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We give random variate generators for the generalized hyperbolic secant distribution and 
related families such as Morris's skewed generalized hyperbolic secant family and a family 
introduced by Laha and Lukacs. The rejection method generators are uniformly fast over 
the parameter space and are based upon a complex function representation of the distributions 
due to Harkness and Harkness 
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I. Introduction 

Natural exponential families of  distributions have probabil- 
ity mass functions of the form [exp(Ox)]#(dx) where # is a 
given measure, and 0 > 0 is a parameter. When we com- 
pute the mean and the variance, and force the variance to 
be a quadratic function of  the mean as 0 is varied, the 
number of families becomes severely restricted. Morris 
(1982) showed that there are in fact only six natural expo- 
nential families with this property: the binomial, Poisson, 
gamma, exponential, negative binomial and N E F - G H S  
families, where GHS is an abbreviation for generalized 
hyperbolic secant. The N E F - G H S  distribution with par- 
ameters p > 0 and A E IR has density 

f ( x )  = (1 + A2) -p/2 exp(xarctanA)fo(X), 

where fp is the density of the generalized hyperbolic secant 
(GHS) distribution with parameter p. While the other five 
families play crucial roles in statistics, the N E F - G H S  
distribution has received very little attention, undoubtedly 
because of  its unwieldy analytic form. Indeed, fp is not 
explicitly known in any standard way. Its shortest descrip- 
tion is as a product of two gamma functions with imaginary 
arguments, 

2 p-2 [p  + i x \  [p - i x \  
- 
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(Harkness and Harkness, 1968). One of  the difficulties when 
running a simulation is random variate generation. The  
method developed below seems to be the first one in which 
an efficient random variate generator is obtained based 
upon complex-valued function representations. The pur- 
pose of this note is to discuss random variate generation 
for the families mentioned above. This is done in three 
stages: first we recall the well-known hyperbolic secant 
distribution. Then we move on to the GHS distribution. 
Finally, we give a generator for the N E F - G H S  distri- 
bution. There are, of  course, two things we would like to 
see in such generators: 

(i) The generators have to be theoretically exact; no 
approximation of any kind is allowed. 

(ii) The expected time per random variate should be 
uniformly bounded over the parameters (such as 
p > O ) .  

2. The hyperbolic secant distribution 

The hyperbolic secant (HS) distribution has density 

l 71"X 
f l  (x) = ~ sech T = exp(rrx/2) + exp(-zrx/2)  

and distribution function 

2 
F(x) = 1 - - 

7"f 
arctan (exp(-Trx/2)) 
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(Baten, 1934, and Talacko, 1951). Random variate gener- 
ation was discussed in some detail in Devroye (1986a). 
Here is a partial listing of possible methods: 

(i) Generate X as logiC I, where C is a Cauchy random 
variable. Equivalently, generate it as log[Nl/N2[, 
where N1,N2 are independent standard normal 
random variables. 

(ii) Obtain X as (2/70 logtan(TrU/2) where U is uni- 
form[0, 1]. This is the inversion method. 

(iii) Sincefis  log-concave, the general rejection method 
for log-concave densities given in Devroye (1984) 
can be applied. 

(iv) Since 

2 2n-1 "/IX f i  (X 2 ( _ ~ )  2) 
f2n+,(x)- (2n)! sech 2 jx=J. -~-+ 

4n-I x 7rxn-I [ 2 \ 
f2n(x)-2(2n_l),c~ ) �9 

The last two expressions show that there are simple recur- 
sive relations between the densities of the GHS distribution 
whose parameters p differ by 2. 

Instead of relying on the representations of the previous 
remark, we will use the gamma function representation. It 
will also allow us to deal with non-integer p. 

j=l 1 + ( 2 j -  1)27r2/ 

(see e.g. Laha and Lukacs, 1960), we can obtain a 
HS variate as Y ~ l  2Lj/(rc(2j - 1)), where the Lj's 
are i.i.d. Laplace random variables. This property 
is obviously only of theoretical interest. 

3. The GHS distribution 

The GHS distribution has characteristic function 

2 P 
q~ = (sechl)P = (exp(t) +exp(_t )  ) , 

where p > 0 is a parameter. The GHS distribution is sym- 
metric about 0, has mean 0 and variance p, and is unimodal 
with mode at 0. It possesses exponentially decaying tails. 
For the case p = l, we obtain the HS distribution. For 
integer p, a GHS random variate X is distributed as 

X 1 "-~-- �9 �9 - "-]- ,e~p, 

4. The rejection method for the GHS distribution 

Assuming the unimodality o f f  with mode at 0 (to be shown 
below), we have from Devroye (1986a, pp. 313-316; see 
Theorem VII.3.3) 

f(x) <_ min (0), 21213], 

where a 2 is the variance o f f  The area under the bounding 
curve is easily seen to be 

(81/2) 1/3 ( f  (0)o.)2/3. 

This is equal to the expected number of iterations required 
if the rejection method is employed. We note that a 2 = p, so 
that the given area is 

( 2p_5/29v~ F2(0/2)~ t/3 

7rr(p) ,] 

As p ~ c~, we have f (0)  ,,~ 1/2x/2-~ by Stirling's approxi- 
mation for the r function. The area under the bounding 
curve is asymptotically (81/(47r)) 1/3. It is uniformly 
bounded over all p _> 1. Unfortunately, as p l 0, the area 
tends to oc, so another design is required in that case. 

where the Xi's are i.i.d. HS random variables (Harkness and 
Harkness, 1968). The time taken by the naive method that 
exploits this property grows linearly with p. 

Of course, our aim is to be able to deal with non-integer p 
as well, and to obtain uniformly bounded expected time. 
This will be done in the next three sections. 

Remark: special cases 
For the sake of completeness, we mention three special 
cases in which explicit forms offp are known (see Harkness 
and Harkness, 1968); 

X 7rX X . 
f2(x) = ~ cosech -~- = exp(Trx/2) - exp(-Trx/2) ' 

Rejection method for the GHS distribution 
repeat 

generate a uniform [-1, 1] random variate U. 
generate i.i.d, uniform [0, 1] random variates /I, W. 

( 30-2 ~1/3 U 
7 

until Wmin(f(0), 3a2/(21X[3)) <f(X) 
return X 

The main obstacle here is that f is only available as a 
product of two complex-valued functions. At issue here is 
whether we should assume that the F function with 
complex argument is available to the general user. If  it is 
not, the rejection method needs to be replaced by the series 
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method, which is based upon quickly converging approxi- 
mations for such functions. The decision Y < f ( X )  can in 
fact be made correctly without ever having to evaluate f 
directly. To do so, we first deduce a further representation 
o f f  in Lemma G2. 

6. Rejection with a perfect asymptotic fit 

Rejection with a rejection constant tending to one as 
p ~ c~, forces one to choose as a dominating curve the 
limiting density in the family, in this case the normal 
density. 

5. Properties o f  1-" Lemma RI Define ~ = p5/8. 

Lemma G1 
For all complex z with ~(z) > 0, 

r(~) = s(~)  exp(R(z)) ,  

where 

and 

(Whittaker and Watson, 1980, pp. 249-251) 

\ e /  v z ' 

R(Z) def 2 r arctan(t/z)_ 
= J0 exp(27rt) - l d t  

J o ( l  l 1 ) e x p ( - t z )  
t e x p ( t ) -  1 t 

m d t .  

Lemma G2 

( p / e ) P ( X 2 )  (p-l)/2 

f ( x )  - r ( p +  1) 1 + ~  exp(-xarctan(x/p))  

(lo ,z) • exp ~b(t)2exp(-tp/2)cos-~dt , 

where 

def 1 ~b(t) = t ( ~ 1 +  1 "~ 
- 7  e-;-~- U" 

Lemma G3 The function ~(t) is monotonically decreasing 
in t > 0, with ~b(0) = 1/12 and limt_oo ~b(t) = 0. 

Lemma G4 Define 

C = 2 V / ~  "(p/e)p (~-~) 
* - ' -  F(p + l) exp 

and 

2V/2V/~I ( X2 ) (0-1)/2 g(x) - 1 + - ~  exp(-xarctan(x/p)) .  

Then 

f ( x )  ( 3(p2 P~_ x2 )-) < exp ( ~ ) _  1 _< ~ < exp 

Furthermore, C < 1 and C --, 1 as p --, oo. 

c ( 
:Ix) <_ 

exp(l/(3x/~)) 

Cg(~) exp(g t(~)(lxl - ~)g(~)) 

(Ixl S ~) 

(Ixl ~ ~). 

The rejection algorithm with rejection from the normal 
distribution in the main body and rejection from exponen- 
tial tails can be sped up via quick rejection and acceptance 
steps by using the inequalities of Lemma G4. We summar- 
ize the algorithm as follows: 

Rejection method for the GHS distribution, p _> 1 

[Set-up.] 
t *-- p5/8 
s ~ exp(1/(3x/~) ) 

(p/e) p 
c,-- x/7~ r(p+ 1) 

g, ~ g(t) where g(x) ~f (27rp) -1/2 1 + 
exp(-x arctan(x / p) ) \ 

A ~ g(t)/Ig~(t)l (i.e., A ~ (t/(p 2 + t 2) + arctan(t/p)) -l) 
Pt *-- 2Cgt A 
[Generator.] 
repeat 

generate i.i.d, uniform [0, 1] random variates U, V. 

if U < P" 
Pn + Pt 

then generate a standard normal random variate N 
set X ~- Nv~ 
if [XI > t then Accept ~ False 

else W ~- Vp~(27rp) -1/2 exp(-X2/(2p)) 
Accept ~ [W < Cg(X)] 
if not Accept 

then Accept ~- [ W < Csg(X)] 
if Accept then 
Accept ~- [W <f(X)]  

else generate an exponential random variate E 
set X ~ t + AE 
W *-- VCg t exp(-E) 
Accept ,-- [W < f(X)] 
if Accept, then with probability 1/2, set X ~- - X  

until Accept 
return X 

Lemma R2 The rejection method given above is asymptoti- 
cally optimal, i.e. the expected number of  iterations tends to 
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1 as p ~ c~. Also, the expected number of  iterations is 
uniformly bounded over all p > 1. 

The proof  of  Lemma R2 reveals that the expected num- 
ber of  decisions [W < f ( X ) ]  is O(1). The evaluation o f f  
can therefore be programmed in a less critical manner. 
This is done in the next section. 

7. Evaluation o f f  

In the algorithm shown above, we need to make a decision 
whether W < f ( X ) .  From Lemma G2, we recall the repre- 
sentation 

where 

P(10 ~  ) f ( x )  = Cg(x) ex t dt , 

I(t) = ~b(t)2 exp( - tp /2 )  cos(tx/2) 

= ~b(t)(exp(-tz) + exp(-tg)) ,  

and z = (p + ix)/2. Let k and n be positive integers to be 
picked further on. The integral can be computed to any 
desired accuracy by the approximation 

o ~b( t )(exp(- tz)  + exp(- tg)  )dt 

kn- I  f ( j + l ) / n  
= Z ~( j /n )  (exp(tz) + exp(-t~.))dt + A n 

j = 0 dj/n 

kn-  1 
= y ~  r  x, n) + a. 

j = 0  

where 

R(p,j, x, n) clef 2e(J+l)pl2n 

( ( j +  1)x~ sin(.(j  + l)x~ mc~ j+(9 j 
X 

(p/212 + (x/212 

_2exp(~_~Pn) ( 2 )  c~ + ( 2 )  sin(~--~%) 

(p/212 + (x/2) 2 
and 

IA.I < I ;  W(t)l exp(- tz)  + exp(-ty.)ldt + IIr 

• J21 exp(-tz) + exp(- tg) ld t  

J ; l  (2exp(- tp l2) )d t  + IIr r 2exp( - tp /2 )d t  
-< ~ n Jo 

< 2e xp ( - kp /2 )  q 411'g,'ll ~ 
- -  kp np 

2exp ( - kp l2 )  t 8 (1) 
< kp 5 n p  

Here we used the facts that ~b(t)< 2/ t  and that 
I1r ~ 2/5, These properties are proved in Lemma E1 
below. 

Lemma E1 ~b(t) < 2/ t  and I1~'11~ ~ 2/5. 

w e  can use the approximation as follows. To decide 
whether W < f ( X )  we argue as follows: 

e ~- 1/(lOp) 
repeat 

E ~ e/2 
n ~-- [16/(5ep)] 
k r(2/p)log(4/e)] 
Z +- ~-~kn-oi ~p(jln)R(p,j, X, n) j= 
Accept ~ [W < Cg(X) exp(Z - e)] 
Reject ~- [W > Cg(X) exp(Z + c)] 

until Accept or Reject 
if Accept then decide W < f ( X )  else decide W > f (X )  

The procedure shown above reduces the accuracy r by a 
factor of  2 at each iteration, so that indeed the method 
halts with probability 1. Observe that the choice of k and 
n ensures that for fixed e, the approximation Z is such that 

Z - I ;  I(t)dt < e 

(see (1)). However, using this piece of code destroys the uni- 
form boundedness of the expected time. 

8. Generalizations of the GHS distribution 

There are several generalizations of  the GHS distribution 
that introduce asymmetry. The Laha-Lukacs  distribution 
is defined via the characteristic function 

~(t) = (cosh t - iA sinh t)-P, 

where p > 0, A ~ R (Laha and Lukacs, 1960). 
Morris's N E F - G H S  distribution with parameters p > 0 

and A E R is given in the introduction. The mean is pA and 
the variance is p(1 +A2). By computing the mean and 
variance of the Laha-Lukacs  distribution given above, it 
is easy to see that the variance function is indeed quad- 
ratic, and that it coincides with the N E F - G H S  family, a 
fact perhaps overlooked in the literature thus far. Very 
little is known about  the N E F - G H S  distribution, other 
than what is given in Morris (1982). It is interesting to 
note in this respect that for integer p, 

X l + . . . + X p  

is N E F - G H S  (p, A) if the Xi's are i.i.d. N E F - G H S  (1, A). 
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The latter random variates can each be obtained as 

1 B 
- log B '  7r 1 -  

where B is a beta(�89 + (tan A/w), �89 - (tan A/Tr)) random vari- 
able. This shortcut is only useful if p is a small integer. 

Ideally, one would like to have a fiat bound at the mode o fg  
and two exponentially decaying tails. Since the mode o f g  is 
not available in explicit analytical form, we will settle for a 
nearly flat center bound at the mean x = Ap. The bound is 
applied to all x c (Ap - 6, Ap + 6), where 6 is of the order of  
magnitude of  the standard deviation: 

Remark: cubic variance functions. Letac and Mora (1990) 
studied all the natural exponential families with cubic vari- 
ance functions. These include the GHS distribution and 
several other families of  distributions, some of  which 
require special care when random variate generators are 
needed. Several of  the distributions given by them have 
representations not unlike those for the N E F - G H S  
family, and it is hoped that random variate generators 
might be based upon principles close to those developed 
in this paper. 

Let f denote the N E F - G H S  density. Good rejection 
algorithms are either based upon some properties o f f ,  or 
on some properties of  a function that bounds f from 
above. In view of the unusual representations of f ,  it is 
easier to work with bounds for f.  To this end, we use the 
estimate from Lemma G4: if 

(P/e)P exp ( + )  
C :  2 X / ~  F(p + 1) 

and 

then 

g(x) -- 
c ( 

2x/~---fi (1 + A2)-P/2 1 + ~  

x exp(x arctan A - x arctan(x/p)),  

f ( x )  
exp( -1 / (3p) )  _< ~ < 1. 

But even the bounding g is rather elusive - -  for example, it 
is difficult to find where its mode lies even though we can 
approximate it. However, g has one saving feature: it is 
log-concave when p _> 1. It is easy to see that the derivative 
of  logg is 

g ' (x)  x 
g(x) - p2 + x 2 + arctanA - arctan(x/p),  

and that the second derivative is non-positive for p _> 1. 
In the remainder of  this section, we therefore assume 
that p_> 1. The log-concavity implies that at every 
x,y ,  

g(y) <_ g ( x ) e x p ( ( y  - x)g ' (x ) /g (x ) ) .  

This provides us with an infinite number of possible bounds 
for g since we can choose x at will. At least two x ' s  are 
needed to obtain two bounds whose minimum yields an 
integrable curve. We find it convenient to use three x 's. 

6 : D r + A 2, 

with D _> 4. To be precise, we assume without loss of  
generality that A > 0 (since an N E F - G H S  (p, A) variable 
is distributed as minus an N E F - G H S  (p, -A)  random 
variable). Next, define the following constants: 

(tt, tin, tr) = (Ap - 8, Ap, Ap + 6); 

(A,, Am, At) = (g  '(tt) g'(tm) g'(tr)~ 
\ - - ~ '  g(tm) ' g(t~) ]" 

Of the last three, At > 0, while A m < 0 and Ar < 0; this will 
be established further on. The bound we will use in the 
rejection algorithm then is 

f g(tl) exp(Al(x - tl) ) (x <_ tl) 

f ( x )  <_ g(x) < ~ g(tm) exp(Am(X - tin)) (tl < X < tr) 
| 

(g ( t r )  exp(Ar(x - tr)) (X > tr). 

The areas under the left, middle, and right pieces are 
denoted by Pt, Pm and Pr, where 

(Pl,Pm,Pr) = 

g(tt) exp(-SAt) g(tm)l exp(6A,,) - exp(-6Am)[ 

At ' IAml ' 

g(tr) exp(6A~)'~ 

IA I J 

If A,, = 0 (which happens when A = 0), the middle term 
should be replaced by its limit, 26g(tm). The areas just 
given should be used as weights when picking a piece in 
the rejection algorithm. We summarize the algorithm: 

Generator for the N E F - G H S  distribution, p _~ I, A > 0 
repeat 

generate U, V i.d.d, uniformly on [0, I] 
if U < Pt/(fit +Pm + Pr) then generate E exponential 

X ,-- tt - E/AI 
T ~ Vg(tt) exp(-E) 

else if U > (fit + Pm) / (lOt +Pm + Pr) then generate E exponential 
X ~ tr - E/A~ 
T *-- Vg(t~) exp(-E) 

else generate W uniformly on [0, 1] 
X +--- t I -~- (l/,~m)log(l - W(I - exp(28Am))) 
(if Am = 0, set X ~ tt + 26 W) 
T ~ Vg(tm) exp(Am(X- tin) ) 
(if Am = 0, set T*--- Vpm/(26)) 

Accept *-- [T < g(X) exp(- l/(3p))] ('quick accept') 
if not Accept 
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then Accept *-- [T < g(X)] ('quick reject') 
if Accept then Accept ,-- [T <f(X)]  

until Accept 
return X 

One can easily verify that the middle X obtained from 
the random variable W is exponentially distributed on 
(tl, tr) via the probability integral transform (the inversion 
method). We require once again the evaluation of  f 
if the quick acceptance and rejection steps fail. This 
can be done on the basis of  the algorithm of  the 
previous section. The expected number of  iterations 
before the algorithm halts is Pt +Pro +Pr" The main 
result of  this paper is that this quantity is uniformly 
bounded. 

Theorem 1 If D > 4, the quantity Pt +Pm + Pr is uniformly 
bounded over all p _> 1 and A > 0. 

The proof  of  this theorem is given in the next section. The 
condition D > 4 can probably be relaxed somewhat. We 
recommend that in practice, the value D = 4 be selected. 
We finally note that the expected number of  accesses of  
the statement 'Accept ~ [T <f(X)] '  is O(1). 

9. P r o o f s  

Proof of Lemma G2 Let z = (p + ix)/2, and let ~ denote the 
complex conjugate of  z. From Lemma CI and Lemma G1, 
we see that 

2P-2 
f ( x )  = rrp(p---- 7 J(z)J(~) exp(R(z) + R(~)), 

in the notation of  those lemmas. Now, i fz  = [z I exp(i0), we 
have 

J(z)J(z) = (Izl exp(i0 - l))Z (Izl exp( - i0  - l))eX/~-/~ , 

= (2~/Izl)lzl z§  exp( - (z  + ~)) exp(iO(z - ~)) 

= (2rc / I z l ) ( l z l / e )  TM exp(-20~z)  

We note that N z =  p/2, ~ z = x / 2 ,  Izl = v / 7 + x 2 / 2 ,  
and 0 = arctan(x/p). Resubstitution in the formula shows 
that 

J(z)J(~) = ~, 2e ] exp(-xarctan(x/p))  

4~r 
• 

V /  p 2 -{- X 2 

x2 ) (p-l)/2 
= 4rrp p 1 + - ~  (2e)-Pexp(-xarctan(x/p)).  

Collecting these identities, we see that we are only left with 
the proof  of  the equation 

R(z) + R(g) = I o  ~b( t)2 exp( - tp /2  ) cos 
t x  
-~ dt, 

of  R(z), 

~(t) exp(-tz)dt  + [o~ ~b(t) exp(-t~)dt 
Jo 

From the definition 

R(z) + R(~.) = I o  

=Io 
=Jo 
=Io 

~b(t)(exp(-tz) + exp(-t~.) )dt 

~b(t)2 e x p ( - t  ~ z) cos(t D z)dt 

~b(t)2 exp(- tp  /2 ) cos( tx /2 )dt. 

Proof of Lemma G3. We have 

1 1 1 
~b(t) - 2t t 2 + / ( e x p ( t ) -  1)' 

1 2 1 
r  = ~-7 + 7 

exp(t) 

tZ(exp(t) - 1) t ( e x p ( t ) -  l) 2" 

We see that ~b'(t) _< 0 for t >_ 4. Also, by L'H6pital 's rule, 
~b(0) = 1/12, and ~b'(0)= 0. Firstly, for t_> 4, we have 
~b'(t) <_ 0 since 2It 3 <_ -1 / (2 /2) .  Define 

S(t) = exp(t) - (1 + t + t2/2! + t3/3! + t4/4!) 
t 5 /5 !  

Observe that S(0) = 1 and that S is T in t. Furthermore, for 
t > 0 ,  

t 12 t 
S(t) = 1 +-~ + ff--~ + . . .  > 1 +-~. 

Also, for t < 8, 

t t 2 ( ( 8 ) 2 + )  
S(t) < 1+-~+-~  1 + 8  + .. .  

l t 2 
= l + g + 4 2 ( 1 _ t / 8 ) .  

Taking into account that e t - 1 > t, we have for 8 > t > 0, 

~b '(t) = 

S(2t)(32/30 - 8t/30) - S(t)(2/30 + t2/16) - 1 - t/12 
2((e t -  1)/02 

The denominator is positive. The numerator is at most 
equal to 

S(2t)(32/30 - 8t/30) - S(t)(2/30 + t2/16) - 1 - t/12 
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< (1 + 2t/6 + 32t2/(42(8 - 2 t ) ) ) (32/30 - 8t /30) - (1 + t/6)(2/30 + t2/16) - 1 - t/12 

= - t / 1 8 0  - 251t2/5040 - t3/96 

< 0 .  

This completes  the p r o o f  o f  L e m m a  G3. 

P roof  of  L e m m a  G4 Combine  L e m m a s  G2 and G3, and 
note that  

oo tx 2p_ . 
IoeXp( - tp /2 )  cos-~- dt - p2 + X 2 

By Stirling's formula ,  we can verify that  C ~ 1 and p ~ c~, 
and that  C < 1. 

P r o o f  o f  L e m m a  R1 For  Ixl _/18, 

1 X2) (p-I)/2 c +-J 
f ( x )  < Cg(x) < ~ e x p ( - x  arctan(x/p)) 

c {x2(p- I)3 - - < ~ e x p ~ k  ~ / exp(--x2/p+x4/(3p3))  

( x4) _ _  C X2 X2 + ~p3 
2v/2 ~ exp 2/9 2p 2 

_< ~ exp - ~ p  exp(1/ (3v ,~)  ) 

where we used the fact that  for  u > 0, arc tan u > u - u3/3. 
Consider  next Ix I > p5/8. It  is easy to verify that  g is log- 
concave when p >_ 1. Thus,  

' ( )  x g x _ x a r c t a n - .  
g(x) ,0 2 + X 2 p 

Fur thermore ,  

x 2 _ p 2 _ p 3 _ I ) X  2 
( logg)"  = < 0. 

(/9 2 + X2) 2 

For  log-concave functions,  we always have the bound  

g(x) < g(t)exp(g'(t)(x - t)/g(t))(x >_ t) 

(Devroye,  1986a, p. 308). Collecting this, 

f ( x )  < Cg(~) e x p ( g ' ( ~ ) ( x  - ~)/g(())(x > ~). 

Proof  of  Lemma  R2 The integral o f  the bound  o f  L e m m a  

R1 between t = p5/8 and c~ is, for  t > 0, 

g2(t) 
[g'(/)[ " 

The  rejection a lgor i thm thus has a rejection cons tant  equal  
to 

2Cg2(t) 
Cexp(1/(3v/-fi)) + [g'(t)-----~" 

We recall f rom L e m m a  G4 that  C ---, 1 as p ~ oo, and that  
C < 1 in all cases. Also, [g'(t)l/g(t) ,,~ p-3/8 as p ~ oe, so 
that  

2Cg2(t) 
[g '( t)  l ~ 2g(t)p3/8 

= 2(27rp)-V2p3/8(1 + p-6/8)(p-l)/2 

x e x p ( - p  5/8 arc tan(p-3/8))  

< p-l~8 exp(p2/8/2) exp(_pS/8(p-3/8 _ p-9/8/3)) 

< p-1/8 exp(_p2/8/2 + p-4/8/3 ) 

-~0 

a s p - ~  c~. 

P roof  of  Lemma  E1 The  first inequality is immedia te  f rom 
the definition of  ~b. The second par t  follows by a combi-  
nat ion o f  two bounds.  Clearly, 

1 2 l e t 

r  2t 2-~ t 3 t2(e t - 1 ) - t ( e  t -  1) 2. 

We have already seen that  ~'(t) < 0 for all t > 0. Using 
e t - l > t, we note that  for all t > 0, 

1 2 1 1 1 3 
~ t  > ~ . ~ +  t 3 t 3 t 2 t 3 _ 2t 2" 

Note  that  for  t > 2, ~b'(t) > - 3 / 8 .  So assume t < 2. Recall 
that  in the nota t ion  of  L e m m a  G3, 

~b ' ( t)  = 

S(2t)(32/30 - 8t/30) - S(t)(2/30 +/2/16) - 1 - t/12 
2((e t -  1)/t)  2 
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> (1 + t/3)(32/30 - 8t/30) - (1 + t/6 + t2/21)(2/30 -t- t2/16) - 1 - t/12 
- 2((e t - 1)/t) 2 

= - t / 1 8 0 - 4 t 2 / 4 5 -  t 2 / 1 6 -  t 3 / 9 6 -  (t2/21)(2/30+ t2/16) 

> - 4 / 5  

- 2 ( ( e  / - 1 ) I t )  2 

-2 /5 .  

2 ( ( e t -  1)/t) 2 

L. Devroye 

P r o o f  o f  T h e o r e m  1 W e  need only show that Pt + Pm "1" Pr is 
uniformly bounded for p _> 1 and A > 0. W e  begin with Pm. 
Clearly, 

A 
A m -  p(l .§ A2) - < 0 '  

Also, 

C 
g(pA) = 2V~-~ IV ' i - -~ -~ "  

Note that g(tm)6 = DC/v~-~. Also, 6lAml < D/v/-fi < D. 
Thus, using [ exp(-u) - exp(u)[ < lul(exp(-u) + exp(u)), 

g(tm)[ exp(6Am) - exp(-6Am)[ 
Pm= I~ml 

<_ g(tm)6(exp(6Am) + exp(-6Am)) 

<_ DC( (ZTr)-1/2(exp( D) .1. exp(-D)) .  

The bound remains formally valid if A -- 0. In all cases, one 
should try to make D as small as possible. This will have to 
be offset against a requirement that D be made large to 
make P1,1, Pr small. 

Next, we consider p ,  The following inequality will be 
needed twice: 

arctan(A + 6/p) - arctan A = 

i~ +61p 1 dx > 6/p 
1 + X 2 - -  1 + (A + 6/p) 2" 

A bound for Ar is obtained as follows: 

Ar = arctan A - arctan(A + 6/p) 

Ap + 6 Up 
-- p2 "1" (~p "1" 6) 2 < --  1 "1" ( z~ "1" 6 1 p  ) 2" 

Furthermore, 

c C + T u 3,-~ (~ + ~/p)2~/'/2 g(tr) 
r 4- (A -I- 61p) 2) / 

x exp((Ap + 6)(arctan A - arctan(A + 6/p))) 

C exp ( A6 -Jr 6 2 
< r247247 k I §  2p(1.§ 2) 

1 + (), + 6/p)2j" 

Combining all this yields the following estimate: 

g(tr) exp(6Ar) 

pr - IM 

C(I+(A+6/p)2)  ( A6 62 2 p ( l + A  2 < exp + 
(6/p) V/2~p(1 + (~ + 6/p) 2) 

( (~p__+_6_)61p ~ ( s _ 
x exp - exp (--~--~-6/p)2- ] 

1 + (A + 61p)2J 1 + 

C r  + (A + 6/p) 2 / A6 0 2 
-< (n,,/1 + ; ) V ~  exp ~ l - T y  + T 

A6 + 2D2(1 + A2)'~ 

- 1 + ( - A + 6 / - p ?  J 

C r  + 2A 2 + 262/02 (D  2 A6._D2/p___ 2D2~ 

< (Dx/l+~2)v ~ exp - y q  1 + ( ~ + 6 / p ) 2  ] 

C V ~  20 2 {D 2 A 2 < ~ exp---~lk +62/p 2 + 4 A 6 / p -  3. 
- 1 + (A + 6/p) 2 ) 

Cr + 1/D 2 
< - 

We finally turn to Pt, which is by far the most difficult 
case to handle. We first turn to AI. We have 

(A - 6 / p ) ( l l p )  der 
A t = arctan A - arctan(A - 61p) - i - ~  ~-~ _-- 6 - ~  = I + II. 

Using the inequality 1 .1. u < exp(u) and 

6 2 D 2 

2p(1 + A 2) < 2 ' 
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we obta in  We have 

C (1 + (_A_=6__/p)2.~l A 2 p/2 g(tl) 
V/27rp(1 + (A-61p)  2) + ) 

x exp((Ap - 6)(arctan A - arctan(A - 6/p))) 

< V/ exp - A2 t- 
27rp(1 + (A -- 6/p) 2) 1 + 

x exp((Ap - 6)(arctan A - arctan(A - 6/p))). 

We distinguish between several cases. 

Case 1: A - 6/p <_ O. We note  that  I I  _> 0, while 

i > 4 m a x  (min(1 ,  A), min ( 1 , 6  - 7r _ P A ) ) > , m i n ( l , ~ p ) .  

This follows f rom the fact that  a rc tan  is concave on 
(0, c~), so that  a r c t a n ( u ) >  7ru/4 for  0 < u <  1 and 
arctan(u)  > 7r/4 when u > 1. Clearly, At > 0, as was 
required. Also, if we define 

A6 D 2 
I I I = - 6 A t  l + A  2-t 2 

+ (Ap - 6)(arctan A - arctan(A - 6/p)), 

then 

g(tt) exp( -6At)  
Pt -- At 

C 
< exp( I I I )  
- Atv/27rp(1 + (A - 6/p) 2) 

< 4Cexp(D2/2) _ _  

- rr man(l ,  6/(2p))2V/~p 

(4Cexp(D2/2)  8Cexp(D2/2) ] 

< m a x ( l ,  2/D) 4Cexp(D2/2) 
- , . i r v / - ~  �9 

This is a gross overest imate,  but  it will do for  now. 

Case 2: A - 6 / p > O. Define 

C 
I V =  

At~c/27rp(1 + (A - 6tp) 2) 

a n d  

A6 D 2 
V =  -6At  I + A  2 ) 2 

+ (Ap - 6)(arctan A - arctan(A - 61p)). 

g(tt) exp(-6At)  
Pt = AI 

Also, 

A6 
V = -6A 1 1 q.- A 2 

< IVexp(V) .  

__ (Ap - 2 6 ) A t -  - -  

D 2 ( (A - 61p)(llp)~ 

~ T  + (Ap - 6) .A' + ~ + ( ~ -  ~----7X) 
M D 2 (A - 61p) 2 

1 + A 2 + ~ q 1 + (A - 6/p) 2 

A6 D 2 
_< (Ap - 26)AI 1 + A 2 + -2-  + 1 .  

When  Ap - 26 < 0, and A t > 0, the exponent  in the upper  
bound  is not  larger than  D2/2 + 1. Otherwise,  we note that  

J ~ Up A l < x-2dx - 

- ~_~/p A ( A -  6 1 p ) '  

so that  

V < (A - 26/p)6 
- A(A - 6 / p )  

< (A - 6/p)6 
- A2 

< (6 - 62)A 

- 1 + A  2 

D 2 
< - - + 1 .  
- 2 

A6 D 2 
l + A 2  F -~ -  + 1 

A6 D 2 
1 + A 2 + - ~  - + 1  

D 2 
- - + T + I  

We conclude that  in all cases, 

Cexp(1 + D2 /2 )  
Pt < 

Atv/27rp(1 + (A - 6/p)2) " 

Thus,  we need only bound  the denomina to r  uni formly  f rom 
below away  f rom zero. This is done  by considering three 
subcases. 

Subcase A: 0 < A - 6/p < 1, A < 2. 

Ii 0> ' 
At>_ -61p l + - 3 0 p  

if 6 >_ 6. A sufficient condit ion for  this is that  D >_ 6 / v / ~ .  
Thus,  

6v~ Dv~ 
AtV/2~p(1 + (A - 6 / p )  2) >_ >_ 

3----O- 3 0 v ~  

Subcase B: 0 < A - dip <_ 1, A > 2. 

At _> arctan(2)  - a rc t an ( l )  A - 6/p >_ 0 .3217 . . .  
P 

1 4 
- - > 0 . 3 2 1 7 .  - - - > 0 . 2  

p - .. 5D 2 - 
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if D > V/-8-/3. Here we used the fact that r < (5/4)D 2. To 
see this, note that 

r < 6/A = Dx/~V/1 + A2/A 

and thus 

Therefore, 

_~ DV/1 + l /A 2 < DX/~-/4. 

AtV/27rp(1 + (A - -  6/p) 2) > 0 .2v /~ .  

Subcase C: A - 6/p > 1. By the convexity of  1/(1 + x 2) 
for x > 1, we see that 

6/(2p) 6/(2p) (1/p)(A - 6/p) 
At > + 

I + A  2 l + ( A - 6 / p )  2 l + (A - ~5/p) 2 

~/(2p) - Alp 6/(4p) > > 
- - 1 + - ~ : k p )  z 

provided that 6 _> 4A. A sufficient condition for this is that 
D _> 4. Resubstitution shows that 

AIV/27rp(l+(A_61p)2)>_ Dx/2-~Vfi-+ A2 >__Dr/~-~ 

4~/1 + ( A  - 6/p) 2 4 

This concludes the proof  of  Theorem 1. 
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