_{n} \leq x_{n}, M_{n+1}>x_{n+1}\right) \leq P\left(X_{n+1} \geq \max _{1 \leq i \leq n} x_{i}+x_{n+1}\right) \\
& \quad=E\left(\exp \left(-\max _{1 \leq i \leq n} x_{i}-x_{n+1}\right)\right)=\exp \left(-x_{n+1}\right) E\left(\min _{1 \leq i \leq n} U_{i}\right) \\
& \quad=(n+1)^{-1} \exp \left(-x_{n+1}\right)
\end{aligned}
$$

where U_{1}, \ldots, U_{n} are independent uniform $[0,1]$ random variables. This shows the first half of Theorem 2.1.

LEMMA 2.1. Let A_{n} be the event $\left[x_{n}>\max _{i<n} X_{i}+x_{n}\right]$. Then $P\left(A_{n}\right)=\frac{1}{n} \exp \left(-x_{n}\right)$ and $P\left(A_{n} A_{j}\right) \leq 2 P\left(A_{n}\right) P\left(A_{j}\right), n \neq j$, whenever $x_{n}>0$. Proof of Lemma 2.1.

$$
\text { Define } T_{n}=X_{(n, n)}=\max _{i \leq n} X_{i} . \text { Because } e^{-T} n \text { is distributed }
$$

as $\min \left(\mathrm{U}_{1}, \ldots, \mathrm{U}_{\mathrm{n}}\right)$ where $\mathrm{U}_{1}, \ldots, \mathrm{U}_{\mathrm{n}}$ are independent uniform [0,1] random variables, we have

$$
P\left(A_{n}\right)=E\left(\exp \left(-T_{n-1}-x_{n}\right)\right)==\frac{1}{n} \exp \left(-x_{n}\right)
$$

Next, if $j<n$, we have

$$
\begin{aligned}
& P\left(A_{n} n A_{j}\right)=P\left(X_{j}>T_{j-1}+x_{j}, X_{n}>T_{n-1}+x_{n}\right) \\
& \quad=E\left(I_{X_{j}}>T_{j-1}+x_{n} \exp \left(-T_{n-1}-x_{n}\right)\right) \\
& \quad=\exp \left(-x_{n}\right) \cdot E\left(I_{X_{j}}>T_{j-1}+x_{j} \exp \left(-T_{n-1}\right)\right)
\end{aligned}
$$

where I is the indicator function of an event. We note that on A_{j}, $T_{n-1}=\max \left(X_{j}, \ldots, X_{n-1}\right)$. In particular, on A_{j}, T_{n-1} is distributed as $X_{j}+\max \left(X_{1}^{\prime}, \ldots, X_{N}^{\prime}\right)$ where $X_{1}^{\prime}, \ldots, X_{N}^{\prime}$ are independent exponential random variables and N is binomial $\left(n-j-1\right.$, $\exp \left(-X_{j}\right)$). We will now need the fact that for a binomial (n, p) random variable B,
$E(1 /(1+B))=\left(1-(1-p)^{n+1}\right) /(p(n+1))$. Thus,

$$
\begin{aligned}
& E\left(I_{A_{j}} \exp \left(-T_{n-1}\right) \mid x_{j}, x_{j-1}, \ldots, x_{1}\right)=I_{A_{j}} \exp \left(-x_{j}\right) E\left(\left.\frac{1}{N+1} \right\rvert\, x_{j}\right) \\
& \quad=\frac{1}{n-j}\left(1-\left(1-\exp \left(-x_{j}\right)\right)^{n-j}\right) I_{A_{j}} \exp \left(-x_{j}\right)
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& P\left(A_{n} \cap A_{j}\right)=\exp \left(-x_{n}\right) \cdot E\left(I_{A_{j}} \frac{1}{n-j}\left(1-\left(1-\exp \left(-x_{j}\right)\right)^{n-j}\right)\right) \\
& \quad=\frac{\exp \left(-x_{n}\right)}{n-j} E\left(T_{j-1} \int_{j}^{\infty}+x_{j} e^{-y}\left(1-\left(1-e^{-y}\right)^{n-j}\right) d y\right) \\
& \quad=\frac{\exp \left(-x_{n}\right)}{n-j} E\left(\int_{1-\exp \left(-T_{j-1}-x_{j}\right)}^{1}\left(1-u^{n-j}\right)\right. \text { du) (by a change of } \\
& \text { variables) }
\end{aligned} \quad \begin{aligned}
& \quad \frac{\exp \left(-x_{n}\right)}{n-j} E\left(H\left(\exp \left(-T T_{j-1}-x_{j}\right)\right)\right)
\end{aligned}
$$

where $H(x)=x-\frac{1}{n-j+1}\left(1-(1-x)^{n-j+1}\right), 0 \leq x \leq 1$. Using the obvious inequality $H(x) \leq x$, we obtain

$$
\begin{equation*}
P\left(A_{n} \cap A_{j}\right) \leq \frac{\exp \left(-x_{n}\right)}{n-j} \cdot \exp \left(-x_{j}\right) . \quad E\left(\exp \left(-T_{j-1}\right)\right)=\frac{e^{-x_{n}} e^{-x_{j}}}{(n-j) j} . \tag{8}
\end{equation*}
$$

But we also have $H(x) \leq \frac{n-j}{2} x^{2}$ (this follows from $(1-x)^{n-j+1} \leq 1-(n-j+1) x+\binom{n-j+1}{2} x^{2}$). We will need the value

This $E\left(\exp \left(-2 T_{j-1}\right)\right):$

$$
E\left(\exp \left(-2 T_{j-1}\right)\right)=E\left(\min ^{2}\left(U_{1}, \ldots, u_{j-1}\right)\right)=\int_{0}^{1} 2 y(1-y)^{j-1} d y=\frac{2}{j(j+1)} .
$$

Thus,

$$
\begin{equation*}
P\left(A_{n} n A_{j}\right) \leq \frac{\exp \left(-x_{n}\right)}{n-j} \cdot \frac{n-j}{2} \cdot \exp \left(-2 x_{j}\right) \cdot \frac{2}{j(j+1)} \leq \frac{e^{-x_{n} e^{-x_{j}}}}{j(j+1)} . \tag{7}
\end{equation*}
$$

We combine (6) and (7) and note that $\min \max (n-j, j+1) \geq \frac{n+1}{2} \geq \frac{n}{2}$. From this and the first part of the Lemma, we conclude that

We he $P\left(A_{n} \cap A_{j}\right) \leqslant 2 \exp \left(-x_{n}\right) \exp \left(-x_{j}\right) /(n j)=2 P\left(A_{n}\right) P\left(A_{j}\right)$, which was to be shown.

Proof of the second half of Theorem 2.1.
Clearly, $\left[M_{n}>x_{n}\right.$ 1.o.] $\supseteq\left[A_{n}\right.$ 1.o.]. Since $P\left(A_{n}\right.$ i.o.) is a tail event, we need only show that $P\left(A_{n}\right.$ i.o. $)>0$. This follows if we can show that there exists a constant $c>0$ such that

$$
P\left(\bigcup_{n=m}^{\infty} A_{n}\right) \geq c, \quad \text { for all } \dot{m}
$$

From Lemma 2.1 we remember that $P\left(A_{n}\right)=\exp \left(-x_{n}\right) / n$, and thus that $\sum_{n=1}^{\infty} P\left(A_{n}\right)=\infty$. Lemma 2.1 also implies that $P\left(\bigcup_{n=m}^{\infty} A_{n}\right) \geq \frac{1}{2}$, all m: to see this, just apply the Chung-Erdos inequality (Chung and Erdos (1952))

$$
\left.\lim _{n=m}^{\infty} \mathcal{A}_{n}\right)=\sup _{M>m} P\left(\cup_{n=m}^{M} A_{n}\right) \geq \sup _{M>m} \frac{\left(\sum_{n=m}^{M} P\left(A_{n}\right)\right)^{2}}{\sum_{n=m}^{M} \sum_{n^{\prime}=m}^{M} P\left(A_{n} A_{n^{\prime}}\right)+\sum_{n=m}^{M} P\left(A_{n}\right)}
$$

(8)

$$
\geq \sup _{M>m} \frac{\left(\sum_{n=m}^{M} P\left(A_{n}\right)\right)^{2}}{2\left(\sum_{n=m}^{M} P\left(A_{n}\right)\right)^{2}+\sum_{n=m}^{M} P\left(A_{n}\right)}=\frac{1}{2}
$$

This concludes the proof of Theorem 2.1.

Remark. We have shown that

$$
\underset{n \rightarrow \infty}{\lim \sup } M_{n} / \log \log n=1 \quad \text { almost surely. }
$$

We have also shown that if $\log _{j}$ is the j times iterated logarithm, then

$$
\begin{equation*}
P\left(M_{n}>\log _{2} n+\log _{3} n+\ldots+\log _{j-1} n+(1+\varepsilon) \log _{j} n \text { i.o. }\right)=0 \tag{1}
\end{equation*}
$$

according to

$$
\varepsilon>0(\varepsilon \leq 0), \quad \text { all } j \geq 2
$$

3. The Limit Infimm.

THEOREM 3.1.

$$
\lim _{n \rightarrow \infty} \inf M_{n} \log \log n=\frac{\pi^{2}}{6} \text {, almost surely }
$$

Proof of Theorem 3.1.
For $\varepsilon>0$, we define $b_{n}=\frac{1}{6} \pi^{2}(1+\varepsilon) / \log \log n$. Let $n_{i}=[\exp (i \log i)]$ where $[$.$] denotes the largest integer contained in a$
whicl
repl given real number. Let M_{i}^{*} be the largest spacing defined by the subsample $X_{j}, n_{i-1}<j \leq n_{i}$ only: We know that
$P\left(\right.$ There exists i_{0} such that for all $i \geq i_{0}\left(n_{i-1}, n_{i}\right]$
contains a record, i.e. $X_{j}=\max \left(x_{1}, \ldots, X_{j}\right)$ for some
$j \in\left(n_{i-1}, n_{i} J\right)=1$
(this follows from Renyi (1962) or Strawderman and Holmes (1970)). Thus, $P\left(M_{n}<b_{n}\right.$ i.o. $)=1$ when $P\left(M_{i}^{*}<b_{n_{i}}\right.$ i.o. $)=1$. By the independent version

For the from

$$
P\left(M_{i}^{*}<b_{n_{i}}\right)=\exp \left(-\frac{1+o(1)}{1+\varepsilon} \log \log n_{i}\right)=(i \log i)^{\frac{1+o(1)}{1+\varepsilon}},
$$

and this is not summable in i. Thus, $\lim \inf M_{n} \log \log n \leq \frac{1}{6} \pi^{2}$ almost surely.

For the second half, we take $0<\varepsilon<1$, and set a_{n} equal to $\frac{1}{6} \pi^{2}(1-\varepsilon) / \log \log n$. Now, $P\left(M_{n}<a_{n} i .0.\right)=0$ when $P\left(M_{n}<a_{n}\right) \rightarrow 0$ (a consequence of Lemma 1.2) and $\sum_{n} P\left(M_{n}<a_{n}, M_{n+1} \geq a_{n+1}\right)<\infty$. We note first that

$$
\begin{aligned}
& P\left(M_{n}<a_{n}, M_{n+1} \geq a_{n+1}\right) \\
& \leq P\left(M_{n}<a_{n+1}, M_{n+1} \geq a_{n+1}\right)+P\left(a_{n+1} \leq M_{n}<a_{n}\right) \\
& \leq P\left(X_{n+1}=\max \left(X_{1}, \ldots, X_{n+1}\right), M_{n}<a_{n+1}\right)+P\left(a_{n+1} \leq M_{n}<a_{n}\right) \\
& \leq E\left(e^{-Z_{n+1}} I_{\left[Z_{n+1} \leq(1-\delta) \log n\right.}\right)+e^{\left.-(1-\delta) \log n_{P\left(M_{n}\right.}<a_{n+1}\right)} \\
& =I+I I+I I I, \quad
\end{aligned}
$$

where $Z_{n}=\max \left(X_{1}, \ldots, X_{n}\right)$, and $\delta=\varepsilon \frac{\log \log n}{\log n}$. We verify that I, II and III are all summable in n. The easiest term is II : by Lemma 1.3, we have

$$
I I=n^{-(1-\delta)}(\log n)^{-\frac{1+o(1)}{1-\varepsilon}}=\frac{(\log n)^{\varepsilon}}{\frac{1+o(1)}{1-\varepsilon}},
$$

$$
n(\log n)
$$

which is summable in n in view of $\frac{1}{1-\varepsilon}>1+\varepsilon$. To bound I, we can replace Z_{n+1} by Z_{n}. Thus,

$$
\begin{aligned}
I & \left.\leq E\left(e^{-Z_{n}} I_{\left[Z_{n}<(1-\delta) \log n\right]}\right)=\int_{0}^{1} P\left(e^{-Z_{n}} I_{\left[Z_{n}<(1-\delta) \log n\right]}\right\rangle\right) d t \\
& =\int_{0}^{1} P\left(Z_{n}<\min \left(\log \left(\frac{1}{t}\right),(1-\delta) \log n\right)\right) d t \\
& =n^{-(1-\delta)} P\left(Z_{n}<(1-\delta) \log n\right)+\int_{n^{-(1-\delta)}}^{1} P\left(Z_{n}<\log \left(\frac{1}{t}\right)\right) d t .
\end{aligned}
$$

For a 0 , we have $P\left(Z_{n} \quad a\right)=\left(1-e^{-a}\right)^{n} \quad \exp \left(-n e^{-a}\right)$. Using this twice, the right-hand-side of the last chain of inequalities is further bounded from above by

$$
\begin{aligned}
& n^{-(1-\delta)} e^{-n^{\delta}}+\int_{n^{-(1-\delta)}}^{\infty} e^{-n t} d t=e^{-n^{\delta}}\left(n^{-(1-\delta)}+\frac{1}{n}\right) \\
& \sim e^{-n^{\delta}} n^{-(1-\delta)}=\frac{(\log n)^{\varepsilon}}{n e^{(\log n)^{\varepsilon}}}
\end{aligned}
$$

which is summable in n. To handle III, we have the identity

$$
\begin{aligned}
& P\left(M_{n} \in\left[a_{n+1}, a_{n}\right]\right)=\prod_{i=1}^{n}\left(1-e^{-i a_{n}}\right)-\prod_{i=1}^{n}\left(1-e^{-i a_{n+1}}\right) \\
& =\prod_{i=1}^{n}\left(1-e^{-i a_{n}}\right)\left(1-\prod_{i=1}^{n}\left(\frac{1-e^{-i a_{n+1}}}{1-e^{-i a_{n}}}\right)\right)
\end{aligned}
$$

The i-th term in the second product of the last expression is

$$
\begin{aligned}
& \left.\left(1-e^{-i a_{n+1}}\right)\left(1-e^{-i a_{n+1}} e^{-i \Delta}\right) \quad \text { (where } \Delta=a_{n}-a_{n+1}\right) \\
\geq & \left(1-e^{-i a_{n+1}}\right)\left(1-e^{-i a_{n+1}}+i \Delta e^{-i a_{n+1}}\right) \geq 1-1 \Delta \frac{e^{-i a_{n+1}}}{1-e^{-i a_{n+1}}} .
\end{aligned}
$$

Using the obvious inequality $\prod_{i=1}^{n}\left(1-u_{i}\right) \geq 1-\sum_{i=1}^{n} u_{i}$ for $u_{i} \geq 0$, we obtain [3$]$

$$
\begin{equation*}
P\left(M_{n} \in\left[a_{n+1}, a_{n}\right]\right) \leq \sum_{i=1}^{n}\left(1-e^{-i a_{n}}\right) \cdot\left(a_{n}-a_{n+1}\right) \cdot \sum_{i=1}^{n} \frac{i e^{-i a_{n+1}}}{1-e^{-i a_{n+1}}} \tag{4}
\end{equation*}
$$

$=\mathrm{IV} . \mathrm{V} . \mathrm{vI}$.
By Lemma 1.3, IV $=(\log n)^{-\frac{1+0(1)}{1-\varepsilon}}$. Also,

$$
\begin{aligned}
& V=\frac{1}{6} \pi^{2}(1-\varepsilon)\left(\frac{1}{\log \log n}-\frac{1}{\log \log (n+1)}\right) \\
& \sim \frac{1}{6} \pi^{2}(1-\varepsilon) \frac{1}{n \log n(\log \log n)^{2}}
\end{aligned}
$$

Finally,

$$
\begin{align*}
& V I \leq 1-e^{-a_{n+1}{ }^{-1} \infty}{ }_{i=1} i e^{-i a_{n+1}} \leq 1-e^{-a_{n+1}-3} \sim a_{n}^{-3} \\
& \approx \frac{6 \log \log n^{3}}{\pi^{2}(1-\varepsilon)} . \tag{11}
\end{align*}
$$

Clearly, IV. V. VI does not exceed a constant times

which is summable in n. This concludes the proof.
[1] O. Barndorff-Nielsen, On the rate of growth of the partial maxima of a sequence of independent identically distributed random variables, Math. Scand. 9 (1961), 383-394.
[2] P. Buchner; Bemerkungen zur Stirlingschen Formel, Elem. Math. 6 (1951), 8-11.
[3] K. L. Chung, P. Erdois, On the application of the Borel-Cantelli Zemma, Trans. Am. Math. Soc. 72 (1952), 179-186.
[4] P. Deheuvels, Strong limiting bounds for maximal uniform spacings, Ann. Probability 10 to appear, 1982.
[5] L. Devroye, Lows of the iterated logarithm for order statistics of uniform spacings, Ann Probability 9 (1981), 860-867.
[6] L. Devroye, A $\log \log$ low for maximal uniform spacings, Ann. Probability 10 (1982), 863-868.
[7] I. S. Gradshteyn, I. M. Ryzhik, Table of integrals, series and products, Academic Press, New York, 1980.
[8] P. Lévy, Sur la division d'un segment par des points choisis au hasard, C.R. Acad. Sci. Paris 208 (1939), 147-149.

9] D. S. Mitrinovic, Analytic Inequalities, Springer-Verlag, 1970.
[10] R. Pyke, Spacings, J. Roy. Stat. Soc. 27 (1965), 395-436.
[11] A. Renyi, Theorie des elements saillants d'une sutie d'observations, Coll. Aarhus, (1962), pp. 104-115.
[12] W. E. Strawderman, P. T. Holmes, On the Low of the iterated logarithm for inter-record times, Journal of Applied Probabilicy 7 (1970), pp. 432-439.
[13] P. V. Sukhatme, Tests of significance for samples of the chi-square population with two degrees of freedom, Ann. Eugen. London 8 (1937), 52-56.
[14] W. A. Whitworth, Choice and chance, Cambridge University Press, 1897.
School of Computer Science
McGill University
805 Sherbrooke Street West
Montreal, Canada H3A 2K6
Received dune 27, 1983.

[^0]: *Research of the author was sponsored in part by National Research Council of Canada Grant No. A3456.

