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Summary. Let K,  be the k-th smallest spacing defined by X ~ , . . . , X , ,  inde- 
pendent random variables uniformly distributed on [0, 1], where k>  1 is a 
fixed integer. Let u, be a sequence of positive numbers satisfying u,/n a $. We 
show that 

(i) P(nZK,<u.  i.o.)=0(1) when ~u~/n< ~ (= oo). 

(ii) If in addition u,T, then p ( n 2 K , >  . i.o.)=0(1) when 

(uk,/n) exp( -- u,) < oo ( = oe). 
t l  

1. Introduction 

In this paper we investigate the asymptotic behavior of the k-th smallest 
uniform spacing. Among other things, a complete characterization of upper 
and lower class sequences is obtained. The asymptotic behavior is similar in 
many respects to that of the minimum of independent uniformly distributed 
random variables. Let X1 , . . . ,X ,  be independent identically distributed uni- 
form (0, 1) random variables with order statistics 0 < X 1 (n) < . . .  < X,(n) < 1, and 
let u, be any sequence of positive numbers. Geffroy (1958/1959) has shown that 
if u,/n~., then 0 P(nXl(n)<u . i.o.) = when u, < oo 

= o 0  

Robbins and Siegmund (1972) have shown that if u,/n$ and u,~, then 

0 
P(nXl(n)>=u . i.o.) = 1 when U" e - "  < oo. 

1 /'l =0(2) 
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The latter result is a slight variation of a similar result by Barndorff-Nielsen 
(1961): if u,/n$ and (1-u,/n)".L, then 

0 when ~log2n ( ~ f  P(nXl(n)>=u n i.o.)= 1 ~ -  1 -  =oo<~176 

Here logj denotes the j times iterated logarithm. Deheuvels (1974) gives anoth- 
er proof of essentially the same result. 

The spacings are defined by 

S~(n)=X~(n)-X~_l(n), l_<i_<n+l, 

where Xo(n)=0 and X,+j (n)=l  by convention. The order statistics are 
S(1)(n ) < S(2)(n ) <.. .  < S(n + 1)(n). For fixed integer k < n + 1, we define K, = S(k)(n ). 
The purpose of this paper is to show that under very weak regularity con- 
ditions on the sequence u,, 

and 

oo k 

0 when l~U~ < c~ p(n2K, < u, i.o.) = 1 = oo' (1.1) 

0 oo U k 
P(nZK,>un i.o.)= 1 when ~ ne-""<c~.  (1.2) 

1 n = o o  

The asymptotic behavior of the maximal uniform spacing (S(,+~)(n)) is treated 
in Devroye (1981). Section 2 contains some very simple lemmas, a derivation of 
the asymptotic distribution of K,, and large deviation results for P(n2K,<u,) 
and p(n2K,>u,).  Section 3 deals with (1.1), and Sect. 4 treats (1.2). 

2. Asymptotic Distribution. Inequalities 

Lemma 2.1. [Tail of the gamma distribution] (Devroye, 1981). I f X  is gamma (n) 
distributed and u > O, then 

and 

P ( X - l  > u ) < e x p ( - n u Z ( 1 - u ) / 2 )  

P ( X - 1  <--u)<=exp(-nu2/2).  

Lemma 2.2.  [Property of spacings] (see, e.g.,  Pyke (1965, p. 403)). 
n + l  

(Sl(n) .... ,S,+l(n)) is distributed as (E1/T,. . . ,E,+I/T) where T= ~, E i and 
i = 1  

El, ...,E,+ ~ are independent exponentially distributed random variables. 

Theorem 2.1. [Limit distribution of K,]. n2 Kn Le ~ E~ +...  + Ek, where 

E1, . . . ,E  k are independent exponentially distributed random variables. In other 
words, nZ K, has a gamma (k) limit distribution. (The case k= 1 goes back to Levy 
(1939).) 
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Proof of Theorem 2.1. Let 0 < u  < 1, x >0. Then 

X n+l  ,~ 
P(n2K.<x)=P E(k)~-  ~ ~ E,) 

(2.1) 
x ( I~+' -u), 

>-_P(E{k) K -n (1 - -u ) ) -P  tn ~=l e , ~ l  

where E 1 . . . .  ,E,+ 1 are independent exponential random variables, and E(k ) is 
the k-th smallest among the Ei's. For fixed ue(0, 1), Lemma 2.1 implies that the 
last terms in both the upper and lower bounds in (2.1) are not greater than 
e x p ( - a n )  for some a(u)>0. Let us now look at the probability P(E(k)_~v/n ) for 
v>0. If Y is a binomial (n,p) random variable and Z is a Poisson (v) random 

variable, where p = 1 - exp - n ' then P(E(k ) ~ v/n) = P(Y~  k)-~ P(Z ~ k) because 

np-~v as n~o~. Thus, 
( E ( k ) ~ )  k- I vj l i m P  v = 1 -  ~ ~ie-L 

n ~  j=oY. 

The right-hand side of the last expression is continuous in w Replace v once by 
x(1 +u) and once by x (1 -u )  and let u+0. By (2.1) we may then conclude that 

k ~ l  x j  
lim P(n2K~<x)== 1 - j!--e -~ , x>O. 
n~co j~ 0 

This concludes the proof of the theorem. 

Lemma 2.3. [Binomial tail inequalities]. Let X be a binomial (n,p) random 
variable, and let k be a positive integer not exceeding n. Then 

1 -  (1--nP)<~-(np)k = l _ n p e  v (2.2) 

k~ 

where the upper bound is valid for n p e p < 1. Also, 

( 1 - ! f  - t e x p (  rip2 ] <  P(X<k)  < e P ( k _ l ) ( l + ~ )  
2(1 - -p) /=e_,p(np)k-I  = 

(k- 1)! 
where the upper bound is valid for n p > 1. Finally, 

(2.3) 

/De~" [~_)~, a~[p, l - p ) .  (2.4) P(X-np>ne)<= 

Proof of Lemma 2.3. The upper bounds in (2.2) and (2.3) follow from the 
following inequalities: 
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P(X> k)= ~ ~)pJ(1-p)  "-j< ~ (nP)Je-P("-J) 
j=k  j~=k J !  

<_ (n p)k e- "p e pk ~ (np  eP)J; 
- -  k !  j = O  

P(X<k)<k@(nP)Je-P("-J)<--eP(k-X)e -"ptnpY 1 
j='-"0 J! - ( k -  1)! j~l (nP) J 

The lower bounds in (2.2) and (2.3) follow from 

P(X >= k)>_ ( ~ ) p k ( 1 -  p)n-k>= (n ;k )  k pk(1 - p),-k 

=> (nP)k ( 1 - ! )  

and 
p(X <k)> ( k n l )  Pk-l(1--p)'-k+l > (n--k)k-1 = ~--~1)~. pk-I(1--P)" 

= ( k -  1)~ 2(1 - p ) /  

where we used the inequality log (1 - u) > - u - u2//(2(1 - u)), 1 > u > O. 
Finally, we recall Okamoto 's  inequality (Okamoto, 1958) obtained easily by 

Chernoffs technique (Chernoff, 1952): 

( p ] ,+~/  1 - p  ~l-p-~),, e~(0,1-p) .  P(X-np>na)<= ( ~ - ~ /  \ l - p - z ]  

When e>p, the expression on the right-hand side can be further bounded from 
above by ((p/e) ~ e~) ". 

Theorem2.2. [Large deviation inequalities for K,l. Let u,~O be a positive 
number sequence satisfying log (1/u,) -- o(n), then 

P (n2 K, < u,) ~ u~/k!. (2.5) 

Let u ,~  oo be a positive number sequence satisfying u, =o(nl/3). Then 

P (n 2 K, > u,) ~ uk, -1 e-""/(k - 1) !. (2.6) 

Proof of Theorem 2.2. Let E~, ..., E,+~, T be as in Lemma 2.2, and let E(k ) be as 
in (2.1). Define b,=l/3klog(1/u,)/n and c ,=] /~Jn .  To prove (2.5), note that 
by (2.1), 

P (E(k) <=~(l +b.))+ P (T>=l +b.)>=P(nZK.<=u.) 

U n 
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( " t Note that P E(k)<n(l_+b,) =P(X>k)  where X is a binomial (n,p) random 

variable, and p=l-exp(-u,(l+_b,)/n).  Note that as n~oo, G~0,  p--*0, 
np~G,  b,~O. Thus, by inequality (2.2), we conclude that 

[ ~ / A n  
~ ( n p ) / k .  ~ u . / k . .  p ~E(k)<n(l ++_b.) ] k , k , 

Since by Lemma 2.1 

P ( T - 1  >=bn)<=exp(-nb2(~+o(1)))=u~3k+~ 

we see that (2.5) follows from (2.7). To prove (2.6) we proceed similarly: 

P (E(k) > ~ (1 -c , )  ) + P (T< l - c ,  ) >= p(n2 K,> u,) 

> P (E(k) > ~ (  l + c.) ) - P (T>= l + c,). (2.8) 

Note that P (E(k)>u"(I+_G)]=P(X<k)where X is a binomial (n, p) random 
\ n ] 

variable, and p= 1 -exp ( -u . (1  ++_c,)/n). As n~oo, we have u ~ c ~ ,  c,~0,  p~0, 
ug,/n~O, u,c,~O, np~u, and exp(-np),-~exp(-u.). By inequality (2.3), we 
conclude that 

P(E(k )>~( l+G)) -e  -"v(np)k-1 e-"" uk-~ 
- ( k - l ) !  

By Lemma 2.1, 

P ( T - 1  >c,)<=exp(-nc2,(l+o(1)))=exp(-3u,(1 +o(1)))=o(e-U,u~-X). 

Thus, (2.6) follows from (2.8). 

Lemma 2.4. [Inequalities for uniform spacings]. Let ~, be the a-algebra gener- 
ated by X 1 .... ,X,,  let Xo=0, X _ I = I  , 5>0 and Ae~,. Then 

P ~.=Q l [ 'X j -X ,+ l]<5],A) <25(n+1)P(A). 

If S(x, n) is the length of the spacing among Si(n), 1 <_iNn+ 1, covering the point 
xs[0, 1], then 

/n+ 1 ) 
P (S (X. + 1, n) < 5, A) <= P ( ~ S i(n) Irs,(.)< aj > 0 + 0 P (A), 

i=1 

for all 0~(0, 1), where I is the indicator function of an event. 

Proof of Lemma 2.4. Immediate. 
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Lemma 2.5. [Conditional inequalities for K~]. Let u, be a positive number 
sequence satisfying uJn2 +, and let n > m be two positive integers. Then 

p(n2 K.~u.[mZ Km~um) <~P(X <k) 
and 

p(n2 K,>=Un]mZ Km>=Um) <=p(n2 Kn_m>=U~) 

where X is a binomial (n-re, p) random variable and p--max(0,  min(1 , (m+ 1 
- k)  u . / n 2 ) ) .  

* is Proof of Lemma 2.5. The second inequality follows from the fact that if K,_  m 
the k-th smallest spacing defined by Xm+ 1, ..., X,,  then 

[ K n ~ un/n  2, K m  ~ Um/m 2] C * > 2 
_ _  [ K . . . .  Un/n ,Km ~ Um/m2], 

and thus, by independence, 

2 , P(K, >= un/n 2, K m ~ Um/m ) ~ P(K,_m >= u,/n2) P(Km >= Urn~m2) �9 

The first inequality follows by a similar argument. Let X~(m), l < i < m  be the 
order statistics of X1, . . . ,X , ,  and let Xo(m)=0 , X , ,+ l (m)=l .  Let A,, be the 
union of all sets of the form [Xi(m), Xi(m)+G/n2], O<i<m, for which [Xi(m), 
X~+l(m)] is not among the k smallest intervals (spacings). It is clear that the 
length of A m is (m+ 1 - k ) u , / n  2 for m+  1> k, on the set [Km>um/mZ]. Let N* 
be the number of points among Xm+l, ..., X,  that fall in A,,. Clearly, the first 
inequality now follows from the implication 

[K, > u,/n 2, K m >= Um/m 23 ~_ IN* < k, K m ~ Um/D~2]. 

3. Lower Class Sequences 

Theorem 3.1. I f  u, is a positive number sequence satisfying Un/n2 ~, then 

P(n2K, <u, i.o.) = when --u~ < oo 
1 n ~--":00 

Remark 3.1. If G is a positive number sequence satisfying u,/nZl, and ~u~/n < oo, 
then necessarily u,--*O. Indeed, if this is not true, then we can find a>O and 
n 1 < n 2 < . . .  with (nl/ni+OZk<l/2, Gi>a. Now, 

lli + l H i + i  

E u.~/n=E E ~'  ~ ~ s 2~- us/S>=Z(u.,+,/n,+,) Y 1 
n i j : n i + l  i j = n i + l  

=> Z (u.~, + l/ni~ 0 (n,~l - n~k)/(2 k) => (1/(4kt) Z a = ~ ,  
i i 

which leads to a contradiction. 

Remark3.2. In the proof that p(n2K,<=u, i.o.)=O, we can without loss of 
generality assume that nG--, oo (and thus that log (1/G)-- o(n)). Assume that we 
have proved the claim with these additional assumptions, and that we are 
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given a sequence u, that merely satisfies u,/n2+ and ~u~/n<~. Define u, 

=max(u, ,  1/I/n), and check that u*/n2!,. ., u,*~O (Remark 3.1) and * /~U n ~ o0. 

Also, Zu*k/n<Z1/n~+k/Z+~,ukJn<~. Thus, by our assumption, P(nZK,<u * 
i.o.) = 0. Therefore, it is certainly true that P(n 2 K, < u, i.o.) = 0. 

Remark3.3. In the proof that P(n2K,<u, i.o.)=1, we can without loss of 
generality assume that log (1/u,)= o(n). Indeed, assume that we have proved the 
claim under theses additional assumptions, and that we are given a positive 
number sequence u, merely satisfying u,/n2~, and ~uk,/n=~. Define u* 

=max(u, ,1/ l /n) ,  and verify that u*/n2+, and that log(1/u*)=o(n). Also, 
�9 k n >  k __ ~u,  / = ~ u , / n - ~ .  Thus, by our assumption, P(nZKn<u * i.o.)= 1. But clear- 

ly, 
[n 2 K,  ~ u, i.o.] ~ [n 2 K,  = < u, * i.o.] ~ [n 2 K,  < 1/]/n f.o.] 

and P(nZK,<l/]fn f.o.)=l (by the first part of the theorem), so that 
P(n2K,<u, i.o.) = 1. 

Remark 3.4. The condition that u,/n 2 is monotone ~ may of course be relaxed 
to the condition that un/n 2 is eventually monotone $. Theorem 3.1 also implies 
the following: when p > 1 is an integer, then 

P(nZ K,<(log n logz n...log~ +~n) -ilk i.o.)=01 when 
6 > 0  

= 6_<0' 

Proof of Theorem3.1. First we prove that p(n2K,<u, i.o.)=0 under the as- 
sumptions that un/n2~, ~uk,/n<oo, u,--*O (Remark 3.1) and n u , ~  (which 
implies log(1/u,)=o(n), see Remark 3.2). We will apply a modified version of 
the Borel-Cantelli lemma, i.e. if A, is a sequence of events, then P(A, i.o.)=0 
when P(A,)~O and ~P(A]A,+  1)< oo (see e.g. Barndorff-Nielsen, 1961). Let A, 
= [n 2 K,  < u,]. By Theorem 2.2, we have 

P(A.) ~uk,/k!~O. 

Let K', and K,' be the (k-1)st  and ( k - 2 ) d  smallest spacings among Si(n), 
1 < i <  n+  1. By convention, the 0th smallest spacing is 0, and in the case k=  1, 
any term involving K~ has to be ignored. Applying Lemmas 2.4 and 2.5 we 
have, using some notation from Lemma 2.4, 

(j=Q [~x-x ~< u.+l_] K,<_u.+l ) P(A~A"+t)<P i[ i  j ,+ 1, = ( n +  1)2 j , - - ,  =(n + 1)2 

+ P(S(X,+ l, n) < 2u ,+ l/(n + l)Z; K'~ <u,+ l/(n + l) 2) 

< 2  U " + l  / _ ~ _ I ) P f K ,  < u , + l  ~ u2  {K-t ,<~ U.+l \ +9 ~~ p ] 
= (n+l )  2tn \ " = ( n + l )  2] n + l  \ - - " = ( n + l )  2 

) +P Si(n)I[s~(,)~2 .. . .  /(,+l)2]>=9un+l/(n+l) 
t 1 

= Bnl + Bn2 + Bn3. 
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Clearly, 

and, for k > 2, 

~ 2  / t b/n \ 1A n k -  1 Bnl-<2(n+ 1) P [ K , < ~ ) ~ 2  u, 
- n ( k -  1 ) ! '  

/A2 2 k-- 2 
B,z < = 9 _ ~ ( n + l ) 3 P { K , , < u , ] ~ 9  u, u, "=n  2/ n ( k - Z ) ! '  

so that B,z+B,2 is summable whenever ~uk,/n<oe. (The term Bn2 is to be 
ignored when k = 1.) 
Also, 

,+ 1 2u,+ 1 _> 9 u,+ 1 
B"3 <=P I ~ I~&(")<=2 . . . .  /("+ l ? J ( n ~  = n+ 1 

\ i =  1 

n +  1 

= P ~i~=1 Its,(,)<= 2,, + ~/(. + 1)~ > 9( n + 1) u, + 1) 

i = l  i 

< e x p ( - n / 1 6 ) +  P ( Z >  9(n + l)u,+ ~) 

where we used Lemma 2.2 and Lemma 2.1, Ez , . . , ,E ,+  ~ are independent 
exponentially distributed random variables, and Z is a binomial ( n + l , p )  
random variable with p = 1 - exp ( -  3u,+ a/(n + 1)). The summability of B,3 fol- 
lows from the summability of P(Z>=9(n+l)u,+O. Since p<p'=3u ,+i / (n  
+ 1 ) ~ 0 ,  we may replace Z by a binomial ( n + l , p ' )  random variable Z'. By 
inequality (2.4), we obtain the upper bound 

where 

p' e ]" 
- ~ /  , valid for p'<=e<l-p ' ,  

(9 3) 
l ) - ( n +  l )p ' ) / (n+  l ) = U . +  l 

For n large, the upper bound is valid and it is further bounded from above by 

( e tn~ ~ e . . . .  
l !  = ' 

and these terms are summable in n because n u , ~  oe. 
Now we prove that P(nZKn<=un i.o.)=1 under the assumptions that u,/n2], 

~u~/n=oe and log(1/u,)=o(n) (Remark 3.2). The proof is based upon the 
following implication: 

[n2K, < u. i.o.] _~ [Tj <=Unj + Jn~.+ 1 i.o.] 

where Tj is the k-th smallest spacing defined by X,j+I,  ..., X,j+~ on ]-0, 1], and 
n i is a carefully chosen strictly increasing subsequence of the integers. Since the 
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events Aj = [Tj <u,j+ 1/n2+ 1] are independent, we need only show that ~ P(A~) 
= ~). We distinguish between two cases: 1) There exists a subsequence nj such 
that along this subsequence lim infu,j > a > 0; and 2) lira u. = 0. In the first case, 
we can assume without loss of generality that nj+~>2nj, all j. If F is the 
gamma (k) distribution function, then by Theorem 2.1, 

P(Ai)=P(Knj § ~_,j<_u,j+jnZ+a)>=P (K,,+ 1/2 
\ 2  / =  4 / 

>(1 +o(1)) F (~), 

and thus ~ P ( A j ) = ~ .  We may therefore assume that u ,~0.  Let n j=2  j, and 
note that by Theorem 2.2, since log (l/u2,) = o(n), 

P(Aj) = P(K2j ~ U2j+ 1/22(j+ 1)) = p((2j)z K2 J ~ uzj+ ~/4) ~ (u2J+ 1/4)k/k!. 

Since u,/n2,~, we have 

~ 2J+~ - 1  oo 1 2J+1-~1 k = ~ 2 ~  
u i ' >  (1/2J) (u7/4)>-- ~ 4 Z u i _  u , = m .  

j = l  j = l  i=2J J i-- j=l i=2 2 i -  

Thus, ~P(Aj)= oo. This concludes the proof of Theorem 3.1. 

4. Upper Class Sequences 

Theorem 4.1. I f  u, is a sequence of positive numbers such that u ,~  o% Un/n2 J,, and 

then 

k 
u~, e-"" < ~ ,  (4.1) 
n n 

p(n2K,>u, i.o.) = 0. (4.2) 

Corollary 4.1. I f  u, is a sequence of positive numbers such that eventually u,'F and 
Un/n2~, then (4.1) implies (4.2). (Note that u,~ and (4.1) imply that u,-~ co.) 

Proof of Theorem 4.1. We may without loss of generality assume that u, 
=o@1/3). For otherwise, u, can be replaced by u',=min(u,,nl/'~). Clearly, u', 
=o(nl/a). Also, if un~c~, so does u',, and if u,/n2+, so is ul.. Finally, when u, 
satisfies (4.1), then 

1k E(u. tn) e -"  ____ E(nk/ /n) e-""" + y e-"" < 
n n n 

If p(n2K,~u'n i.o.)=0, then clearly, P(n 2 K ,>u ,  i.o.)=0. 
We will use the fact that if A, is a sequence of events satisfying P(A,)~O 

and ~P(A,A~,+O< o% then P(A, i .o.)=0 (see for example, Devroye, 1981). Let 
A, = In: K,  >__ u,]. By Theorem 2.2, 

P(A,,) ~ e-""u~- 1/(k - 1)!-+0. 
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Also, by L e m m a  2.4, 

P(A.A~.+O<P [Xj-Xn+l[ ~ ,A ,  
j 1 

< 2 u.+ 1 (n Un + 1) P(A.) _< 2 ~-(n + 1) P(A.) 
= (n + l )  2 

k 
2 u" e-% 

( k - l ) !  n 

which is summable  in n. 

Theorem 4.2. I f  u, is a sequence of positive numbers satisfying u,'F, Un/n2 + and 

u k 
-" e . . . .  ~ ,  (4.3) 

n n 

p(n2  Kn >= u n i.o.) = 1. (4.4) 
then 

Theorem 4.3. I f  u, is a sequence of positive numbers such that eventually u,'r and 
u,/n2 +, then 

k <00  
p(n2K,>u ,  i .o.)= when ~ u, e -u" 

n n = o 0  

When p > 4 is integer, then 

when 
6 > 0  

6 < 0  
P(n 2 K,  > log 2 n + (k + 1) log 3 n + . . .  + (1 + c~) logp n i.o.) = 01 

Theo rem4 .3  follows from Theorem 4.2 and corol lary 4.1. Theorem 4.2 is 
proved along the lines of the p roo f  of Theorem 2 in Robbins and Siegmund 
(1972). In this proof, the following sequence of  integers is very impor tan t :  

n~ = [exp ( aj/logj) ], a > O. 

Here  [ . ]  denotes the integral par t  operator .  We first offer the following lemma. 

L e m m a  4.1. I f  u, is a sequence of positive numbers satisfying Un/n2 ~, and u,t, then 
(4.3) is equivalent to 

u~71 e x p ( - u , j ) =  o% all a > 0 .  (4.5) 
J 

Proof of Lemma 4.1. 

Step 1. We first show that for all a > 0 ,  (4.3) is equivalent to 

uk71 exp ( - u,j). u , / l og  2 n i = oo. (4.6) 
J 

We note  first that the monoton ic i ty  condit ions on u, imply that  uk, e-""/n 
=_(Un/n2)l/2 Ukn-1/2 e-Un is + for u, > k - 1 .  Thus, for u ,?  U < 0% the equivalence 
of (4.3) and (4.6) is trivial. If u,l"oo, we observe that log 2 n j ~ l o g j ,  and that 

(1 - njnj+ 1) ~ 1 - exp ( - a/log j) ~ a/logj ~ (n j+ 1/nj-  1). 
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Thus, for some large integer J,  we have 

and 

k 

X u. e-"~ + X (G/~;) e-""'(n;- ~;_ ~) 
n 1l j > j  

u k-  1 e-"~J (u,,/log 2 ns) + J,  < 2  ~ ,j  
j > J  

k 

u .  e - " " >  ~ (uk.jn;) e-", ;(n;+ 1 - n j) 
n Fl j>=j 

> ~ ~ u ~-~ = _ ,s e - " n s ( u . / l o g  2 n;). 
j>=J 

Step 2. We may assume, without  loss of generality, that  u. < 2  log 2 n. If u, does 
not  satisfy G < 2 1 o g z n ,  then define u ' ,=min(u . ,21Ogzn) ,  and note  that u',T, 
u',/n2$ when u,T, u, /n2;  respectively. It is also easy to check that  (4.3) diverges 
for u, if and only if it diverges for u',, and that  (4.5) holds for u. if and only if it 
holds for u',. For  example, for (4.3) this follows from 

k 'u"~ e-"a u k (2 log 2 n) ~ 
~n Un n e -U~_~  

n e . . . .  n = < ~ - -  n(log n) 2 u~ > 21og2n H 

< ~ 1 + ~ ( 2  log 2 n)k/(n log 2 n) < ~ .  
n: 21og2n <k n 

Here  we used the fact that  the function u k e -~ is unimodal  with peak at u = k .  
Since u ' , j<21og2n j, (4.6) (which is equivalent to (4.3)) implies (4.5) for u', and 
thus for u n. 

Step 3. We need only show that (4.5) implies (4.3) (or (4.6)). We may assume 
without  loss of generality that  G > l o g 2 n ,  as we will now show. Set u~' 

~t i12 tt = max (u,, logz n), and note  that  u , /  + and u,T. Also, (4.3) diverges for u, if 
and only if it diverges for u ' ,  and (4.5) diverges for u, if and only if it diverges 

. . . .  k exp ( -- u,)/n for u,. Since u , > u , ~ ,  we have for all n large enough, u, 
, k- 1 exp (-- u,) > u~ 'k- 1 exp (-- u'), so that the diver- > u ' ~ k e x p ( - - u , ) / n ,  and u, 

genee of (4.3) or (4.5) for u" implies the corresponding divergence for u.. 
Thus, we need only establish the other  implications. Assume first that  (4.3) 
holds for u,. Then  either 

k e - Un/H " --~. O0 y ,  u, 
~: un < log2n 

o r  

u~ e -"" /n  = oo. 
n:un>=log2n 

In the latter case, it is clear that  (4.3) holds for u~'. In the former case, there 
exists a subsequence n' of  the integers such that  u , , < l o g  2 n'. By the monoto-  
nicity of u~ and the unimodal i ty  of u k e - " ,  we have for some constant  n o and 
all n' > n o, 
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n' 1 
t , k  - u ) '  �9 , , k  -u 'n ' ,  " k  - u " ,  ' uj e /j>u n, e ~, -=u, ,  e " logn (1+o(1)) 

no - .o J 

>(log 2 n')k(1 + O(1) 

along this subsequence n'. Thus, obviously, (4.3) holds for u': too. Assume now 
that (4.5) holds for u,. We can argue as for (4.3), and show that (4.5) holds for 

/t u n as well. 
Because u~'__>log 2 n, we see that (4.5) implies (4.6) and thus (4.3), which was 

to be shown. 

Proof of Theorem4.2. By Lemma 4.1, we have that uk- texp(- -n)  is not nj 

summable in j for any a > 0. Also, the assumptions 

lim inf un/log 2 n > 1 
and (4.7) 

u n < 2 log 2 n 

do not affect (4.3) or (4.5). Furthermore,  if we can show that 
P(n2K,~max(un, log2 n) i .o . )=l ,  then we will certainly be able to conclude 
that p(n2Kn>un i .o . )=l .  Since p(n2Kn>21og2n i .o .)=0 (Theorem 4.1), we 
may also replace any u n given to us by rain (u,, 2 log 2 n). F rom now on, (4.7) is 
assumed to be valid. 

Let Aj=[n jKn>u  J .  Since [Aj i.o.] is invariant under permutat ions of 
X~, ..., X m for any finite m, we conclude by the Hewitt-Savage zero one law 
that P(Aj i.o.) is either 0 or 1 (Hewitt- and Savage (1955); see also Breiman 
(1968, p. 63)). It suffices to show that for all jo, there exists a j l  >Jo such that 

_ c A c  . If  we define the events Bj-AjAj+ 1 ... jl, Jo <J<=Jl, then clearly 

l'OA  = rJ' P \~ = Jo j ] "-" P ( ) ' B  J" 
J = J o  

and 
Jl  

P ( B ) > P ( A ) ( 1 -  ~,, P(Ai[A)). 
i = j + i  

Since u--.oo, u,=o(nl/3), we see that P(Aj)~u k-ln~ exp ( -u , ) / ( k -1 ) !~O (Theo- 
rem 2.2), and this that ~ P ( A j ) = o e .  Thus, we can find a constant K o such 
that for alljo=>K0, there exists a j l  >Jo such that 

1 J' 1 
- <  ~, (4.8) 4 = . .  P(A)<=~. 

J =  JO 

We are done then if we can show that 

Jl  

sup ~ P(AilA)< �89 
Jo<=J<=Jl i = j + l  

(4.9) 

We are still free to choose the constant a > 0. 
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We introduce a second constant c~(0,1). The positive integers 
K o , K D K 2 ,  ... depend upon a and c only. We also need the following facts: 
for all i>j>Kj` ,  

a ~ . j  (1 1 ) ac( i - j )  �9 ")__<log (nJ t < a( i - j )  - l~)gj  < (4.10) 
g ~ \n~ I log i = log i 

(see for example Lemma 2 of Robbins and Siegmund (1972)). Define the 
integers p(j) and a(j) as follows: p(j) is the largest integer i such that i 
- j < ( l o g  i)z/3; a(j) is the smallest positive integer i such that i - j  >(log i)2. It is 
not hard to check that p( j )~a( j )~j ,  and that a(j)-p(j)<=2+(j+logZ(a(j) - 1)) 
- (j - (log (1 + p (j)))2/3) < 2 log2j for all j > K 2. Also, if 

ac > 1, (4.11) 

then i>a(j),j>=Kj` imply that 

log (nj]<__ _ a c ( i - j )  < _ - a c l o g i < - l o g i .  
\nl /  logi - - 

(4.12) 

Let 6 = 2 e  k, and ~ = ~ .  Let a > 0  and ce(0, 1) be chosen such that 

and 
ac > max (2k, 16, ] f ~ )  (4.13) 

6(e_~c~k_j` + (k--1)!) 1 < - -  (4.14) 
. =12" 

We will prove (4.9) in four steps. 

Step 1. i>j>=K3, i<=p(j) implies that 

P (A~ 1A j) < 6 [c~ (i _j)]k - J̀  e-  ~(i- j). (4.15) 

Step 2. i> j>  K 4, p(j)<i<a(j)  implies that 

P (A i[ Aj) < 5 (log i )  (k - 1)/3 e-  (log 01/3. (4.16) 

Step 3. i> j>  K 5, i>a( j )  implies that 

P(A,IAj) <9 p(Ai). (4.17) 

Step4. Let j o>KT=max(Ko ,  K1, K2, K3, K4, Ks,  K 6 )  where K 6 is  s u c h  t h a t  

j > K 6 implies log o-(j) < 2 logj. Let Jl be as in (4.8) and let j J̀  > j  >Jo > K7. Then 

Jl p(j) a(j) Jl 

i = j +  J̀  j + l  p(j)+ 1 a(j)+ 1 

<= ~e-~i(cd)k-l +(a(j)_p(j))c~(loga(j)) 3 e-(iogjW3+_9 (A~) 
i~1 - - 8 i = "  

k--J. 
< cSe-~ o~k- J̀  + ~e-~U(eu)k- 1 du + 2c5 logZj(2 log j) 3 e-(logd) I/3 +~.  

o (4.19) 
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Here we used (4.15), (4.16), (4.17), (4.8) and the definitions of K 2 and K 6. We 
also exploited the unimodality of the function u k - t  e -u and the fact that ~ > k  
- 1 .  Now, the first two terms on the right-hand-side of (4.19) are not greater 
than the expression in (4.14), and the third term in (4.19) is smaller than 1/24 
for j>=jo>=K6 by our choice of K 6. Thus, for j o > K v ,  the expression (4.19) is 
not greater than 1/12+ 1/24+ 3/8= 1/2, which was to be shown. We are done if 
we can show (4.15), (4.16) and (4.17). 

P r o o f  o f  (4.15). By Lemma 2.5, P ( A I I A j ) < P ( X < k  ) where X is a binomial 
(n~-n j ,  p) random variable and p = ( n i +  1 - k ) u , j n  { (we assume that K 3 is so 
large that j>=K 3 implies n j>4(k-1)) .  Let K 3 also be so large that 
a/(logj)i/3<=�88 and u,>=31og2ni>=�89 for all i > j > _ K  3. Furthermore, 
K3>=K 1. For i>j>=K3,  i < p ( j )  we have 

and 

>=ac (1 
7 i - j  

> -  i '  = 8 ac log 

nj+ 1-2k>_3 n~ (by choice of K3) 
n i = 4 n i 

3 " " 
,by,410,, 

>1 (by choice of K 3 )  , 

(by (4.10)) 

ac ) 
2(log 01/3 (since i - j < ( l o g  02/3) 

( n i _ n j ) p > = l  i - - j  1 . . ac l-~g i u,i > ~ a c ( t - j )  > c~ > m a x  (k, 2) 

where we used (4.13) and the definition of K 3. By Lemma 2.3, we have 

1 { l + ( k -  1)! ] p]k_le_( , ,_ ,~)  p P ( X  < k ) < e  k-  ) 

2 e k Ec~ (i - j ) ]  k- 1 e- ~(i - j), 

which was to be shown. 
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Proof of(4.16). By Lemma 2.5 and (2.8), 

P (A i[ A j) < P (n 2 K,, ,j > u,,) < P (X < k) + P (T< (n i - ny2)  

where X is a binomial  (ni-nj,  p) random variable, T is a gamma (hi-n1) 
random variable and p = 1 -  exp (-u, , , (n i -  ny(2n{)). Let K4 be so large that for 
i>j>-_K 4, K 4 > K  1, u,~>�89188 ac<(logi) l/a, ac(logi)2/3~ni, 
acn i > 2i(log i) 1/3 and (log 01/3 >max (k - 1, 2). Then 

and 

1-nit 
n i ! ( '-#t > 1 - e x p  - a c  

> 1 - exp ( -  ac/(log i) 1/3) 

ac ( ac ) 
> 1 
= (log i) ~/3 2(log 01/3 

1 ac 
> 

= 2 (log i) i/3' 

(by (4.10)) 

(since i - j  >_ (log i) 1/3 for i > p (j)) 

a c n  i 
n i -  n~ >= 2(log 01/3 >= i (by choice of K4), 

u,,(n i -  ni) >1  l o g / [ 1  - n i l  > 1  ac(log 0 2/3 
2n/2 = 8  n i \ n i]  = 8  n i ' 

> ac(l~ (1 
P > l - e x p (  ac(l~ i 8nn i 

ac(log 0 2/3 
-> (by choice of K4) , 
- -  On i 

ac (log 0 2/3 

16nl ) 

nj) ac(logi) 2/3 >(ac)2(logi) 1/3 
(ni-o~)p>= 1 - , ,  iU 9 = 18 

>(log i) ~/3 > m a x  (k - 1, 2). 

By Lemma 2.3 and Lemma 2.1, we have 

P (Ai I Aj) < P (X < k) + exp ( - (n i - n;)/8) 
k--1 

< 2e k- 1 (log i) 3 exp ( - (log 01/3) + exp ( - i) 
k--1 

< 2 ek(log i ) ~ -  exp(-- (log 01/3), 

which was to be shown. 

Proof of (4.17). Let K s > m a x ( K 1 ,  2) be such that i > j > K  s implies 2 log 2 n i>k  
- 1 ,  ni>2i% u,<(2n]i), u , , ( 1 -4 / i )>k -1 ,  (4.20) and (4.21). We recall that for 
i >  or(j), i > j > K D  (1 - -n /n i )>  1 -  1/i (see (4.12)). Thus, 

(n , -n , l=n,  ( 1 - ~  t >~n, ( 1 - ~  ~ >~' > i ~. (4.20) 
\ nil i ] = 2  = 
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By (2.8) and Lemma 2.5, 

P (A i] A j) <-_ P (X < k) + P ( T  <= (n, - n j) (1 - r)) (4.21) 

where X is a binomial  (n~-nj ,  p) random variable, T is a gamma (n , -n j )  
random variable, r=(ni -n~)  -1/4 and p = l - e x p ( - u , , ( n i - n j ) ( 1 - r ) / n 2 ) .  By 
Lemma 2.1, (4.20), (4.7) and our choice of K 5, 

P ( T  <-_ (n i - n~) (1 - r))/P(Ai) <= exp ( - n~i-nj2)/n(Ai) 

<_- exp ( - i 2/2)/P (A ~) < ~6- (4.22) 

Here we used the fact that  

P (A i) ~ uk,i- 1 exp ( - u,)/(k - 1 ) .=T > (2 log 2 ni) k - 1 (log ni) - 2/(k - 1 ) ! 

1 
(2 log i) a+ a 

(a i )Z(k-  1)!" 

Next we note that  

p<U.@2 (ni <U,. - n~) ( 1  - r )  = "~, 
- -  n i  H i 

p > ~ ( n  i - n j) (1 - r) 

> u , , ( l _ 3 _  ] 
= n i \ i /  

where we used (4.12), (4.20) and our choice of K 5. Also, (n i -n j )p>(1  

- 1 ) n i p > ( 1 - ~ ) u , c B y  L e m m a  2.3, 

_-< (1 + ~6) P(Ai). 

(k-l),)~_ kn~l exp (--Uni(1--@)) 
u,,(1 4 ) _ 1 ,  ( k - l ) !  

(4.23) 

Combining (4.21), (4.22) and (4.23) gives the desired result. 

Remark4.1. Theorem 4.3 implies that  p(n2K,>log2  n i .o . )= l  for any k, and 
p ( n 2 K , > ( 1  + 5 ) l o g  2 n i .o.)=0 for any k and any 5 >0.  The proof  of the former 
fact is considerably shorter than the proof  of Theorem 4.2. We offer one proof 
below, that  uses arguments similar to those found in Kiefer (1972) and Dev- 
roye (1981). 

Proof  of  Remark4.1. We define the subsequence nj=[exp(a j log j )]  where 
a >  1/(2k) is a constant. The proof  is based upon the following implication: 
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where 

[nZKn>=log2 n i.o.] ~ [nZKn~>=log2 nj i.o.] 

[Knj < l o g  2 nj+ 1/n}+ t f.o.] ~ [Aj i.o.] 

n ~ l  i -  1 2 
Aj= (~ [IXi-Xll>log2nj+l/nj+l].  

i = n j + l l = - i  

By T h e o r e m  3.1, we have P(K,~_-<log 2 nj+l/n}+l f . o . )= l  when for all j large 
enough, 

log 2 nj+ ~ < 1 
n]+ 1 n}(log nj log2 z nj) 1/k" (4.24) 

Also, let ~ be the G-algebra genera ted by A 1, . . . ,Aj ,  and  let b = l o g  z nj+l/nZ+r 
By the condi t ional  form of the Borel-Cantel l i  l e m m a  (Levy, 1965), we have 
P(Aj i .o .)= 1 on ~P(Aj[~_  1)= oo. In  fact, by a result of  Dubins  and  F r e e d m a n  

(1965, T h e o r e m  1) (see also Freedman ,  1973, (40)), i_ ~=11A' i_ P ( A ~ [ ~ _ I ) ~ I  a.s. 

on ~ P(AjI~,~_ 1) = oo. Because 

nj+l 

P(AjI~j-i) >= l~ ( 1 - 2 b i ) ,  
i=n j+ l 

it suffices to show that  

~ ,  nj+ l 

I~ ( 1 - 2 b i ) =  oo. (4.25) 
j=  l i=n j+ l 

Using the facts that  b nj+ 1 = o(1), b 3 n~+ 1 = o(1), log(1 - u)_>__ - u - u2/(2(1 - u)), 

0 < u < 1, and ~ i < (m e - he)/2 + (m - n), we have for all j large enough, 
n+l  

,,,+1 ( ,,j+l ( - 2 b i - b 2 i Z / ( 1 - 2 b i ) )  I~ ( 1 - 2 b i ) _ > _ e x p - = ~ §  
i=nj+ 1 1 

> exp( - b(n}+~ - n 2) - 2b(nj+ ~ - nj) - O(b 2 @+ 1)) 

= e x p ( -  b(n}+l - 4 )  + o(1)). 

It is easy to show that  (nj+l/nj)2~(ej) 2a, so that  b(n~.+l-n})=log2nj+ 1 
+O(log2nj+~/j2")=log(ajlogj)+o(1). Thus, the j - th  te rm in (4.25) is at least 
equal to 

1 + o(1) 

aj logj '  

which is not  summab le  in j. 
To  prove  (4.24), we note  that  (nj+l/nj)Z~(ej) 2a, and that  log2nj+ 1 

�9 (log nj log~ n)) 1/k ~ (aj)l/k(logj)l + a/k. This explains our  choice of  a > 1/(2k). 
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