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Abstract - -  Zusammenfassung 

Random Variate Generation for Unimodal and Monotone Densities. We consider the problem of 
generating random variates with a monotone nonincreasing density on [0, ~). No bounds are known 
that would allow a straightforward application of the rejection method, and the inverse of the 
distribution function is not explicitly known either. We develop the inversion/rejection method, and 
show how it can be used for all monotone densities, even those with an infinite peak at 0 and unbounded 
support, provided only that the densityfand the distribution function F can be computed for each x. A 
theoretical analysis of the average time behaviour of the algorithms is included. 

AMS Subject Classifications: 65C 10, 65C05. 

Key words and phrases: Random variate generation, rejection method, inversion method, unimodality, 
Khintchine's theorem, average time analysis, Newton-Raphson method, table methods. 

Erzeugung yon ZufaUsvariabein mit monotonen oder unimodalen Dichtefunktionen. Wir betrachten das 
Problem der Erzeugung von Zufallsvariablen mit monoton nichtsteigender Dichtefunktion im Intervall 
[0, ~). Schranken, die eine direkte Anwendung der Zurfickweisungsmethode erlauben wiirden sowie die 
Umkehrfunktion der Verteilung sind nicht bekannt. Wir entwickeln die Umkchr/Zuriickweisungsme- 
thode und zeigen ihre Anwendbarkeit auf alle monotonen Dichten, sogar auf solche, die eine Polstelle bei 
0 besitzen und die einen unbeschrfinkten Wertebereich haben. Vorausgesetzt ist lediglich, daB f u n d  F an 
jeder Stelle berechenbar sind. Eine theoretische Analyse des mittleren Zeitverhaltens der Atgorithmen ist 
beigefiigt. 

1. Introduction 

In this paper we give algorithms that can be used for the computer generation of 
random variables with a unimodal densi tyfwhen no bounds are available fo r f tha t  
would allow us to use the rejection method in a straightforward manner. We assume 
that a perfect uniform [0, 1] random variate generator is given, capable of 
generating an i. i.d. (independent identically distributed) sequence U1, U2 . . . .  of 
uniform [0, 1] random variates. The techniques considered here are 

(i) generah they can be applied to all unimodal densities with given mode, 
regardless of the size of the tail or the height of the peak; the densities are not 
assumed to belong to a parametric family, nor are bounds needed for them; 
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(ii) exact: if all the operations can be carried out with infinite precision, then the 
generated random variates have density f ;  no approximations are allowed; 

(iii) efficient: the average t ime needed per random variable should be reasonable. Of  
course, general algorithms of the type given here cannot be expected to be faster 
than algorithms designed for specific families of densities. 

We will try, wherever possible, to give the statistical properties of the algorithms 
such as the average number of iterations per random variate, and so forth. For 
example, if T is the time taken by an algorithm, then we are looking for simple 
expressions and simple upper bounds for E (7), the average time per random variate. 
These should depend upon general constants only, such as the supremum off ,  the 
support off ,  or parameters used in the design of the algorithm. General algorithms 
with well-understood properties will survive longer than ad hoc algorithms that are 
known to perform well on specific examples but whose general properties are not 
clear. Our results about E (7) are based upon the not so unrealistic assumption that 
the common operations + ,  - ,  *, /, mod, truncate, compare, move, generate a 
uniform random variate, log, and exp take a given constant time. 

The reader is assumed to have a basic knowledge of the common principles in non- 
uniform random variate generation, such as the principles of inversion, rejection, 
squeezing, composition, and aliasing (see Schmeiser (1980) for a survey with 
bibliography). The present paper is a short version of a survey and study reported in 
Devroye (1982). 

2. The Inversion/Rejection Method 

There are situations in which the rejection method can be applied with minimal 
knowledge about f,  e.g. it can be applied whenever we know that f i s  bounded by c, 
and the support o f f  is contained in [0, 11. But if we are not given the constant c in 
this example, it is not clear how one should proceed without a drastic modification of 
the rejection method. 

If F is the distribution function off,  then F-1 (U) has density f w h e n  U is uniformly 
distributed on [0, 11. Unfortunately, we are usually not given F -  1 explicitly, so that 
the inversion method must be implemented through the numerical solution of the 
equation F (X) -- U for X. This would, strictly speaking, take an infinite amount of 
time. The main contribution of this paper is the development of the 
inversion/rejection method applicable when both f and F are given (but not F -  1), 
and when f is known to belong to a broad class of densities (such as all unimodal 
densities). 

The principle is simple: partition R into a countable number of intervals A1, A2, ... 
(this is a fixed partition), and let Pi be the probability under f of A i (this is computable 
since F is given). Then, proceed as follows: 

Step 1: [Inversion. 1 Generate a uniform [-0, 11 random variate U, set I n  1, S ~ p l .  
While U > S do: I +-- I + l, S ~- S + pr  
[I now satisfies P (I = i) = pi, all i. It could have been generated by a method 
other than sequential search, but that would require the storage of the p~'s.l 
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Step 2 : [Rejection.] Exit with a random variate X with density f restricted to A I. 
Employ the rejection method by deriving a bound for f based upon the 
knowledge about f (unimodality, etc.). 

To illustrate this on a trivial example, assume that we know that f =  0 on ( -  oo, 0) 

and that f_< c on [0, oo). Nothing e!se is known about f .  If we take A~ = , , 
c 

i = 1,2,.. . ,  then the algorithm reads: 

Stepl: Generate a uniform [0,1] random variate U. S e t I ~ I , S + - F ( I ~ .  

W ile 

\ c /  

Step 2: Generate V, W, two independent uniform [0, 1] random variates. 
I - I + W  

Set X * 
c 

If Vc <f(X) ,  exit with X. Otherwise, go to 2. 

We do not claim that this is a fast algorithm: in fact, the average time per random 
variate is oo ! The fundamental reason behind the inherent slowness is the size of the 
family of densities. By appropriately limiting the class of densities, faster algorithms 
can be constructed. 

We will limit ourselves to the class of monotone densities on [0, oo), i.e. f = 0  on 
( -o% 0), f is nonincreasing on [0, ~) .  We will allow l imf(x)= oo. When a density is 

x.L0 

unimodal with mode at m, it can be cut into a monotone density on [m, oo), and a 
symmetrically defined monotone density on ( - o %  m], with weights F(m) and 
1-F(m) to be given to each part. Thus, by the composition method, random 
variates with a unimodal density with mode at m can be generated if we know how to 
generate random variates with a monotone density on [0, oo). We note here that this 
argument does not apply when the mode is unknown. 

In the next section, we will give a brief survey of general algorithms that can be used 
for generating random variates with a monotone density. Some of these algorithms 
require some additional knowledge, such as the support of f (or an interval  
containing the support off) ,  the supremum off(which is B =f(0) ,  but f(0)  could be 
oo), or the knowledge that f is concave or convex on its support. 

3. Algorithms 

3.1. Inversion 

For monotone densities, F is concave on [0, ~) .  Thus, the solution of F (X)= U 
(where U is uniformly distributed on [0, 1]) can be obtained by the Newton- 
Raphson method, and convergence is guaranteed in all cases: 

Step I : Generate a uniform [0, 1] random variate U. 
If f is not known to be bounded: X ~ 2 ;  repeat X ~ X / 2  until F ( X ) <  U. 
I f f  is bounded: X+-0. 
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Step 2: X*--X-(F(X)-U)/f(X). Go to 2. 

This procedure does not halt. In practice, on a finite wordsize computer, one keeps 
on iterating until the value of X remains unchanged. Thus, the average times 
obtained in a timing experiment will depend very heavily on the wordsize of the 
computer, and the distribution function F. 

When F is not given, the inversion method is hard to implement. The most valid 
attempt at obtaining a general algorithm for generating a random variate when only 
f i s  given, is that of Ahrens and Kohrt  (1981) (see also Kohrt  (1980)), based upon the 
method of guide tables (Chen and Asau (1973)): strictly speaking however, the 
inversion algorithm given above stopped after a finite number of iterations, and the 
general method of Ahrens and Kohrt  are not exact in the sense (ii) described in the 
introduction. 

3.2. Rejection 

In this section we assume only that f is monotone, and that 

(i) f ( x ) = 0  outside [0, 1]; 

(ii) f(x)<_ B for all x, where B is known. 

If B is not known, it can be computed as f (0), and if the support of f is not known, or 
exceeds [0, 13, then with a scaling adjustment the support can be made exactly equal 
to [0, 1] or it can be made equal to [0, c] where c is guaranteed not to exceed 1. The 
ordinary rejection method for generating a random variate X with density f ,  
proceeds as follows: 

Step 1: Generate two independent uniform [0, 1] random variates X and V. 

Step 2: If VB<_f(X), exit with X. Otherwise, go to 1. 

On the average, step 1 is executed B times. In families of densities with shape 
parameters, B often depends upon the shape parameter, and can grow very large for 
some values of the shape parameter. Thus, the ordinary rejection method can be 
intolerably slow, and we cannot give any guarantees about its speed. If it were not for 
the fact that this method can be improved upon dramatically without much effort, 
we would not have mentioned it in this paper. 

Because the area under f is 1, we must have 

I 
f(x)<_ ,x>0, 

x 

for all monotone densities f .  If f is also known to be convex, this bound can be 
sharpened to f(x)< 1/(2 x): find the point x where f '  ( x ) = -  1. The area of the 
triangle formed by the axes and the tangent to f at x is at most 1 (because f is 
convex); but the area is exactly 2xf(x). To treat both cases simultaneously, we 

1 
assume that xf(x) <_-~ where k = 2, 1 according to whether f i s  known to be convex 
or not. 
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Thus, we have f(x)_<min B , ~ x  , 0_<x_<l. 

The area under the top curve is 1 (1 +log (kB)). It is proportional to the density 

g (x)=rain (B, 1/(kx))k/(1 +log (kB)), which has distribution function 

f kBx 1 +log  (kB)' 0 _< x _< 1/(kB), 

1 +log(xkB) 1/(kB)<_x<_ 1. 
1 +log(kB) ' 

A random variate with density g can easily be obtained by inversion, and the 
modified rejection algorithm is: 

Step ! : Generate two independent uniform I-0, 11 random variates U and V. 

Step 2: If U < 1/(1 + log (kB)), set X +- U (1 + log (k B))/(kB). If VB <_f(X), exit with 
X. Otherwise, go to 1. 

If U>l/(l+log(kB)), set X+--(kB) -1 exp(U(l+log(kB))-l). If 
V<_ kXf(X), exit with X. Otherwise, go to 1. 

The average number of executions of step 1 is 1 (1 +log(kB)). When k =  1, this is 

less than B whenever B > e. In most applications the improvement over the ordinary 
rejection method is noticeable if not spectacular. The computation of kB and 
1 +log(kB) should be done in a set-up step. When f is convex (k=2), the average 
number of exectutions of step 1 is about half of what it was for k = 1. In a sense, the 
knowledge that f is convex contributes at least 50~ to the useful knowledge about f 
for random variate generation. 

None of the rejection methods have times that remain bounded as B-o o% but they 
are very short and easy to understand; no tables or large set-up times are required 
either. 

3.3. Inversion/Rejection by HaIvin 9 

In this section we will apply the general inversion/rejection principle to the family of 
all monotone densities f with support contained in [0, 1]. We assume that f and F can 
be computed exactly in constant time. The sequential search for the inversion step 
proceeds by looking at the intervals It, 1), [rt, t), [r 2 t, rt), etc. where r, t~(0, 1) are 
constants to be determined. The term "halving" is used because of the obvious 

1 
popularity of the choice r = t = - - .  The algorithm can be reduced to the following 
form: 2 

Step 1 : Generate a uniform [-0, 1] random variate U. Set (X,X*)~(t, 1). 
While U> F(X) : (X,X*)~(rX, X). 
[At the end of this, we know that the solution of F (x)= U belongs to 
(X, X*).] 
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Step 2 : Generate two independent uniform [0, 1] random variates V and W. 
Set Y*--X + V ( X * - X ) .  [ Y is uniformly distributed on [X, X*].] 
If W<f( Y ) / f ( X ) ,  exit with Y. Otherwise, go to 2. 

If f is known to be convex on [0, 11, then we could consider rejection from a 
trapezoidal dominating curve joining (X , f (X))  and (X*,f(X*)).  The changes 
needed in the algorithm: 

In step 1: Compute Z*--f (X) and Z**- f (X*)  at end of step 1. 

In step 2: Replace all of step 2 by the following: generate three independent 
uniform [0, 1] random variates, U, V and W. 

Y ~ - X + R ( X * - X )  (Y  has a density pro- Let R ~ m i n  U, V Z _ Z ,  

portional to the trapezoid determined on [X, X*1 by the points [Z, Z*1). 
Let T ~  W(Z + R (Z* - Z)). 
[Squeeze step. Optional.l If T<Z*,  exit with Y. 
[Acceptance/rejection step.l If T<_f(Y), exit with Y. Otherwise, go to 2. 

R e m a r k  1 : 

The efficiency of the algorithm can be increased by storing a table of constants 
( f  (x), F (x)) for x = 1, t, rt, r 2 t, r 3 t, . . .. This will pay off when many random variates 
are needed from the same distribution. Because only finite tables can be stored, we 
would still need some version of the halving algorithm for the lower part of the 
interval [0, 11. Also, the statistical properties of the algorithm do not depend upon 
the presence of a partial table. 

There are two big contributors to the average time E (7) of the inversion/rejection 
algorithm: 

(i) E (Ns): the average number of steps in the sequential interval search; 
(ii) E(Nr): the average number of iterations in the rejection step; 

this is equal to the total area under the dominating curve; 
in the case of inversion/rejection by halving, the dominating curve is a 
collection of rectangles with bases [t, 1], [rt, t], etc. and heights f(t), 
f(rt), etc. 

T h e o r e m  1 : 
1 1 

Let HO0= ~ log - - .  f ( x )dx .  Then 
0 X 

log t H (J) . ~ t 1 
+ ~ + ~  <_ 1 + I f ( x ) .  log - -dx / log  - - < E  (N~) 

log - -  log --  o x r 
?" F 

t t t 1 _ l o g  t H ( f )  
<_1+ ~ f +  ~ f ( x ) .  l o g - - d x / l o g - - < 2 + ~ - 4  

0 o X Y - -  1 
log- -  log- -  

r Y 



R a n d o m  Var ia te  Gene ra t i on  for  U n i m o d a l  and  M o n o t o n e  Densities 49 

For t = r, the simple outer bounds for E (N~) just read 

Also, 

H ( f )  H ( J )  
_<E(N~)_< 1 + - -  

I I 
log - -  log - -  

r r 

1 
I < E ( N ~ ) _ < - -  f + f ( t ) ( 1 - t ) < - -  f N - - ,  

r o r o r 

where the last two inequalities only hold when t = r. 

Proof: Note  that  
1 o~ t r  i - 1 o~ 

E ( N s ) = f f +  Z ( i + l )  I f = l + Z  i 
t i=1 t r  i i=1 

t r  i -  1 

I f .  
t r l  

t 1 
For  x ~ [ t r  i, t r  i -  1), we have 0 < i - log - - / l o g  - -  < 1. Thus,  

X r 

t 1 t 
O<_E(N~)- f ( x ) l o g - - l o g  - ~ - d x - l < _  f f .  

0 X r o 

All the s ta tements  involving E (Ns) follow trivially. 

Next ,  we have 

E (N~) = ~ f ( t r  i) (tr I-1 - tr i) +f ( t )  (1 - t) 
i=1 

tr~ tri-1 _ tr i 
< 

I f "  tr i_tr i+l  ~ f ( t ) ( 1 - t )  
i = l  tr I+1 

] t r  

= - -  I f + f ( t ) ( 1  - t) 
g 0 

_<-- f w h e n t = r .  
r 0 

Theorem 1 shows that  regardless of  the choice of t and r, the difficulty inherent  in f i s  
appropr ia te ly  measured  by/-/0c).  This quant i ty  can of course be infinite, in which 
case E (Ns) = oe. Often H (f) can be computed  or est imated beforehand.  In  theorem 2 
below, we give some inequalities that  link H (f) to bet ter  known quantities such as 
the mean,  sup f ,  and the L l o g +  L no rm o f f .  

Theorem 2: 

(i) For all monotone densities, 

1 
H Or) > log f x f ( x )  dx" 

(ii) For all monotone densities on [0, 1], 

1 _</-/Oq_< 1 + log (f(0)). 
4 Computing 32/1 
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(iii) For all monotone densities, 
4 

f l o g +  f<_H(f)<_2 ~ f  log+ f + - - .  
e 

Thus, H (]) is finite if and only if f l o g + f  is integrable, i.e. f ~ L log+ L. 

Proof: (i) follows from the convexity of - log(x)  and Jensen's inequality (see for 
example Feller, 1971). The second inequality (1 < H (f)) uses the fact that - l o g  (x) 
and f(x) are both nonincreasing on [0, 1], and therefore, by Steffensen's inequality 
(1925), 

1 1 1 

-log(x) f (x )dx> S -log(x) dx ~ f (x )dx= 1. 
0 0 0 

The upper bound in (ii) is a special case of another inequality of Steffensen (1918): if 
0 _<f< 1, and if g is nonincreasing and integrable on [0, 13, then 

1 i 1 
~ g(x) f (x)dx< g(x)dx where a - - ~ f ( x ) d x .  
0 0 0 

Let g (x)= - l o g  (x), and replace f(x) by f(x)/sup f. Thus, a = 1/sup f ,  and 

~ - log(x)dx=a l+log 
0 

give the desired result. The upper bound in (iii) is a Young-type inequality found in 
Hardy, Littlewood and Polya (1952, theorem 239). (This inequality does not use the 

1 
monotonicity of f.) The lower bound in (iii) follows from f(x)<_--. 

X 

Example 1: 

We consider the betw('[, a + 1:) density f(x) = (a + 1) 1 - x) a, 0 _~ x _~ 1, where a > 0 is a 
,parameter. We have sup f=a+~,  and ~xf(x)dx=l/(a+2). By (i) and (ii) of 
theor.em2, log(a+2)<_H(f)<_l+log(a+l), and thus H ( f ) ~ l o g a  as a - ~ .  By 
theorem 1, we can then conclude that if r, t are fixed, E (T) must grow as log a as 
a---~ ~ .  

Remark 2: [Convex densities.] 

When the modification for convex densities is implemented, the statistical properties 
of E (Nr) change somewhat, but those of E (Ns) remain the same. For example, it is 

1 
easy to show that the inequality E (Nr)_<-- valid for t = r can be replaced by the 

r 

tighter inequality E(Nr)<~ 

Remark 3: [Choice of r.] 
1 

Assume that t = r. If we keep r fixed, then E (Ns) >_ 1 + H (f)/log - -  implies that the 
r 

average time of the algorithm grows at least as a constant times H (f). Considering 
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the upper and lower bounds of theorem 1, we have that 

1 
E(Us)+E(N,.)~H(f)/log-- as H(f)--+az. (1) 

r 

But the best r is the one which minimizes E (Ns) + E (Nr), in first approximation (Nr 
and Ns are given equal weight because they correspond to the number of 
computations o f f  and F respectively). A reasonable upper bound for E (N,) + E (Ns) 

1 1 1 
is 1 + - -  + H (f)/log 1 .  This is minimal when - -  log z - -  = H (f) (because H (f) >_ 1, a 

r r r r 

solution r < 1 always exists). One Newton-Raphson iteration for solving this started 
1 

at - -  = H (f) gives 
r 

1 H(f )  1+ 2 log (H(f)) H(f )  
r = log (H (f)) 2 + log (H (f)) ~ 2 log (H (f)) as H (f) o ~ .  

1 
If we take this value for - - ,  or its asymptotic equivalent 2 H (f)/log (H (f)), then 

r 

E(Ns)+E(Nr)<_(l+3H(f)/log(n(f))) (1 +o(1)) as H ( f ) ~ o o .  (2) 

The asymptotic rate (with respect to H (f)) in (2) is better than in (1). Thus, for large 
values of H (f), it pays to choose r as a function of f. Since H (f) is unknown, this 
improvement is not implementable. One possible practical solution is outlined in 
remark 4. 

Remark 4: [-Choice of r when f is bounded.] 

For bounded f,  we have H 09 _< 1 + log (f(0)). Thus, instead of taking the asymptoti- 
1 

cally optimal value - -  = 2 H (f)/log (H (f)), we could consider 
r 

1 1 + log (f(0)) 
- - = 2  (3) 
r log (1 + log (f(0)))" 

A little work then shows that 

( l o g ( f ( O ) )  "~ 
E (ms) + E (mr) = 0 \ log  (log (f(0)))} as f ( 0 ) ~  ~ .  

For the modified rejection algorithm, we had seen that the average time increased as 
log(f(0)) as f ( 0 ) ~ ,  and this is thus worse than the performance of the 
inversion/rejection method with halving when r is chosen as in (3). However, for the 
improvement to show in experimental results, f(0) must be very large (the 
improvement is of the order of log (log (f(0)))). In most experiments, the modified 
rejection algorithm was faster (see section 4 below). 

4* 
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3.4. Inversion~Rejection by Doubling 

Assume that f is a monotone density bounded by B, and that f and F can be 
computed: f can have unbounded support. We organize the interval search by 
looking at [0, t), It, tr), [tr, tr2),.., where t > 0 and r > 1 are constants. The nickname 
"doubling" is given here for the obviously convenient choice r=2 .  The 
inversion/rejection algorithm with doubling can be summarized as follows: 

Step 1: Generate a uniform [0, 1] random variate U. Set X~-O, X * ~ t .  
If U<F(X*), go to 2 (the solution of F (x )=  U belongs to [X,X*)). 
Otherwise, X ~ X * ,  X * ~ r X * ,  go to 1. 

Step 2: Generate two independent uniform [0, 1] random variates V, W. 
Set Y ~  X + (X* - X) V. (Y is uniformly distributed on IX, X*).) 
If W<<_f(Y)/f(X), exit with Y. Otherwise, go to 2. 

(Version of the algorithm when f is convex on (0, ~).) 

Step 1: Same as above. At time of exit of step 1, set Z ~ f ( X ) ,  Z*~ f (X*) .  

Step 2: Generate three independent uniform [0, 1-] random variates U, V, W. ( z+z~ 
Let R ~ m i n  U, V Z - Z *  ~]' Y ~ X + ( X * - X ) R .  (Yhas a density that is 

proportional to the trapezoid determined by (X, Z), (X*, Z*).) 
Let T ~ W ( Z  +(Z*-Z)R) .  

(Squeeze step. Optional.) If T___ Z*, exit with Y. 
(Acceptance/rejection step.) If T<_f(Y), exit with Y. Otherwise, go to 2. 

Step 3 : 

Theorem 3: 
constants. I f  

Let f be a monotone density bounded by B, let t>O and r> 1 be 

then 

and 

0 

1 + H t (f)/log r < E (N~) < 2 + Ht (f)/log r 

l~_Bt+ ~ f (x )dx~E(N, )~_Bt+r  
t 

for the inversion~rejection algorithm with doubling. For the version used when f is 
1 

convex, the last inequality should be replaced by 1 <_ E (N,) <_~ (B t + r + 1). 

Proof: We will repeatedly use the faet that tr i- 1 <_x < tr i if and only if 

i - 1 _~ log (x/O/log r < 1, i >_ 1. 
Now, 

E(Ns)=ff(x)dx+ (i+1) f f ( x ) d x = l +  i ~ f (x )dx  
0 i = 1  t r i - 1  i = 1  t r  i - 1  

~ log(x/t) f (x )dx  =2 + Ht(f)/logr 
< 2 + log-~- 

t 
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and 

Also, 

and 

log(x/t) 
E(Ns)>~ 1 + j f(x)dx= 1 + Ht (f)/log r. 

t log r 

oo 

E(N~)=Bt + ~ (tri-tri-1) f (tri-1) 
i = ~  

t r  i - 1 

NUt+ ~ (tri-tri-1)(tr i-1 -tri-2) -1 ~ f(x)dx 
i = i t r i  - 2  

<_Bt+r, 

t r  i 

E(N~)>_Bt+ ~ (tri-tri-1)(tri-tri-1)-i ~ f(x)dx 
i = l  t r  i - 1  

=Bt+ ~ f(x)dx>_l. 
t 

For the convex version, E (Ns) remains the same, and E (Nr) changes slightly: 

E(N,)=t (B+-f2 (t))+ ~=l (tri_tr~-l) (f(tr'-~)2+ f(tri)) 

which is equal to the expression of E (N,) for the non-convex version (take the term 
with B and the terms with f(t/-2) only) plus an expression not exceeding 1 (take all 
the other terms) divided by 2. Thus, 

1 ~(Nr)<_ ~ (Bt +r + 1). 

This concludes the proof of theorem 3. 

We would like this algorithm to perform at a speed that is independent of the scaling 
of the x-axis. This can be achieved if we set t = 1lB. With this choice for t, 

E (N~) + E (Nr) <_ 3 + r + H~tB (D/log r. (4) 

The upper bound does not depend upon the scale, because H1/8 (f) depends only 
upon the shape o f f ,  so we could call it H*(f) .  In a sense, H*( f )  measures the 
difficulty f gives us in random variate generation with the inversion/rejection 
method based on doubling, and it is the counterpart of H (f) in the halving 
algorithm. There are of course some densities for which H* (f) = oe" for example, 

1 
f(x) = (x + e) log 2 (x + e) '  x > 0, 

is monotone, and B--1/e.  Such densities cause special problems in simulations 
because the average number of bits in the integer part of random variates with 
densities having H* (J) = ~ is infinite ! 
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In practice, H*(f)  is not known, but other quantities such as E(X) or E (X  2) 
sometimes are. A loose upper bound for H*(D is afforded by Jensen's inequality: 

H* (f)_< ~ log(1 +Bx)f(x)dx<log(1 +E(BX)). 
0 

Thus, at worst, the average time of the algorithm is logarithmic in E (BX). 

Example 1: 
We continue example 1 of section 3.3, and note that 

a + l ' ~  
H* ( f )  _<log (1 +E(BX))=log 1 + a~-2)-<l~ all a > 0 .  

Thus, 

log 2 E (N~) < 1 + r. 
E (Ns) -< 2 + log r ' 

The "ad hoc" choice r = 2 makes both upper bounds equal to 3. The average time 
taken in the algorithm is uniformly bounded in a. 

Remark 5: [Choice of r.] 

The obvious choice r = 2 gives E (Ns) + E (N,) <_ 5 + H* (D/log 2. The upper bound (4) 
for E(Ns)+ E(N,) is minimal for the unique value r >  1 for which r log 2 r=H* (D. 
Copying the discussion of remark 3, we see that the choice r = 2 H* (D/log(H* (f)) 
makes the upper bound asymptotic to 3 H * (D/log (H * (D) as H * (D--+ oe. Again, this 
asymptotic rate is better than the one obtained by keeping r fixed: indeed, for r fixed, 
we have E (N,) + E (N,) > 2 + H* (D/log r. Since/4* (f) is unknown in general, we 
suggest either estimating it before random variate generation is started (but this 
would only be feasible if many random variates are needed), or using the value r-- 2. 

The inequality H * (D _< log (1 + E (B X)) could help in finding a good value for r when 
E (BX) is known. For example, by taking 

r = 2 log (1 + E (BX))/log log (e + E (BX)) 
we obtain 

E (Ns) + E (N~) _< (3 + o (1))log (E (BX))/log log (E (BX)) as E (BX)--+ oo. 

Such a choice of r should be close to the optimal value when the bound 
H*(f)  < log (1 + E (BX)) is tight, i.e. the difference between right and left is small. 

3.5. Inversion~Rejection via Newton-Raphson Iterations 

In this section, we assume, as in section 3.4, that f is monotone and bounded by 
B = f ( 0 ) <  ~ :  f need not have compact support, but both f and F should be 
computable. The interval search considers the intervals [Xo, xl), [xl, x2), etc. where 
each x . .  1 is a function of x. only (this avoids the problem of having to store the x.'s), 
and is computed by the rule 

Xn +1 = Xn -[- (1 - -  F (x.))/f(x.), x o -- O. (S) 



Random Variate Generation for Unimodal and Monotone Densities 55 

The sequence {x,} thus obtained coincides with the sequence of values obta:fned if we 
try to solve the equation F (x) = 1 for x by Newton-Raphson iterations started at 
Xo =0. Since F is concave, we know that x, increases monotonically ~,o a finite 
solution if it exists, and to oe if no finite solution exists (i.e., f has no compact 
support). Thus, for 0 < u < 1, the solution of F (x) = u certainly belongs to one of the 
intervals [x,, x,+ 1). 

The advantages of this type of interval search are triple: the average time of the 
algorithm is scale-invariant; there are no design parameters as for the halving and 
doubling algorithms; and there is a natural balance between the inversion and 
rejection steps in the algorithm: E(Ns)= E (Nr) (see theorem 4 below). 

Step 1 

Step 2 : 

Step 3 : 

Step 4" 

Generate a uniform [0, 1] random variate U, set X ~ 0 .  
Compute R ~ F ( X ) ,  Z ~ f ( X ) .  

Set X* ~ X  + (1 - R)/Z, R* ~ F  (X*), Z**-f(X*).  
If R*> U, go to 3. (The solution of F(x)=  U belongs to IX, X*).) 
Otherwise, R ~ R * ,  Z*--Z*, X ~ X * ,  go to 2. 

Generate two independent uniform [0, 1] random variates V, W. 
Set Y ~ X + ( X *  - X )  V, T,.- WZ. (Yis uniformly distributed on [-X, X*).) 

(Squeeze step. Optional.) If T<Z*,  exit with Y. 
(Acceptance/rejection step.) If T<f (Y ) ,  exit with Y. Otherwise, go to 3. 

Theorem 4 describes a remarkable coincidence: E(Ns)= E (Nr) for all bounded 
monotone densities. A perfect balance is obtained between the two parts of the 
algorithm despite the fact that search and rejection are seemingly independent and 
totally different processes. In other words, on the average, equal amounts of energy 
are required for the interval search and for the rejection step. 

Theorem 4: Let f be a bounded monotone density, and let 0 = Xo <-x I ~ . . .  be the 
sequence obtained by Newton-Raphson iteration (5). Then the inversion~rejection 
method with Newton-Raphson iterations satisfies 

E (Ns) = E (N,) = ~ (1 - F (xi)). 
i = O  

Proof: 

and 

oo 

e(Ns)= i((1-e(x,_,)-(1-e(x,))= Z (1-e(x,)) 
i = 1  i = 0  

i = 0  i = 0  

by (5). This concludes the proof of theorem 4. 

Formula (5) can be rewritten as 

Xn+ 1 --'h'Xn-]- 1/h(x~), X o =0, 
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f(x) 
where h ( x ) - - -  is the hazard rate of the distribution. The present algorithm 

1 - F (x )  

performs extremely well for densities with a nondecreasing hazard rate, as 
confirmed by the experiments of section 4. We will show that the average time is 
uniformly bounded over the class of all densities with nondecreasing hazard rate. 
When the hazard rate is nonincreasing, we will see that the average time increases at 
worst linearly with E (BX), a scale-invariant quantity. 

Theorem 5: Let f be a monotone density bounded by B, and let a random variate X 
with density f be generated by the inversion/rejection method with Newton-Raphson 
iterations. Then, if the hazard rate h is nonincreasing, E (BX) > 1 and 

1 <E(Nr)=E(Ns)<_ 1 +E(BX).  

I f  the hazard rate is nondecreasing, E (B X) < 1 and 

e 

I <-E(Nrl=E(Ns)<e_ 1. 

Proof: If h is nonincreasing, 

o o ~ f ( x l d x > l .  

For nondecreasing h, the inequality should be reversed. If h is nonincreasing, we also 
have 

i(1-F(x'))<l+i -)~ (1-F(x))dx/(xi -x i -1)  
i=0  i=1 x i 1 

= l + i  i ' (1 -F(x) )dxh(x i -1)  
i=1 x i _  1 

_<1+ ~ B ( 1 - F ( x ) ) d x = I + E ( B X ) .  
0 

Finally, when h is nondecreasing, we note that 

(1-F(x i+~))=(1-F(x l ) )exp  - ~ h(x)dx 

< (1 - F (x)) exp ( -  h (x)(xi +1 - x~)) = (1 - F (x~))/e. 
Thus, 

i (1-F(x))_< i e - i -  e . 
i=o i=o e -  1 

This concludes the proof of theorem 5. 

Example 2: [Monotone hazard rates.] 
It is known that the gamma (a, 1) density has a monotone nondecreasing hazard rate 
when a > 1, and nonincreasing hazard rate when a_< 1. The Weibull density 

f ( x )=ax  a-1 exp(-xa),  x > 0 ,  
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has a nondecreasing hazard for a > 1, and a nonincreasing hazard rate for a_< 1. For 
the exponential density e -x, x_>0, we have a constant hazard rate 1, so that in (5), 
xi = i, and thus, ~ 

E(Nr)=E(Ns)= ( 1 - e ( i ) ) =  e_ i=  e . 
i = o  i = o  e - 1  

For a survey of properties of distributions with monotone hazard rates, see Barlow, 
Marshall and Proschan (1963). 

If we continue example 1 of sections 3.3 and 3.4 we see that for the beta (1 , a+  1) 
a + l  

density (a>O)h(x)= , 0 _ < x < l ,  which is increasing on [0,1). Thus, 
1 - x  

e 
E (N~) = E (Nr) _< for all the examples mentioned above. For the beta (1, a + 1) 

e - 1  
density, it is easy to derive an exact expression for E (N~) because (5) gives 

xo=O.x ,+l=x,(A~)_~ 1 
' a + l '  

from which we obtain with some work that x , =  1 -  , n_>0. Thus, by 
theorem 4, 

( a ~  i(a+l) 1 
E(Ns)=E(N')= ~ (1-F(xi))= ~' (I-x/)"+1= ~ \ a ~ i - ]  =- 1 ,+1 ,  

, = o  

e e 
which varies from 1 (a =0)  to - -  as a ~  oe without exceeding - - .  

e - 1  e - 1  

Consider next the Pareto density f(x) = a/x ~+ 1, x > 1. Here F (x) = 1 - x-a ,  x_> 1, 
and h (x) = a/x, x > 1. Also, the parameter  a is positive. The bound in theorem 5 for 
nonincreasing h is very loose as we will see. Clearly, X -  1 is a monotone density 
bounded by B=a, E(X-1)=(a- l )  -1, a >  1, E(X)~-co, a<_l. But (5) becomes (1) 
x,+ 1 = xn 1 + , so that x, = 1 + if the search is started at x0 = 1. Thus, 

i=0  
e 

and this varies from (a--,oe), to 2 ( a =  1) and ~ (as a ~ 0) asymptotic to 
e - 1  

For most bounded monotone densities we will recommend inversion/rejection with 
Newton-Rapbson iterations over inversion/rejection with doubling. Additional 
speed-ups are possible by storing for example a table of the first K constants 
(xn, f(x~),F(x,) ) (see remark 1). What  is gained in time by the perfect balance 
E (N~)--E (Nr) usually offsets the loss due the fact that per iteration in the interval 
search one F computation and one f computation are needed versus only one F 
computation for the algorithm with doubling. 



58 L. Devroye: 

3.6. Table Methods 

Let f b e  a bounded monotone density on [0, 1], and assume that f can be computed 
but not F. Choose an integer n > 1 and note that f is dominated by 9 where 

_<x<-- ,  i integer, 0___x<_l. g ( x ) = f  ' n n 

The area under 9 is 

c O ( x ) d x = - -  f < - - + S  B = f (x )  dx = - ~  + 1. (6) 
0 1l i= - - n  o 

where B =f(0)  is the bound for f .  By choosing n proportional to B (for example, 
n = B  or n=2B).  We see that the area under g stays uniformly bounded for all 
bounded monotone densities on [0, lJ ! In fact, we can make this area as close to 1 as 
desired by choosing n large enough. Since random variates with density g can be 
obtained in constant average time by Walker's method (see Walker (1977) or 
Kronmal and Peterson (1979)), the ordinary rejection method with rejection from g 
yields a uniformly fast algorithm. In its simplest form, the table method can be 
summarized as follows. 

Step 0: (Set-up.) Compute f ~- , 0 _< i_< n, and store two tables: 

Pi = f  and q~=f , 1 <i_< n. Let c = - -  ~ Pi- 
n i = i  

Compute a table of aliases for Walker's method. 

Step 1: Generate an integer I in the range 1 _< I < n where P( I= i )=pJ(cn)  by 
Walker's method. This requires average time bounded by a number that is 
independent of the pi's. 

Generate two independent uniform" F0, 1-] random variates U, V. Set 
X ~ ( I -  1 + V)/n. (X has density proportional to g.) 

Step 2: (Squeeze step. Optional, but recommended.) If U_<ql, exit with X. 
(Acceptance/rejection step.) If Upr <_f(X), exit with X. Otherwise, go to 1. 

Two quantities are of interest here: 

1. N r: the number of times that step 1 is executed. 

2. Nq: the number of evaluations of f .  

Nq is small when the squeeze step is efficient, and Nr is small if the dominating 
function g is close to fi The average time taken by the algorithm is obviously 
0 (E (Nr)). Since the average time is also bounded from below by a constant times 
E (Nr), we note that the influence of E (Nq) must be limited to reducing the constant. 

Theorem 6: Let f be a monotone density on [0, 1] bounded by B. For the table 
method, we have 

B 
E(Nr)=c<__l + - -  

n 
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and 
B - 1  B 
- -  <_E(Nq)<_--. 

t i  11 

Proof: Let f b e  a density, let g and h be two nonnegative functions, both integrable, 
let 0 <_ h <_f<_g, and let the following rejection method be used to generate random 
variates with density f :  

Step 1 : Generate a random variate X with density proportional to g. 
Generate an independent uniform [0,13 random variate U. 
Set T~- Ug (X). 

Step 2: (Squeeze step.) If T<_h(X), exit with X. 
(Acceptance/rejection step.) If T<_f(X), exit with X. Otherwise, go to 1. 

Then the expected number of executions of step 1 is ~ g, and the expected number 
of evaluations of f is ~ (g - h), where all the integrals are with respect to dx. Thus, the 
first statement of theorem 6 follows from (6). The second statement follows from the 
observation that 

i=1 11 

This concludes the proof of theorem 6. 

When the table method is implemented, we should choose 11 proportional to B; 11 = B 
to n = 2 0 B  seems to be the most useful range. Above n = 2 0 B  the storage 
requirements become prohibitive. Since E (Na)< B/n, we can eliminate the evalu- 
ations o f f  almost entirely, if we wish. By making 11 large enough, we can reduce the 
rejection rate at will: the optimal rejection rate of 0~o can be approached. In other 
words, we are buying time with storage. A fair comparison between variable-storage 
methods (such as the table method) and fixed-storage methods (such as all the other 
methods discussed until now) is hardly possible: storage is usually cheap but rather 
inflexible, while time is expensive but available without limit. If for any physical 
reason one has to keep 11 smaller than K (say), then in view of E (Nq)> ( B -  1)/n, the 
average time becomes linear in B just as for the ordinary rejection method but with 
perhaps a smaller slope. 

For the alias method we refer to Walker (1977). The table of n aliases needed in 
Walker's method can be found in time 0 (11) (Kronmal and Peterson, 1979 a, b). Thus, 
step 0, the set-up step, requires time proportional to n. In practice, this means that 
the table method should be avoided in situations in which the number of random 
variates with the same density is smaller than 11. If the density changes every k 
random variates for some fixed k, then the average time needed in the algorithm per 
random variate is bounded by 

where ca, c2 > 0 are constants. This is minimized by setting n = ] / ~  Bk/e2, and the 
upper bound becomes 
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c, + c2 S/k 

which increases as i//-B. There is no hope of obtaining a better rate in B, and in this 
sense, the table method is doomed to be frustrating in many experiments. 

Remark 6: [Modifications.] 

The table method can be modified when additional information is known about f .  
Most of these modifications are detailed in Devroye (1982). The main conclusions 
are summarized here. 

When f is concave on its support, the introduction of the squeeze step "If 
U <_ 1 -  V+ Vqi, exit with X" cuts E(Nq) in half. Thus, we have 

B - 1  B 
<_E(Nq)<_ 2 " 

2n n 

When f is convex the rectangular dominating curve g can be replaced by a piecewise 
linear curve g* with breakpoints touching f .  A quick analysis shows that E (Nq) is cut 
in half. Also, by geometrical considerations, 

1 i f +1 i f ( i  < 5  1+ n +~- - -=1+- - .  
, :o - n  , :  \ n ) - 2  2n 

This is smaller than the upper bound of theorem 6. 

We should emphasize that the table method given here does not require the 
computability of F. When F is also available, the algorithm can be modified to select 

I i n  1 ; )  ( i )  ( ~ )  the interval , - with the correct probability F - F  . This 

results in a small gain in generation time for most distributions. 

4. Experiments 

We will illustrate all the algorithms with a simple yet flexible family of monotone 
densities on [0, 1]. Let 

F ( a + b + l )  
f ( x ) -  (1 - xl/b) a, 0_<x_< 1, 

F ( a + l ) F ( b + l )  

where a, b > 0 are parameters. The density f is bounded by 

F ( a + b +  l) 
B -  

F(a+ l )F(b+ l)' 

and B tends to oo when a + b--+ oo and a, b stay bounded away from 0. Furthermore, 
f i s  convex if and only ifa > 1, b > 1. It is concave if and only ifa _< 1, b < 1. The inverse 
of f is known explicitly: 

f - l ( u ) =  1 - , ~ - ,  O<_u<_B. 
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An explicit expression for F is only known in special cases, e. g. when a is integer. The 

family has many important limiting densities: the normal density = ~ ,  a ~  oo , 

the exponential density (b-- 1, a ~  oo), the uniform density (a fixed, b J, 0; or b fixed, 
a ~ 0) and the exPonential power distributions (example 1 of section 3.3: b fixed, 
a-+oo). Thus, it is flexible enough to be useful in a meaningful comparative 
experiment. 

It is easy to check that X b and have density f ,  where X, Y and Z are 

independent beta (b, a + t), gamma (b, 1) and gamma (a + i, t) random variables 
respectively. In our experiments, we will only consider the special cases a = 1 and 
b--1. 

Theorem 7: For a = 1, we obtain the density 

f ( x ) = ( b +  1)(1 -xl/b),  0_<x_<l, 

and the distribution function 

F (x)=(b+ l) x - b  x 1+1/b, 0<x_< l .  

Random variates with this density can be 9enerated as U V  b/(b+l) where U, V are 

independentuniform [0,1] randomvariates. A s b ~ o v ,  f ( x ) ~ I o g ( 1 ) , O < x < _ l .  

Proof: The first statement follows from Khintchine's theorem (see e.g. Feller (1971), 
pp. 158) for unimodal random variables. The last statement follows from the 
inequalities 

b + l  1 (  1 1 )  b + l  1 
~- log 1 - ~ - l o g ~ -  _ < f ( x ) _ < - ~ - l o g ~ - ,  0_<x< l .  

Theorem 8" For b= 1, we obtain the density 

f ( x ) = ( a +  1)(1 -x)" ,  0 _ < x < l .  

The distribution function is F (x) = 1 - (1 - x) "+ :, 0 _< x _< 1. Random variates with this 
density can be obtained in the following ways: 

1. Generate a uniform [0, 1] random variate U, and exit with 1 - U :/("+1). 

2. Generate independent exponential and gamma (a + 1, 1) random variates E and X,  
E 

and exit with - -  
E + X  " 

3. Rejection form an exponential density: 

Step 1: Generate two independent exponential random variates EDE 2. Set 
X ~ E1/a. I f  X > l,  9o to 1. 

Step 2: I f  E 2 ( 1 - X ) - a X 2 > _ O ,  exit with X .  

Step 3 : I f  a X  + E 2 +a log(1 - X ) > 0 ,  exit with X.  Otherwise, 90 to 1. 
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4. Rejection from a uniform density: 

Step 1: Generate two independent uniform [0, 1] random variates U, X.  

Step 2: I f  U_<(1-X) a, exit with X.  Otherwise, go to 1. 

a + l  
The average number of executions of step 1 in method 3 is - - ,  and the average 

a 

number of executions of step 1 in method 4 is a + 1. These average numbers are equal 
when a= 1. The method that combines method 3 for a> 1 with method 4 for a< 1 has 
uniformly bounded average time; step 1 is guaranteed to be executed at most 2 times on 
the average. 

Proof: No explanation is required, except for method 3, which is based on the 
inequalities 

exp ( - a x / ( 1 - x ) )  <(1-x)a_<exp(-ax) ,  0_<x_< 1. 

The different methods were coded in FORTRAN and compared on McGill 
University's AMDAHL V7 computer. For uniform [0, t] and exponential random 
variates, we used subprograms UNI and REXP of the "Super-duper" random 
number generator package. Only the density f given in the previous section was 
considered. The parameters a and b were varied as follows: 

Experiment 1: a = l ,  b=2i/10, i=2,  ..., l l .  

Experiment 2: b = 1, a = 2i/10, i-- 2,...,  11. 

In all these cases, f is either convex or concave. Also, f has support [0, 1] and is 
bounded by B = ( b + l )  in Experimentl,  and by B = ( a + l )  in Experiment2. 
Necessary constants and tables are computed in separate set-up subprograms, and 
the density f or distribution function F is always passed as a parameter. The 
parameter passing slows the algorithms down, so that all the timings given here are 
pessimistic. No attempt was made to subtract the time due to overhead costs in 
subprogram calls. For each algorithm we will give: 

1. The average time per random variate in microseconds. The average is obtained 
by repeating the experiment n times where n varied between 200 (for slow 
methods) and 5000 (fast methods). The results still have some residual variation, 
but we are not interested here in obtaining accurate times, but rather in detecting 
trends and making global comparisons. 

2. The set-up time needed to compute all constants and tables. 

3. The size of the compiled program (in bytes). 

4. The size of a variable size table (in entries, or words). 

For the FORTRAN programs we refer to Devroye (1982): these are available from 
the author upon request. The algorithms are given symbolic names in the tables: 

D 1 : direct method 1 : method 1 of theorem 8 for case b-- 1. 

D2: direct method 2: method 2 of theorem 8, with gamma variate generation by 
Marsaglia's squeeze method (Marsaglia, 1977). Case b = 1 only. 
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D3" direct method 3: the combina t ion  of rejection method 3 and  rejection 

method 4 of theorem 8. Case b = 1 only. 

D4:  direct method 4: the t ransformation-of-uniforms method suggested in 

theorem 7. Case a = 1 only. 

D5: direct method 5: same as D4, but  instead of UP/(b+l), we use U 
exp ( -  Eb/(b + 1)) where U is uniform [0, 1] and E is exponential .  Case a = 1 

only. 

I: inversion method using Newton-Raphson  iterations. See section 3.1. 

R 1" ordinary rejection method with rectangular  domina t ing  function. 

R2:  modified rejection method as described in section 3.2. 

1 
I R I :  inversion/rejection method with halving, r = t  2 ' see section 3.3. 

IR2: inversion/rejection method with doubling, t = l/B, r = 2, see section 3.4. 

1R3: inversion/rejection method with Newton-Raphson iterations. See section 3.5. 

IR4: inversion/rejection method with halving, safe value for r. 

1R5: inversion/rejection method with doubling, safe value for r. 

T(n): table method with table size int(nB). Only  values n = 1 , 5  and  20 are 
considered here. See section 3.6. 

The direct methods are all uniformly fast over the variable parameters.  They should 
not  be considered as competitors,  but  as s tandards against  which other perfor- 
mances are gauged. Our  experiment  demonstrates  that  no method except possibly 
the inversion method is strictly domina ted  by some other method in all respects. The 
inversion method seems domina ted  by the inversion/rejection method with 
Newton-Raphson  iterations because the costly refinement is done by rejection in the 
latter method. 

Table 1. Average times in experiment 1 as the parameter a varies from 22/10 to 2~/10 

D 1 41.6 41.8 41.6 41.8 41.7 41.7 4l .8 41.5 42.0 41.7 
D2 44.7 43.4 44.3 43.5 43.2 41.3 4l .2 43.2 40.7 41.3 
D3 57.7 70.2 43.1 38.4 33.6 32.0 30.5 30.4 29.9 29.7 

I 375.5 392.3 405.7  415.1 436.5  466.0  465 .4  521.3 492.3  503.3 
R1 70.7 83.5 128.9 187.7 341.9  596.4 1121 1836 4873 9310 
R2 74.1 81.8 87.1 93.3 102.2 114.4 105.2 115.6 114.3 114.1 
IR 1 179.1 209 .2  234.5  255.9  302.8 332.5 347.5 379.5 415.9  449.3 
IR2 210.1 208 .7  243.5  257.0  254.1 232.4  251.1 264.0  246.9  242.0 
IR3 157.2 167.2 178.2 186.8 186.5 203.5 200.9  193.8 197.7 190.8 
IR4 168.2 197.4 236.9  242.6  261 .2  282.5 300.0 307.9 360.9 390.9 
IR5 202.9 274.2  242 .4  254.7  259.5 272 .4  275.6  318.7 272.2  308.2 
T(1) 73.8 73.8 100.2 86.8 87.8 86.3 89.4 87.3 88.7 88.5 
T(5) 48.2 49.4 48.2 49.3 47.5 47.9 48.2 48.0 48.1 48.4 
T(20) 40.8 40.9 40.8 41.9 41.0 40.9 41.7 41.5 - - 
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Table 2. Average times in experiment 2 as the parameter b varies from 22/10 to 2 z 1/10 

D4 45.3 45.3 45.3 45.4 45.3 45.3 45.3 45.3 45.4 45.3 
D5 34.2 34.4 34.1 35.1 35.3 34.4 34.4 34.5 34.7 34.2 

I 292.1 3 4 7 . 1  3 7 8 . 3  4 2 8 . 5  4 5 5 . 5  461.7 4 8 4 . 3  4 9 1 . 1  4 9 1 . 5  496.7 
R1 73.1 85.6 138 .1  1 8 8 . 3  3 7 6 . 6  634 .6  1075 2028 4281 10100 
R2 75.8 82.1 91.2 95.2 1 0 2 . 1  1 0 6 . 9  1 0 3 . 0  113 .1  1 1 6 . 3  118.4 
IR 1 205.4 2 1 9 . 4  231.4 2 3 8 . 7  2 4 7 . 9  2 3 8 . 7  253.2 2 6 2 . 2  2 6 4 . 4  259.5 
IR2 157.1 1 8 0 . 8  2 0 6 . 2  2 2 3 . 6  2 5 0 . 7  2 9 3 . 9  3 1 5 . 6  3 4 2 . 7  3 7 8 . 2  398.9 
IR3 127.3 1 4 0 . 7  162 .0  198 .5  2 2 8 . 6  2 4 9 . 5  2 6 1 . 3  2 9 3 . 5  2 9 9 . 9  299.2 
IR4 182.6 206.4 2 2 1 . 3  2 2 5 . 1  220.2 2 3 1 . 5  2 3 5 . 5  2 2 5 . 8  2 4 8 . 8  2372 
IR5 161.8 224 .1  2 1 0 . 8  238.4 2 6 2 . 0  2 8 5 . 8  3 1 6 . 4  3 3 0 . 8  3 4 8 . 7  372.3 
T(1) 73.7 73.7 100.1 86.0 80.2 74.2 69.4 66.5 69.1 64.6 
T(5) 48.3 49.7 47.9 48.8 46.3 46.1 45.8 46.4 45.1 44.5 
T(20) 40.9 40.9 40.7 41.5 40.6 40.8 40.2 40.6 - - 

Table 3. Properties of the various algorithms 

Average set-up Average set-up Program size Set-up program Table size 
time experiment 1 time experiment 2 (bytes) size (bytes) (words) 

D 1 0 - 402 0 0 
D2 0 - 8 6 4  0 0 

D 3 0 - 650 0 0 
D4 - 0 422 0 0 
D5 - 0 416 0 0 
I 0 0 642 0 0 
R 1 51 26 470 376 0 
R2 71 51 794 498 0 
IR 1 0 0 632 0 0 
1R2 0 0 686 0 0 
IR3 0 0 718 0 0 
IR4 70 50 654 474 0 
IR5 70 50 708 508 0 
T(1) 275.8 + 50.5 B in both experiments 850 2142 int (B) 
T(5) 244.6 + 257.8 B in both experiments 850 2142 int (5 B) 
T(20) 249.0 + 1142.3 B in both experiments 850 2142 int (20 B) 

Tab le s  1 a n d  2 s h o w  the  a v e r a g e  t imes  pe r  r a n d o m  var i a t e  for E x p e r i m e n t s  1 a n d  2 

respect ive ly .  T a b l e  3 shows  the  o t h e r  fac tors :  the  ave r age  se t -up  t ime,  the  size of  the  

c o m p i l e d  p r o g r a m ,  a n d  the  t ab le  size. All the  p r o g r a m s  t ake  b e t w e e n  402 and  864 
bytes  (with an  ex t ra  376 to 508 bytes  for se t -up p r o g r a m s  wi th  the  excep t ion  of  the  
se t -up p r o g r a m  for the  tab le  m e t h o d ,  wh ich  requ i res  2142 bytes).  Thus ,  excep t  for 

the  tab le  m e t h o d ,  the  p r o g r a m  size is n o t  an  i m p o r t a n t  e n o u g h  issue for dec id ing  

b e t w e e n  a lgo r i t hms .  T h e  t rue  d i f fe ren t ia t ion  m u s t  be  m a d e  on  the  basis  of  such 

factors  as speed  and  flexibili ty.  

Direc t  m e t h o d s  

O f  the  d i rec t  m e t h o d s ,  D 3 is faster  t h a n  D 1 a n d  D 2: D 1 uses cos t ly  o p e r a t i o n s  all  the  
t ime,  and  D 2  is ind i rec t  because  we  t r a n s f o r m  g a m m a  r a n d o m  var ia tes .  S ince  the  
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original density f i s  simpler than the gamma density, such an indirect route can only 
lead to slowdowns. 

D 5 is faster than D 4 because exponential random variates are generated faster than 
a logarithm is computed. This order may be reversed elsewhere. 

Inversion method 

In both experiments, the average time of the inversion method increases with B. No 
theoretical analysis of the average time was given in this paper because we wanted to 
avoid the messy issue of stopping times (should we stop when the absolute error is 
small, or when the relative error is small; and how are the errors obtained ?). Such an 
analysis would be a waste of time because the method is obviously slower than all the 
other methods. In addition, it is the only non-exact method among all the methods 
considered here. 

Rejection methods 

The average times for R 1, R2 are linear respectively logarithmic in B as was 
predicted by our analysis. The simple modification gives a dramatic improvement in 
performance. The improvement was so extraordinary that for the range of 
parameter values considered here, the modified rejection method was the fastest 
fixed storage method (the table method being the only variable storage method). It is 
recommended whenever f is monotone, bounded, and f has compact support. For 
unbounded monotone densities with unbounded support, we recommend a 
combination of several methods by partitioning the interval [0, oe) into [0, 1] and 
[1, oe). For convex f (columns3 through 10 in Tables l, 2), we coded the 
improvement suggested in section 3.2, and obtained average times that varied from 
80.5 (3rd column) to 102.5 (10th column). This is a 10~ to 20~o gain in average time. 

Inversion~rejection methods 

In all cases, we used the original algorithms of sections 3.3-3.5.  None of the 
modifications suggested for convex or concave densities were implemented. From 
Examples 1 and 2 of sections 3 .3-3.5 we recall that the average time in 
Experiment 1 increases as log (B) for IR 1, and remains uniformly bounded for 1R 2 
and IR3. This trend is observed in Table 1. In fact, IR3 is faster than IR2 which in 
turn is faster than IR1. IR2 and IR3 have similar left-to-right interval search 
components. Because of the perfect balance achieved by IR3, we expect IR3 to 
almost always perform better than IR2. The comparison with IR 1 is not so 
straightforward, and it is for this reason that we choose to include Experiment 2 in 
this paper. For the density in Experiment 2 we have by elementary Taylor series 
inequalities 

b 2b 

0<x_<l .  

5 Computing 32/1 
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Repeated use o r s  log c dx=F(c+l) ,  c>0,  gives 

( 3 )  1 b + l  (1 ( 1 )  1 3 @ ) )  2 b + l  1 - ~ -  = !  ~ -  og 2 -~__ log  dx<_H(f) 
b 7 . . . .  

b + l \  
=i  O o g ( 1 ) ) f ( x ) d x < - m i n ( b + l , 2 ~ - ) < -  3. 

Obviously, sup H (f) _< 3, and lim H (f) = 2. By theorem 1 IR 1 has a small uniformly 
b b~co 

bounded average time. We will now show that the average time for IR 2 increases 
1 

logarithmically in b as b ~  oo. By theorem 3 and our choice - - =  B = b + 1, we need 
t 

only show that H*(f )~log(b)  as b~oe .  First, by an inequality derived in 
section 3.4, 

o b 

(b + 1) 2 , 
= log ( t +  ~ - )  = (1 + o (1)) log (b). 

A lower bound for H*(f)  can be derived as follows: choose e > 0 arbitrarily small, 
and let c = e + ( 1 - e ) / B ,  B=b+ 1. Then 

1 1 

H*(f) = j" log+ (Bx) f ( x )dx> ~ log(Bc) f (x )dx  
0 c 

= log (B c) (F (1) - F (c)) = log (Be) (1 - B c + (B - 1) c B/(B- ~)) 

=log(Bc) ( 1 - c + ( B -  1)(C1+1/(B-1)--C)) 

> log (Be) (1 - c + (B - 1) c/(B - 1)) 

=log(Be) 

=log(B)+0(1)  as B~oo .  

Thus, H* (f) ~ log (b) as b --, oo. Table 2 shows that IR 1 is indeed faster than IR 2 in 
Experiment 2. Once again, IR 3 is faster than IR 2. IR 3 has increasing average times, 
but it is only for b>29/10 that IR1 becomes faster than IR3. 

The choice r---2 in the halving and doubling methods can be replaced by a good 
guess of the optimal r. Based on the derivations of sections 3.4, 3.5 the following 
choices are suggested for r: 

A ~1 +2  log(A)) 
r = g (A) = log (A) \ 2 + log (A) ' A = 1 + log (B) for IR 1, 

r=max(2,g(A)),  A=log(1 +B) for IR2. 

These choices are by no means optimal. They only guarantee that the average times 
do not increase faster than log (B)/log log (B). They are applicable for all bounded 
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monotone densities because we can take B =f(0). An improvement is expected for 
large values of B for those methods for which H (f) or H* (f )~ o0 as B ~  oe (1R 1 in 
Experiment 1, IR2 in Experiment 2). A worsening is expected for the other cases, 
because a uniformly bounded average time is replaced by an unbounded average 
time increasing as log (B)/log log (B). These observations are corroborated by the 
timings for IR4 and IR5 in Tables 1 and 2. 

Table methods 

All the algorithms T(n) have uniformly bounded average times. Very little 
improvement is possible beyond n = 20. It is pleasing to see that we can approach the 
average times of the direct methods albeit by paying rather heavily in terms of 
storage (see Table 3). If we fix the table size, then the average time becomes linear in 
B. None of the improvements suggested in section 3.6 were implemented. 

The rejection and table methods can only be used for bounded monotone densities 
with compact support, but they do not require the availability of F. The ordinary 
rejection method can in fact be considered as a table method with table size 1. It goes 
without saying that table methods should only be used when the density changes 
infrequently because of the prohibitive set-up times involved. 

We conclude by noting that in terms of flexibility, the inversion/rejection methods 
have no competition: a suitable combination of two of them can be used for all 
monotone densities. The halving method takes care of the peak at 0 while the 
doubling method or the Newton-Raphson iterations could be used to handle infinite 
tails. The only restriction is that both f and F must be computable. 
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