THE LARGEST EXPONENTIAL SPACING

Luc Devroye*

ABSTRACT. We consider the largest spacing Mn
defined by n independent exponentially distribu-
ted random variables. We give its limit law,
obtain some large deviation probabilities and derive
some laws of the iterated logarithm. For example,
it is shown that

lim inf M_1log logn = n2/6 almost surely,

e 0

and that 1f x +«, P(M > x i.0.) =0or1l
n n n

L

1
according to nz=l Y exp(-xn) < ®or =,

0. Introduction.

The maximal spacing defined by a sample of size n drawn from
the uniform distribution on [0,1] is close to 12%;2 . 1Its exact distribu-
tion (Whitworth (1897)), asymptotic distribution (Levy (1939)), large
deviation properties (Devroye (1981)) and almost sure behavior (Devroye
(1981,1982) and Deheuvels (1982)) are well-known. When the data are
not uniformly distributed, but have a density f on [0,1] that stays
bounded away from 0 and satisfies some smoothness conditions, the maximal
spacing will behave as for a properly normalized uniform distribution.

But if one considers for example a density f with support [0,») and
nonincreasing hazard rate, the spacings in the tail tend to be larger

than the other spacings, and the problem becomes asymmetric.
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Partially because it has a constant hazard rate, and partially 1im st

because it occupies an important place in probability and statistics, n-—>o
be mo
we will take a close look at the exponential distribution. In deriving ol
deviat
the properties of the maximal spacing, a good understanding of the
asymmetry inherent in the problem is needed.
, LEMMA
In what follows, we let xl’XZ""’Xh"" be a sequence of |
independent exponentially distributed random variables. Let ;} Tﬁ
X < ... <X be the order statistics of X.,...,X , and let en
(1,n) (n,n) 1 n (2)
S(i,n) be the spacings X(i,n)—x(i-l,n)’ 1 <i<n, where X(O,n) =0 5
by convention. Finally, we set M = max S .
. (i,n)
1<i<n Let 3
1. The Limit Distribution. (4) 7
One of the crucial properties needed in this note is due to and
Sukhatme (1937) (see also the survey paper by Pyke (1965)): (5)
5
LEMMA 1.1. S(n,n)""’s(l,n) are distributed as Yl/l’YZ/Z""’Yn/n Proof
where Yy,...,Y —are independent exponentially distributed random
variables.
Because
n n
P(M < x) =P(N 8 <x) = II P(Y,< ix)
n i=1 (Lom) i=1
o -ix. = i
= 11 (- + I (-, all x>0,
i=1 i=1 This p
a = a(
we have proved
log F(
LEMMA 1.2. [Limit distribution.] }
o L valid
(1) lim P < x) = FG) = II (1-e %y, x > 0. can fo
-0 i=1
Mitrin
It is easy to check that F has a demsity. Thus, the maximal
spacing, unnormalized, tends in distribution to a nondegenerate random 0

variable. Since this limit random variable has support [0,=), with a

little work one can show that Mn oscillates wildly:

TN OO

304



al

1im sup M = = a.s.
n

and lim inf M_ =0 a.s. .
n->ow n

n->e
be more specific about how fast Mn

In order to be able to

oscillates, we need a few large

deviation results.

LEMMA 1.3. [Large deviations.]

Let F be the limit distribution function of Lemma 1.2.

Then 9
1
(2) F(x) n exp(-3 Tz +0(1))) as x +0, and
(3) 1-F(x) ~ exp(-x) as x + o,
Let x be a sequence of positive numbers. Then
(4) 1 22 T
P(Mn< xn) '\/exp(—;—(T + 0(1))) when lim X = 0, lim 108 =
n o
and
(5) P(Mn> xn) '\:exp(-xn) when limx =« .
N>
Proof of Lemma 1.3.
Let x > 0. Then
e* = 1-(1-eF) € 1-F(x) s 1-(1-L e %) = 2 X
i=1 i=1
= e_x/(l—e-x) noe ¥ (as x +%)3

This proves (3).
a = a(x)

To prove (2), we let x ¥+ 0, and choose integers

such that a * > and ax >0 as x v 0.

2 log(l-e ix) = 2 + Z .

i<a i>a

Now,

log F(x) = By the inequality n! > (%)“,

valid for n 21 (this is a special form of Stirling's inequality and
can for example be deduced from Buchner's inequality (Buchner (1951);

Mitrinovic (1970, pp. 181-185)), we have

z: log(l—e—:Lx

i<a

o
v

)y 2 E log(ix) = a log x + log a! 2 a log (_a:.x)
i<a

;l(-(ax log(%)) = o(;l(').
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Also,

o
A

Z log(l—e_ix) - _f 1og(1-e-ux)du < —log(il-e—a-x)
i>a a

1, _ L
o) = o)
1 2
Next, by the integral f (log y)/(1-y)dy = -n"/6 (Gradshteyn and

Ryzhik (1980, formula 40231.2)), we have
2

- 1
flog(i-e ™ au = 1 f (log y)/(-y)dy = $(- %= +o(1)).
a 1-exp(-ax)

Combining all the estimates gives us log F(x) = —}12(-“2/6+0(1)) as x ¥+ 0.

Results (4) and (5) follow with little extra work. Let x

be a positive number sequence. Clearly,

- -ix had —ix
IT (1-e ""n) < F(x )/P(M < x ) <1. But JI (l-e n)
i=n n n n i=n
o i e—nxn
2 1- 1}:‘; exp(-ix ) = 1 -e::p(-nxn)/(l-exp(—xn)) =1 - (1L+0(1)) =

=1 - o(l) when nx_ + log X 7o X + 0. The former condition is
implied by the condition nxn/log n > o , Thus, (4) follows from (2).
Finally, (5) follows from

X, - (n+l) X

“*a “*n no-ix . B,
e = 1-(l-e ) < P(M >x)sze -
n n = 1-exp( xn)
-X
noe n
2. The Limit Supremum.
THEOREM 2.1. Let x t «. Then
4] L4 1 —xn < o
PM > x i.0.) = ) aceording to nz=:l se }

Proof of the first half of Theorem 2.1.

We know that P(Mn > x i.0.) = 0 when P(Mn > 'xn) + 0 and

ZP(Mnan, n+1>xn+1) < « (Barndorff-Nielsen (1961)). The first condition

n <
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m

follows from (5). Also, by the monotonicity of X s

s > < b3
P(Mn X Mn+1 xn+1) P(Xn+1 max X,+x ,.)

1<i<n ntl

E(exp(- max X, -x_,.)) = exp(-x_,.) E( min U,)
1<i<n i n+l n+l 1<i<n i

(n-i-l)‘-1 exp(-x

n+1)

where Ul,...,Un are independent uniform [0,1] random variables. This

shows the first half of Theorem 2.1.

LEMMA 2.1. Let A_ be the event [X > max X, + x_1. Then
n n oy b n
=1 - 5
P(An) = exp( xn) and ,P(An Aj) < 2P(An)P(Aj), n+tj, whenever x > 0.

Proof of Lemma 2.1.

N -
Define T_ =X = max X,. Because e Tn is distributed
n (n,n) i<n i

as min(Ul,...,Un) where Ul,...,Un are independent uniform [0,1]

random variables, we have

= E(ex =1 -
P(A ) = E(exp(-T _,-x)) ==7 exp(-x)) .
Next, if j < n, we have

= +
P(AnnAj) P(Xj > T +x,, X > T x )

-1 "3’ 'm n-1" "mn

= E(Ix >T. 4% exp(—Tn_l-xn))

3 j=-1""n
exp(—xn).E(I

x.>T, 4x, XPCT 1))
§773-173

where 1 1is the indicator function of an event. We note that on Aj’
Tn—l = maX(Xj,...,Xn_l). In particular, on Aj’ Tn—l is distributed
as Xj + max(X',...,Xﬁ) where xi,...,xﬁ are independent exponential
random variables and N is binomial (n-j-1, exp(-Xj)). We will now

need the fact that for a binomial (n,p) random variable B,
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E(1/(14B)) = (1-(1-p)" )/(p(n+l))- Thus,

E(I exp(—T )]x ,X

j- -1 ’Xl) =1

A4

oL (- (l-exp(-x.)™ -
"5y A-GrewCx )™ 1, ey

. 1
by SRCE) EGTIXy)

Thus,

P(A0A) = exp(-xn).E(IAj = j (1- (l—exp(-Xj))n 3y

o

= SXP(~X) E( J;X e_y(l—(l—e_y)n—j) dy)

n-j =173
1
NI TN | (1-a") du) (by a cn £
y a change o
n-3 1-exp(- T —x ) variables)

- () pienp(-Ty_y-x,)))
n-j

n-j+1

where H(x) = x - nL§+1 (1-(1~-x) ), 0 < x < 1. Using the obvious

inequality H(x) < x, we obtain

-X_ =X,
< eXP(~Xp) _ _e e
(6) P(AnnAj) < —_— exp( %;).  Eexp( Ty_y)) =N
But we also have H(x) < n=j x2 (this follows from
-0 < (n-4)x + ?“'gﬂ) ¥%) . We will need the value
E(exp(—ZTj_l)):
2 1 j-1
E(exp(-2T, .)) = E(min“(U,,...,U, .)) =f 2y(1-y)I " dy =
J—l j‘l 0
Thus,
'Xn —Xj
7 P(AnA,) s TPCH) . E:i ce e
N j) — cexp(- 2x ) j(j+1) TG+
We combine (6) and (7) and note that min max(n-j,j+l) 2 E%l 2 %.

3
this and the first part of the Lemma, we conclude that

P(A nA ) g2 exp(-x )exp(-x Y/ (nj) = 2pP(A )P(Aj), which was to be shown.
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Proof of the second half of Theorem 2.1.

Clearly, [Mn > x i.0.] 2 [An 1.0.]. Since 1’(An i,0.) is a
tail event, we need only show that P(An i.0.) > 0. This follows 1if

we can show that there exists a constant c¢ > 0 such that

P(UA) 2¢c, forall m.
n=m
From Lemma 2.1 we remember that P(An) = exp('—xn) /n, and

0

thus that 2 P(An) = o, Lemma 2.1 also implies that P( UAn) 2 —;—,
n=1 , n=m

all m: to see this, just apply the Chung-Erdbs inequality (Chung and
Erdss (1952)) ’

M
w M O P(An))z
P(UA) =sup P(UUA ) 2 sup =0
- n ~ n M M M
n=m M>m =m M>m Z z: P(A A ) + Z P(An)
n=m n'=nm non n=m
(8) M
(T ran?
. n=m 1
2 sup M 2 m = —2‘ .
¥m a3 P+ Y B(AY)
n=m n=m

This concludes the proof of Theorem 2.1.

Remark. We have shown that

lim sup Mnllog log n = 1 almost surely.

n->o

We have also shown that if logj is the j times iterated logarithm, then

P(Mn > log2n+ log3n+ ...+10gj_1n + (l+e),logjn i.0.) =0 (1)

according to €>0(e<0), all j 2 2.
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3. The Limit Infimum. wher

and |
THEOREM 3.1. we h:
2
lim inf M_ log log n = % » almost surely.
n->oo n
Proof of Theorem 3.1.
For € > 0, we define b = 1ﬂ2 (1+€)/log log n. Let whicl
= [exp(i log i)] where [.] denotes the largest integer contained in a repl,
given real number. Let M;..‘ be the largest spacing defined by the sub-
sample XJ, n, ;< i< only! We know that
P(There exists io such that for all i > i (n 10 ]
contains a record, i.e. Xj = max(X,,. ”Xj) for some
e (ni_l,ni]) =1
(this follows from Renyi (1962) or Strawderman and Holmes (1970)). Thus,
P(Mn < bn i.0.) = 1 when P(M* < b, ny i.0.) = 1. By the independent version For
of the Borel-Cantelli lemma, it suffices to verify that 2 P(M* < b )—°° . the 1
But, by Lemma 1.3, from
1+0(1)
1+0(1) )
* = - 208 ) =
P(ME < bni) exp( Tre = log log ny) = (i log 1) Tve
and this is not summable in 1. Thus, 1lim inf Mn log log n < % 1r2 i

almost surely.

For the second half, we take 0 < ¢ < 1, and set an equal to

hich
l L (l—e)llog log n. Now, P(M < a i.0.) = 0 when P(M < an) >0 waie

(a consequence of Lemma 1.2) and % P(M < a M +1 2 an+1) < ® ., We note
first that
P ('Mn < a4, Mn+l 2 an+1)

SP(Mu < an+1’Mn+1 2 an+1) + P(an+1 < Mn < an)

SP(Xn+1=max(X ""’xn+l)’ Mn < an+1)+P(an+l.. M < a ) The 1
-Z
n+l -(1-8)log n
<Efe I +e PM <a_ )
( [Zn+l < (1-8)log n> n  “n+l
HP(a . <M <a)

=I+ II+ IIT ,
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see+3X ), and 68 = ¢ log log n . We verify that I, II
1 n log n

and III are all summable in n. The easiest term is II : by Lemma 1.3,

where Zn = max(X

we have
_ _ l+o(1) €
II =n Q 6)(].Og n) l-e = (—IO—SLI;—O—(]-—)' N
1-¢
i n (log n)
which is summable in n in view of T%E >1+ €. To bound I, we can
1 a
. | replace Zn+1 by Zn' Thus,
| “Zy N “Zy .
; 1= Ele Itz <«(1-8)1og n] =f) P\® Ttz <(1-8)10g n3” £)%*
1 1.
= j P(Z_ < min(log(<),(1-8)log n))dt
0 n t
-(1-8) 1 1
=n P(Zn<(1-6)log n) + j P(Zn < 1og(Eﬁ)dt.
us, n—(l-G)
sion For a 0, we have P(Zn a) = (1_e—a)n exp(—ne_a). Using this twice,

=

* the right-hand-side of the last chain of inequalities is further bounded

from above by

| -

—(1-68) -n% - 2% —a-
n & <s)e oy 5 e ntdt =e (n (1-%) + l)
-(1-8) "
n
[ €
| e (178 _ __(dogm)”
(log n)°©
ne
to |
| which is summable in n. To handle III, we have the identity
ote n —ian n -ian+1
PM e [a_.,a ] = H(l-e )- II (l-—e )
n n+l’ n i=1 1=1
n —ian n l_e_ian+l
= II (l-e )l—H (——-_—ia——) .
i=1 i=1 ‘1-e " n

The i-th term in the second product of the last expression is
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-ia -ia
ntl n+l -1i4A -
<l-e > <1—e e > (where A = a-a +1)

-1ia
-1a -ia -ia n+l
2 (l-e n+1> <1—e n+l+iAe n+1> z 1-1A e_——i-a— .

l-e n+l

n n
Using the obvious inequality I (l-ui) b 1—2 uy for u, 2 0, we obtain |l 3]
i=1 i=1

~-ia

n -ia n n+l [ &%
ie
P(M € [a a ]) s (l-e n)'(a -a )-Z —_—
n n+l’"n i=1 n n+l =1 L ian+1
-e
5]
= IV, V. VI.
_l+o(1) 6
By Lemma 1.3, IV = (log n) 1-¢ Also, cel.
12, 1 1 o
V= 6" a e)(log log n log log(ntl) ) 2t 7%
g ia-e p 2 T 8Y
n log n (log log n) .
Finally, - :
“3041 e ey, “2ntl ’ -3 it &
VI s 1l-e ie < l-e ~a i
=1 n '(10]
|
N 6 log log n 3 P11
7 (1-¢)
- [12}

Clearly, IV. V. VI does not exceed a constant times

(131

which is summable in n. This concludes the proof.
(14]
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