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Summary. Consider the Parzen-Rosenblat t  kernel estimate f .  

= (l/n) ~ Kh (x--Xi), where h > 0 is a constant, K is an absolutely integrable 
i = 1  

function with integral one, Kh(X)=(1/ha)K(x/h), and X1 . . . . .  X .  are iid ran- 
dom variables with common  density f on R d. We show that for all e > 0, 

n 8  2 

2 

sup P(lS l f . - f l -E~l f . - f l l>e)<Ze  32~1KI. 
h>O,f 

We also establish that f ,  is relatively stable, i.e. 

I f , - f l  * 1 in probabil i ty as n ~ oe, 
Ef[ f . - f ]  

whenever l iminfl~E~lf ,- f]=oo. We also study what happens when h 
is allowed to depend upon the data sequence. 

1. Introduction 

We consider the s tandard problem of estimating a density f on R e from an 
iid sample X1, ..., X ,  drawn from f A density estimate f , ,  a Borel measurable 
function of x, X1 . . . . .  X, ,  is relatively stable when 

J" + 1 in probabil i ty as n ~ or, 
E(J.) 

where J, = ~ l f , - f l  is the L 1 error. It  is strongly relatively stable when the conver- 
gence is in the almost sure sense. 

* This work was sponsored by NSERC Grant A3456 and FCAC Grant EQ-1678 
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The notion of relative stability is important in comparative studies of density 
estimates. Comparing relatively stable density estimates on the basis of E(J,) 
is fair since the actual error J, is with high probability close to its mean. The 
situation is more complicated for example when J,/E (J,) tends to a nondegenerate 
limit law; the conservative elements among us could be tempted to choose 
a density estimate with a larger asymptotic mean but a smaller asymptotic 
variance. Dilemmas of this sort do not occur for relatively stable density esti- 
mates. Of course, one should keep in mind that the actual value of E(J,) is 
more important than anything else- just consider that any data-independent 
estimate is relatively stable. 

Another important point is that simulations of the performance (L1 error) 
of relatively stable density estimates are very cheap since J, (the computed perfor- 
mance) is with high probability close to E(J,). In other words, it is not necessary 
to average over several simulation runs. As we will see below, J, is already 
an average of sorts because of the global integral in its definition. 

The literature on minimax lower and upper bounds for the La error deals 
almost exclusively with E(J,), and not with other quantities such as the p-th 
quantiles of J,. In view of the relative stability of most nonparametric estimates, 
it is less important to develop minimax theories based upon quantities other 
than E(J,), except in special circumstances. One such situation is when the classes 
of densities considered in the minimax theory are very small ("parametric"), 
so that specially designed estimates ("parametric estimates") are better suited. 

Most parametric density estimates are not relatively stable. Take for example 
the class of densities f = p g + ( 1 - p ) h  where g, h are known disjoint densities 
(~gh=0), and p is the unknown mixture parameter. If p is estimated from the 
data by the obvious frequency estimate p,, and f ,=p ,g+(1-p , )h ,  then J, 
= 2 IP-P, [, and thus, by the central limit theorem, 

J. 
2]/~p(1 -p) 

IN] in distribution 

where N is a normal random variable. It is clear that J,/E(J,)--.INI/E(tN[) 
in distribution as n ~oo.  Therefore, the estimate is not relatively stable for 
any density in the given class. 

In contrast, popular nonparametric density estimates such as the kernel and 
histogram estimates are relatively stable for all densities. This is due to the 
local nature of these estimates: densities are estimated locally by considering 
a limited number of close data points. Locally, the error's standard deviation 
can be of the same order of magnitude as the error's mean. Yet, because the 
L 1 criterion sums a lot of many "nearly independent" local errors, the variation 
in the local errors averages out, rendering the estimates relatively stable. Thus, 
if we had picked a local criterion such as [ f , - f l / E ( l f . - f ] )  to define relative 
stability, then relative stability would effectively force the bias term to dominate 
the variational term, i.e., E ( I f , - f ] ) ' ~  ] E(f , ) - - f  1. For nonparametric density esti- 
mates, one can usually achieve this by taking the smoothing parameter large 
enough. Yet, this is a suboptimal strategy because the smallest asymptotic errors 
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are obtained by balancing the bias and variation terms. Thus, "local relative 
stability" and "locally optimal rate of convergence" are conflicting notions. 

Relative stability is a concept first studied by Abou-Jaoude (1977). He 
encountered some problems in the decomposition of d, into a bias component 
and a variational component, due to the nature of the L~ criterion. Interestingly, 
even though E (f.) always is relatively stable, and ~ I f . -  E (f.) [/E (~ If. - E (f.)]) 
can be shown to converge to 1 in probability for all f for the kernel and histo- 
gram estimates (Abou-Jaoude, 1977; Devroye and Gyorfi, 1985, pp. 23 33), these 
facts do not in general imply relative stability. The two components should 
thus not be separated. 

We will show that for the kernel estimate, consistency implies relative stabili- 
ty. It suffices to note that everything that follows remains valid for the histogram 
estimate as well. In this paper, the kernel estimate is defined as follows: 

n 

=-1 }2 
n i = 1  

where h > 0 is a smoothing factor, K is an absolutely integrable function called 
the kernel, and Kh(X ) = (1/h a) K(x/h) (Parzen, 1962; Rosenblatt, 1956). We consid- 
er smoothing factors h that are functions of n only. Relative stability in the 
L 2 sense (replace J, by ~ ( f , - f ) 2  in the definition of relative stability) has been 
established by Hall (1982) under some regularity conditions on h, f and K, 
when d =  1. Later, Hall (1984) refined this result and obtained the asymptotic 
law of ~ ( f , - f ) 2  when f has two uniformly continuous derivatives on R d. Unfor- 
tunately, for a variety of reasons, L1 relative stability cannot be obtained from 
Hall's results. For example, the relative sizes of the L2 error and the L1 error 
are not related (see Devroye and Gyorfi, 1985), Even if we could show that 
one follows from the other, we would still need to impose regularity conditions 
such as ~ f2  < oo. 

2. Main Results 

We consider only L 1 kernels, i.e. kernels K with S IK] < oo. Recall that S K =  1, 
but that K does not have to be nonnegative. The main result from which most 
other results will be derived is given in Theorem 1 : 

Theorem 1. Consider a kernel estimate with L 1 kernel K. For all e > O, 

2 

sup P ( l J , - g ( J , ) l > e ) < 2 e  32~1KI. 
h > O , f  

We emphasize that Theorem 1 is valid for all densities on R a. Also, the 
inequality is uniform over all h and all densities f It is true that we pay a 
price for the uniformity; for particular cases, better inequalities are obtainable. 
Yet, it is the uniformity that will allow us to establish the relative stability 
of automatic kernel estimates. When considered as a function of K, the bound 
is smallest for nonnegative K. 
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It is worth mentioning that the inequality remains valid if J, is replaced 
by ~ I f , - g  [, where g is an arbitrary integrable function (e.g., g - 0  is allowed), 
and the kernel K, while absolutely integrable, violates the condition ~ K-- 1. 

We will state the main corollaries of Theorem 1 as theorems. Taking e = u/l~n 
for some constant u, we obtain 

Theorem 2. Consider a kernel estimate with L 1 kernel K. For u > O, 
U 2 

sup P ( ~ / n l J . - E ( J . ) ] > u ) < 2 e  32SIKI. 
h > O , f  

In particular, the kernel estimate is relatively stable whenever lim inf ]/n E(J,)= oo. 
n --+ o o  

If we take e= c l o ~ / n  for some constant c > ~ / ~  ~1K ], we can conclude 

Theorem 3. Consider the kernel estimate with La kernel K. For all f and all 
sequences of  smoothing factors h = h,, 

lim s u p ] / / - ~  IJ.-E(J.)I_<]/~I IK[ almost surely. 
"-'~ I/ logn 

In particular, the kernel estimate is strongly relatively stable whenever 

liminf] , / / ~  E(Jn)= oo. 
n ~ o o  [/ logn 

Theorem 3 is probably suboptimal because strong convergence is derived 
via the Borel-Cantelli lemma. 

It is interesting to apply Theorems 1-3 to several special cases. Consider 
first the univariate case (d= 1) studied from other points of view by Devroye 
and Gyorfi (1985). For symmetric nonnegative kernels, and all f we have 

2 

lim inf inf n ~ E (J,) > 7 > 0 
n-*oo h 

for some universal constant 7 which is at least equal to 0.8 (Devroye and Gyorfi, 
1985, p. 79). Combining this with Theorems 1-3 yields 

Theorem 4. Assume that K is a nonnegative symmetric kernel, and that f is an 
arbitrary density on R a. Then the kernel estimate is strongly relatively stable, 
regardless of how h = h, is chosen as a function of n. For f ixed u > O, 

I t  2 

u < limsupP(lJ"-E(J")[.~o \ E(J.) > ~ ) = 2 e  32i1K1. 

For all f and all sequences of smoothing factors h = h,, 

n 1/1~ I J , - E ( J ~ ) I < ] / ~ I / I  almost surely. 
lim._~osup l o ] / ~  E(J~) 7 
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A lso, 

IJ~- EG)I-O(n-~) 
e(J.) in probability as n ~ oo. 

rio 

The simple formula E([ X I)= ~ P(I X ] >  t)d t can be used to show that 
0 

C 
g ( l J , -  g(J,)[) < -  

where we can take 
t 2 

2 

C= ~ 2e 32~lK[dt= 3] /~ lK] .  
0 

Thus, IJ,--E(J,)] decreases to zero roughly as 1/I/n, which is usually much 
faster than the rate with which E(Jn) tends to zero, i.e., n -2Is or slower for 
any nonnegative kernel K and d = 1. 

One could wonder what happens for general (i.e., not necessarily symmetric 
o r nonnegative) L 1 kernels K. Theorem 5.16 of Devroye and Gyorfi (19 8 5, p. 13 6) 

states that when h--*O, ]/nE(J,)--.oo as n~oo ,  for all f. It is known that h--+0 
is necessary for the convergence to 0 of E(J,) of even a single f when K is 
nonnegative, but that this is not necessarily so when K is allowed to take negative 
values. Combining this with Theorem 2 shows 

Theorem 5. For any L1 kernel K with S K = I ,  any density f on R 1, and any 
sequence of  smoothing factors h ~ O, the kernel estimate is relatively stable. In 
particular, for any nonnegative kernel and any density f on R 1, consistency (i.e., 
E(J,)--* O) implies relative stability. 

Our theorems would not allow one to obtain relative stability for all L 1 
kernels. It is known (Devroye and Gyorfi 1985, p. 144) that for some classes 

of densities, limsup V~E(J , )<  oo provided that h converges to an appropriate 
positive constant, and K is a kernel whose characteristic function is one in 
an open neighborhood of the origin. The latter condition, combined with S K = 1, 
~ [K[<oo ,  forces K to take both positive and negative values. Since E(J,) is 
of the same order of magnitude (n -1/2) as [J,-E(J,)[, relative stability is not 
obtainable from our theorems in these cases. It even seems that the estimates 
with constant h are not relatively stable for these classes of densities. 

Consider d =  1 again. Let s be an even positive integer. For general class 
s kernels, i.e., kernels K that are symmetric, square integrable, and satisfy ~(1 
+[x[S)[K(x)[ d x < o o ,  ~ K = I ,  ~ x i K ( x ) d x = O  for 0 < i < s ,  and SxSK(x)#O,  it 
is known that 

s 

lim inf inf n ~  E ~ ] f , - - f ]  => c 
n ~ o o  h 

where c > 0  is a constant depending upon K only (Devroye, 1987). The second 
statement of Theorem 5 remains valid for class s kernels K and all densities 
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f on the real line. Also, IJ~-E(J,)[/E(J,)= O(n-1/(4s+ 2)) in probability, and, in 
analogy with Theorem 4, 

n~s~2 IJ~-E(~)l < ~ l g l  
limsup ~ E(J.) = c almost surely. 

3. Some Lemmas 

Lemma 1. Let X be any random variable with finite mean, and let a be an arbitrary 
real number. Then 

l I X - a l - E ( I X - a l ) l  < IX-E(X))l +E(IX--E(X) I). 

Proof of Lemma 1. Observe that 

I S - a [ - I X -  E(X)I < la -  E(X) l < E(iX-al),  
and that 

E ( I X - a l ) -  E(I X -  E(X)l) s E( la-  E(X)l) 

= l a - E ( X ) l ~ l a - X l + l X - E ( X ) l .  [] 

Consider next an increasing sequence So, ..., S,  of sub-a-fields of a basic 
probability space, where So is trivial. A sequence of random variables Zi, 1 < i  
s n, is called a martingale difference sequence if each Zi is Si-measurable, and 
if E(Z~]2~_ ~)= 0 for each i. We have for every S,-measurable random variable Y, 

Y - E ( Y ) =  ~ Z~ 
i = 1  

where 
Z i = E(Y[ Si)-- E(Y[ S i_ t), 

so that the Zi's form a martingale difference sequence. Most inequalities for 
sums of lid zero mean random variables are also applicable, with minor modifica- 
tions, to martingale difference sequences (see e.g., Steiger (1969), Millar (1969), 
Freedman (1975), Burkholder (1973), Azuma (1967), Chow (1966) and Stout 
(1974, Sect. 4.2)). One that is particularly useful for us is the following exponential 
inequality due to Azuma (1967) (see also Stout (1974, pp. 238-239)): 

Lemma 2. ~2 

P Zi >e < 2 e  ,=1 
i 

where HZill o~ is the essential supremum norm of Zi. 
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4. Proof of Theorem 1 

Let us formally define Z i = a(X1,  ..., Xi), and 

r =- S I f n - f l - E ( . [  I L - f  I). 

To be able to apply Lemma 2, we need an upper bound on every 

IZ~l = IE(.[ If .- f l  I $3 -E( . [  I f , , - f [  IS~_ 1)1, 

since obviously Y = E (.[ [f~ - f  I[ 2 . ) - -  g (.[ [ f ~ - f l l  So). We note that with the nota- 
tion Wi,k = ~ (Kh(X-Xj ) - - f ) /n ,  

i<j<k 

IZil<-_ . [ lE ( [ f~ - f [ ]S i ) -E ( l f o - f l ]21 -1 ) [  

= .[ I E(] Wl,i-1 + Wi,iq- W~+ 1 , , , 1 1 1 : 3 - E ( I  Wx,i-12t- Wi,i-}- Wi+ 1,,,I I Sz-1)1 
<.[sup IE(la+ W~,,I)- la + W~,~I I 

a 

<.[]W~,f-E(W~,3)I+.[E(IW~,~-E(W~,31) (Lemma 1) 

< 4 S I K I  

n 

Thus, by Lemma 2, n~2 
g2 

2 
P ( l Y l f ~ - f l - E ( ~ l f ~ - f l ) l > e ) < 2 e  2n(a~lKl/n)2=2e 32~1KI. []  

5. Data-Based Smoothing Factors 

An automatic kernel estimate is a kernel estimate in which the smoothing factor 
H is a Borel measurable function of the data X 1 . . . .  , X, .  For  particular exam- 
ples, we refer to chapter 6 of Devroye and Gyorfi (1985). Here we establish 
the relative stability of most automatic kernel estimates. For  the automatic 
kernel estimate with smoothing factor H, we will write Jn or J,n for the error, 
and f ,  or f ,  Lr for the estimate, so as to make the dependence upon H explicit. 

We will proceed as in Theorems 1-5. The kernels we will consider here 
are smooth, i.e., there exists a constant C such that 

sup .[[K--Kh[<=C(cd--1) 
l<_h<_c 

for all c > 1. C is called the smoothness constant. Smoothness of a kernel implies 
that small changes in h induce proportionally small changes on f ,  with regard 
to the L 1 distance. For  example, let K be nonnegative, nonincreasing along 
rays, and .[ I K] < oo. (A kernel K is said to be nonincreasing along rays if 
K ( u x ) < K ( x )  for all x s R  d and all u >  1.) For  such kernels, we can take C = 2  
(see Devroye and Gyorfi (1985, p. 187)). When d = 1 and K is absolutely continu- 
ous, we can take C=.[]x][K'(x)]dx+.[[KI (Devroye, 1987). Similarly, when 
K is Lipschitz on the real line, K is smooth. 



528 L. Devroye 

P ( I J , "  E(J,)I> e)< P (H  r 

provided that 

Theorem 6. Consider an automatic kernel estimate on R e based upon a smooth 
kernel K with smoothness, constant C. Then, for all e > 0, and all 0 < a < b < oo, 

n ~  2 

and 

P ( H r  [a, b])< 8(1 + S [K]) 

F/g 2 

4 ( l + ~ l K l ) ( 2 + 8 C + d e l ~  e e 2~ }lKl-<-e" - 8  

Theorem 6 is valid for all densities on R e, and will be our starting point. 
For  example, we have 

Theorem 7. Consider an automatic kernel estimate on R e based upon a smooth 
kernel K. Assume that the smoothing factor H is such that P(Hr  b,]) 

= o ( ~ )  for some sequences of  positive numbers a,<= b, having the property 
that b,/a, = e ~ for some finite k. Then, 

~/nlJ , -E(J~)l=O(]/ log(n))  in probability as n--*oo. 

I f  in addition ~ P (H  r [a,,  b,]) < oo, then 
n 

lim sup 1 /  " [J. -- E (J,)l _< ~/2048 (k + 2) I I g l  almost surely. 
.-+co V logn 

The ratio of the boundaries of the intervals [a,, b,] can diverge at any expo- 
nential rate. We could take [e - ' ,  e"] for example. In this light, the conditions 
on the rate of decrease of P(Hr  b,]) are not restrictive at all. Theorems 6 
and 7 allow us to say things about I J,--E(J,) T provided that we know how 
widely H varies for the application at hand. However, the Theorems are useless 
as stated when, say, H = 0  with probability 1/2. Granted, such estimates are 
totally useless, but it is important to make this point nevertheless. Fortunately, 
when H is extremely small, both J, and its expected value approach 1 + S[K [, 
and similarly when H tends to infinity for n fixed. Thus, with good bounds 
on just how close J, is to 1 + S IKI in these limit cases, it is possible to insure 
that when He[a,  b], JJ,-E(J,)] is smaller than a given small value. The rate 
with which J, tends to 1 + ~IK[ in the extreme cases depends upon the peakedness 
and the smoothness of f and K. It should come as no surprise that for further 
results, just such conditions on f are needed. This is the price paid for letting 
H swing widely. In Theorem 9, we state the results that can be obtained by 
just such a technique. 
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Before we state Theorem 9, it is helpful to recall the following: 

Theorem 8 (Devroye, 1987, Theorem S 1). Consider a kernel estimate on R1 based 
upon a smooth absolutely integrable class s kernel. Then 

E (inf J, h) 
lira h 1. 
, ~  infE(J,h ) 

h 

Theorem 8 is useful for bounding the denominator  of IJ,-E(J.)I/E(J,)  of 
automatic kernel estimates. For  example, it is known that for class s kernels 
and d-- 1, and all f, 

inf E (J, h) > (C + O (1)) n - s/t2 ~ + 1), 
h 

where c is a positive constant depending upon K only (for nonnegative kernels, 
see Devroye and Gyorfi, 1985; in general, see Devroye, 1987). The fact that 
the infimum in the inequality is over all h > 0 does not imply that the same 
lower bound is valid for the expected L1 error of all automatic kernel estimates. 
Indeed, we always have 

inf E (J, h) > E (inf J, h). 
h h 

However, Theorem 8 tells us that indeed 

E (inf J,h) > (c + o(1)) n-s/(2 s + 1). 
h 

Theorem 9. Consider any automatic kernel estimate on R 1 based upon an absolutely 
integrable Lipschitz (hence, smooth) kernel K with compact support. Assume that 
f ~ L l o g +  L (i.e. S f  log(1 + f ) <  ~) ,  and that ~log(1 + Ix l ) f (x)  d x <  oo. Then 

�9 n ~ ~ j ' I K I  h m s u p ]  f n  IJ, n -E(J ,H)I  
,-~oo V logn 

almost surely. 

I f  additionally K is a class s kernel, then the estimate is strongly relatively stable, 
and in fact, 1 

l imsup n4s+2 IJ"H--E(J"H)] _< 1 ~ ] . [ 1 ]  almost surely, 
. ~ logn E ( J n i t )  - -  c - -  

where c is the positive constant depending upon K only that was introduced immedi- 
ately following Theorem 5. 

Theorem 9 is the only theorem in this paper that does not apply to all 
densities on the real line. We have explained above why. Extremely small or 
extremely large values of H occurring with too high a probability cause the 
statements of Theorem 9 to fail for some densities with enormous infinite tails 
or very steep peaks�9 Let us describe the borderline cases. The peak condition 
( f ~ L l o g + L )  is violated when f ( x ) ~  1/(x log2(1/x)) as x$0, but is not when f 
is monotone  $ on [-0, oo), and f ( x ) ~  1/(x log2(1/x) log I +~ log(i/x)) as x$0, where 
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e > 0 is arbitrary. The moment condition on f is violated when f(x)..~ 1/(x log 2 (x)) 
as xl"oo, but for monotone densities on the positive halfline, it is satisfied when 
f(x) ~ 1/(x logZ(x) log 1 +' log(i/x)) as xl"oo, where e > 0. 

In Theorem 9, as in the previous Theorems, no attempt was made to optimize 
the constants in the inequality. Also, the conditions on f and K are such that 
the constants in the asymptotic upper bounds of Theorem are not affected, 
except perhaps via the factor ~ [K[. This means that there is some room for 
improvement. By fine-tuning the arguments, the conditions on f and K can 
be relaxed to the point that the upper bounds become functionals involving 
both functions. In view of the fact that K can be chosen by the user, and 
that the conditions on f are truly weak in the present form, we will not pursue 
this matter any further. 

6. Proofs of Theorems 6-9 

Proof of Theorem 6. Let S = {ho, hi . . . .  , hm} be a collection of h-values defined 
as follows: i 

de\~ 
h~=a 1 + ~ ) ,  i=0,  1,2 . . . . .  m. 

The number m is obtained from the condition that hm is the first number at 
least equal to b. Thus, using log(1 +u)>u/(1 +u), valid for u>0 ,  we have 

m =  dlog log 1+ < 1 4  log . 
e 

Let V be determined from H by the following rule: V= h~ if hi<H < hi+ 1 for 
some 0 < i < m. If H < a, then V = a. If H > b, then V= b. In S, replace h,, by 
min(h,,, b). Let D be the event [_He[a, b]] and let D c be its complement. Note 
that 

IJ, H-J,  vI < [d,H--d, vl ID + 2(1 + S I KI)Ioc 

<C((1  +~)de\l/a - 1) + 2(1 + S I IK l) IDo 

< C [ de \ I e _- ~ ) + 2 ( 1 + I I K I )  oo=g+2(l+I[KI)I.o 

and 

Thus 

I E(J,H)-- E(J,v) l = ~ +  2(1 + ~ I K l) P(D~). 

P(IJ=.-EU=.)I>O 

_-< p(I & -E(J.01 + 4 + 2 ( 1  + i I K I) 1.o + 2(1 + I I K I) P(D ) 

<=P([J,v--E(J,v)I>2)+ P(D~) 
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when P(D ~) 5 el(8 (1 + ~}K 1)). Next, 

I J.v-- E(J.v) l = ] ~ J.h~I[v=hd-- E(~ J.h~ l[v=hd) { 

= I Z (J.~,- e(J.O) IE~ =.,~- ~(Z (J..,- e(J.O) ILv =~J) l 

< max I J.h~- E (J, O I + E (max I J, h~-- E (J,h)I) 
i i 

where we used the fact that ~ Itv = hd = 1. Thus, 
i 

P(IJ.z~- E(J.n)I> ~) 

_-<P max IJ.h,-E(J.Ol+E( max JJ, h,--E(J,h,)])> + P ( D  ~) 
\O<_i<_m O<=i<m 

<__(m+ 1)sup P(D 
h > 0  \ 

when P(DC)<=~/(8(I+SIK])) and E(max ]J,k,--E(J,h)l)<e/4. The last condition 
i 

is satisfied when 2 ( I +  S[KI)(m+ 1)sup P(IJ, h--E(J,h)l>e/8)<~/8. Now apply 
Theorem 1. [] h > 0 

Proof of Theorem 7. Theorem 7 follows directly from Theorem 6, first by taking 

e=-c l l / i~ /n  for some large constant c, and then by setting c equal to 

1/2048 (k + 2 + iS) S I K I for some small 6 > 0, and applying the Borel-Cantelli lem- 
ma. []  

Proof of Theorem 9. k and q are positive constants to be picked further on. 

Define the interval A = [a, b] A__ [e-,~, e,,], and relate the random variable H* 
to H in the following manner: 

By Theorem 7, 

[ e "q, if H > e "q 

H*=]H, if e"">_H>_e -"k. 
--nk 

[ e  , if e-"~>H 

lim sup l//~, ~ -  ] J , ~ , - - E ( J , m , ) I ~ ~ T q + 2 ) S I K I  
n ~  I/ logrt 

almost surely. 

(We will later see that we can take k and q slightly larger than ) and �89 respective- 
ly.) Also, 

[J,t~-J,n,l<=2sup 11+ S lKl-- J, hl. 
hr 
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By the triangle inequality, the fact that I J,,h I < 1 + S I K l, and an application of 
Theorem 8, Theorem 9 is proved if we can show that 

lim sup 1 f n -  sup ll + ~ IKI--Jnhl = 0  
, - ~  [/ logn hC.a 

and 

almost surely 

�9 n ) hmsuPl ,//~ n~ E(sup I1 + II/<i-J..l :0. 
n-- ,oo I/ logn \ h ~ a  

We will achieve this by showing that for every 0, ~ > 0, we have for all n large 
enough, 

( P supl l+~lKl--J ,  hl>O <nl+~, 
\h~A 

and applying the Borel-Cantelli lemma. This will be done in turn by considering 
the suprema over h < a and h > b separately, s b 

Assume that K vanishes off [ - s ,  s]. Take a =2nn where 6 > 0 is a constant 

to be picked further on. Let N be the number of Xi's for which [X i -  2 a, Xi + 2 a] 
has at least one X~ with j ~e i, and let D be the union of the sets [X~-  a, X i + a] 

n - N  
for those X~ not counted in N. Note that 1> S [f, hl /~lK[> , uniformly 
over h < a. We have for arbitrary e > 0, D n 

P(sup.<: I~ I f . . - f l - ( '  + SlKI)I>=~)<=P(sup\.<: ~ I f..I i__< SlKI-3) 

15<p(f~) wherepA=s-'~+(f) exPt/ 12j'~(f,_),l/x ~\ and i/s(u) A--ulog(l+u). if To 
% 

show this, we note that ~ is convex, and that for u > 0, ~-1  (U)~_~ 2u/log(1 + u). 
Let 2 be Lebesgue measure. For any set B with 2(B)< ~ O(f), 

1 {S ~ ( f ) ]  (Jensen's inequality) 

2j'~(f) < 
= log(1 + S ~s(f)/2(B))" 

Take 6 so small that uniformly over all sets B with 2(B)<sfi, S f<,~/6. By 
B 

the inequality given above, this can be done if 6 =<s-1~ ~b(f) exp 

- 1 / .  Note in passing that 2(D)<=s6. It suffices to show that sup ~ ]f,,h] 
/ B: .~(B) < s ~  B 

=>~[KI-8/3 implies that ~[f,,h--fl>=l+SIKt--e.. We have S ]f,,h--f[>~]K[ 
B 
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- e / 3 - ~ f  I If, h--fl > S f - -  ~ If.hi, which is at least i-[.f-el3. Summing 
B B e B e B e B 

this and noting that I f <  ~/6 shows that ~lf, h--fl > 1 + SlKI-~. 
B 

The previous facts can now be combined to conclude that for 6 small enough, 

(N \ P(supliIf""-fl-(l+I]KI)l>~)<=Ph<. > + P I ~ - > ~ ) "  

By Markov's inequality, this can be made smaller than a given small constant 
el if 

EN ~ A 
- - < m i n ( 1 ,  ~ J - -  =e2- 

n 3 IKI 

Note that we will take ~=0 l o ~ - ~ ,  and el=l/n 1+r Thus, for all n large 

enough, e z =(0 l o ~ ) / ( 3  f I11 n~+3/z). But 

[ x+s6/n ) 

EN/n<~f(x)min[1, n ~ f(y)dy dx 
\ x - s 6/n 

x+sS/n 

<2s6If(x)~s 6 I f(y)dydx 
x - s ~ / n  

l(Io(J)  <=2s6~f(x) O- \ 2 ~ ]  (Jensen's inequality) 

2 n ~ ( f )  < 

= log(1 + n f O(f)/(2s 3))" 
Thus, we need to choose 6 such that 

5<~ss~O(f)/(exp(-2n~2('))-i ). 

We can now choose k because a = e x p ( - n  k) and a=s6/(2n). One can verify 
that for n large enough, 

5=~e'~<~s~t~(f)/(exp(-2n~(f))-I ) 

when k = 5 + ( + ~ /  for arbitrary small ~1>0. We conclude that for all n large 
enough, 

P(shup II ]f~.--fl--(1 + I IKI)I>O V ~ - )  =~:~:" 

We finally consider the case h > b. Let co be the modulus of continuity of 
K defined by co(u)=sup sup [K(x)-K(x+y)l. By our assumptions on K, ~o(u) 

x lyl=<u 
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<=lu for some constant / > 0  and all u>0 .  Let t arid T>t be positive numbers 
z-t- t 

e <~- Also, chosen in such a way that ~ I KI--> I I g l  - ~  and sup ~ I / I  = 4" 
t_<lxl_<T z z - t  

T should be so large that ~ f <  e/(6 ~ [K [). This fixes t and T once and for 
Ixl__>r 

all. Let N be the number of X/'s with [Xi[ > T. We have the following inequality" 

~ [fnh--Khi<=(T--t)co(~T)+N ~[K]. 
th<lxi<Th 

This can best be seen by noting that 

If.h--ghl= 1 ~ (G(x-X,)-K,(x)) 
i=1  

<=1 ~ sup lKh(x--y)--Kh(x)l+ 1- ~. IKh(x-XDI 
n i:lXd<_T lYl<T n i : lx i l>T 

<!U2]+! 
=h \h i  n 2 IG(x-Xkl .  

i:lXd>r 

Now, integrating over the given interval and noting that h > b yields the result. 
For h >=b, 

~lf.h-fl>= I If.hi- ~ f+  S f -  ~ If.,l 
th<lxl<Th t h < = l x l < _ T h  [x[<th [xl<=th 

~= ~ [ K h [ - -  ~ [fnh -Kh] -- I f 
th<=lxlNrh thNlxl<_ Th th<=lx[<= Th 

+ I f _ l _ ~  ~ ]gh(X_X/)l 
[xi<=th H /=1  [x[<=th 

r )  z + t 
>~[Kl--4--(W--t)co - - ~ [ K [ N + I - 2  ~ f - s u p  ~ [K[ 

FI th<_[x[ z z - t  

>t'lKI--4--(V-0<~(~-)--flKIm--+l--2 .f f---~ 
= 71 tb<lxl 4 

2~ ~1 I N_ >__~IKI+I- 3 - -  j K n 

if b is so large that (T-t)  o)(T/b)+ 2 ~ f__< e/6. Thus, 
th<lx[ 

P(sup~[f~h-f[<=l+~lKl-O<P( N> ~ ) 
h ab  = = 3 S I K I  " 
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Note that EN/n= ~ f<e/(6~lK]) by our choice of T. Thus, 
Ix[>r 

,~ ~<p{N-EN> 8 ~e 24SIKI. 
P > 3 I I g l } - -  \ n = 6 I I 1 1 -  

The last inequality is obtained by an application of Bennett's inequality (Bennett, 
1962), which in a form convenient for us states that if X is binomial (n, p), 
then P(X-EX>nu)<__exp(-nuZ/(2p(1-p)+2u)) for u>0 .  This is used with 

p < u  = e/(6 ~IK I). We now replace e by 0J/log n/n, and note that, provided that 
we can choose t, T and b as required for such an e, 

~ H )  O]/nlogn 
P supl~lf, h-fl-(l+~lgl)l>O <e  24SIKI . 

\h>b 

It remains to be verified that we can choose t, Tand b. By the Lipschitz condition, 

we see that ]K I < / ~ l / 7 ~  A--K*, so that we can pick t=e/(8K*). Next, r is 
picked by 

T=exp(6J'lKI,flog(1 ~+ Ixl)f(x) ax_). 
This insures that 

f<i<_~log(l+]xi)f(x)dx e 
log(1 + T) < - - "  Ixl>=T = 6 ~ l K I  

8 
The condition ~ I K I ~ S I K I - ~  is obviously satisfied for n large enough, 

t<lxl<T 
by the choice of t, and the fact that T-+ oo. Finally, the condition involving 
b is satisfied if l Te/b<e/12 and ~ f<e/24. Using the same logarithmic 

tb<=lx[ 
bounding technique again, we see that it suffices to take 

b>max(121eT2,1t exp(24~l~ f(x)dx)). 

Since b = exp (nq), we see that such a b can be found provided that q > 1/2. [] 
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