Journal of Cybernetics and Information Science

VOUME 1 NUMBER 2 THRU 4 SPRING - SUMMER - FALL 1977

SPECIAL ISSUE ON LEARNING AUTOMATA

Luc P. Devroye*
School of Computer Science
McGill University
Montreal, Canada H3A 2K6

Abstract

A probabilistic automaton with an expanding memory is presented. Its asymptotic properties as a stochastic optimization technique are studied. The procedure is shown to be convergent under very mild conditions on the statistical characteristics of the random environment.

1. PROBLEM FORMULATION

A finite random environment is a finite collection of distribution functions on $\mathbf{R}^{\}}$, say $\left\{F_{1}, \ldots, F_{N}\right\}$. It is assumed that F_{1}, \ldots, F_{N} are unknown. To gather some knowledge about we can apply a strategy x_{i} (ic[1,..,N\}) to the environment which responds with a number Y where Y is a random variable with distribution function $F_{\mathbf{i}}$ in $\mathbf{R}^{\mathbf{l}}$ and mean.

$$
\begin{equation*}
Q\left(x_{i}\right)=\int y \cdot d F_{1}(y)=E_{x_{i}}\{Y\} \quad, 1=1, \ldots N \tag{1}
\end{equation*}
$$

$Q\left(x_{i}\right)$ is the expected loss with strategy x_{i}.
The problem of the sequential selection of the best of the N strategies $x_{i}, i=1, \ldots, N$ has been extensively dealt with in the literature. One of the most popular methods to tackle this problem was the stochastic automaton with a variable structure (for a survey, see [1]). To describe the strategy selection process, we assume that there exists a discrete probability density on $\left\{x_{1}, \ldots, x_{N}\right\}$, say $P_{n}=\left(P_{1 n}, \ldots, P_{N n}\right)$ so that

$$
\begin{align*}
& P_{i n}=P\left\{X_{n}=x_{1}\right\} ; i=1, \ldots, N ; n=1,2, \ldots \\
& \sum_{i=1,} P_{i n}=1 ; n=1,2, \ldots \tag{2}
\end{align*}
$$

where $x_{n} f\left[x_{1}, \ldots, x_{N}\right\}$ is the strategy that is picked at epoch n. In general, the selection vector P_{n} is a random vector. Let Y_{n} be the loss that is observed after X_{n} is applied to the environment. The expected loss with P_{n} is

$$
\begin{gathered}
M_{n}=E\left\{Y_{n} \mid P_{n}\right\}=\sum_{i=1,}^{N} E_{x_{i}}\{Y\} \cdot P\left\{X_{n}=x_{i} \mid P_{n}\right\} \\
=\sum_{i=1}^{N} P_{i n} \cdot Q\left(x_{i}\right)
\end{gathered}
$$

A probabilistic automaton is a set of rules for computing P_{n+1} given ($\left.P_{j}, X_{j}, Y_{j}\right), j=1, \ldots, n$ (see [1-5]). A probabilistic automaton is said to be optimal if

[^0]\[

$$
\begin{equation*}
\lim _{n} E\left\{M_{n}\right\}=\inf \left\{Q\left(x_{1}\right), \ldots, Q\left(x_{N}\right)\right\} . \tag{4}
\end{equation*}
$$

\]

We remark that in general random environments (i.e., no restrictions are imposed upon the F_{i} except for the existence of the $Q\left(x_{i}\right)$), only the performance directed probabilistic automaton [5] is known to be optimal.

The problem naturally arises of whether it is possible to find a probabilistic automaton that is optimal in countably infinite (c.i.) random environments $\varepsilon=\left\{F_{1}, F_{2}, \ldots\right\}$. We will show in this paper that if the variances associated with the F_{1}, F_{2}, \ldots are uniformly bounded and inf $\left\{Q\left(x_{1}\right)\right.$, $\left.Q\left(x_{2}\right), \ldots\right\}>-\infty$, then the answer to this problem is affirmative. We will first classify the random environments according to the characteristics of the F_{i} in \mathcal{E}. Thereafter, we describe two probabilistic automata, P1 and P2, and prove their optimality as well as some other asymptotical properties. The emphasis is on the new techniques employed to prove the convergence of the said procedures.

2. A GENERAL SETTING

The importance of the class of c.i.random environments is the following. One way to tackle the multimodal stochastic optimization problem in $\mathbb{R}^{m}(\mathrm{~m} \geq 1)$ is to partition \mathbb{R}^{m} into small compact sets (for instance, rectangles) and consider each rectangle as one strategy to be applied to a c.i. random environment. We can thus reduce the optimization problem to the problem of finding the best strategy in a c.i. random environment provided that the rectangles are small enough. The c.i. random environments are but a special case of general random environments which are characterized as follows. Let $(\Omega ; Q, P)$ be a probability space and let B be a closed set from \mathbb{R}^{m}. Let β_{B}^{m} be the σ-algebra of all the Borel sets that are contained in B. Let \mathcal{B}^{1} be the σ-algebra of all the Borel sets from \mathbb{R}^{1} and let h be a measurable mapping from ($\left\{\times B, G \times B_{B}^{m}\right.$) to ($\mathbb{R}^{1}, \Omega_{\text {l }}$). Notice that for every $x \in \mathbb{R}: y=h(\omega, x)$ is a random variable on (Ω, P). We say that a
collection

$$
\begin{equation*}
\varepsilon=\left\{F_{\mathbf{x}}(.) \mid x \in B\right\} \tag{5}
\end{equation*}
$$

of distribution functions is a randon environment with search domain B if B is a closed set from \mathbb{R}^{m} for some m, and if there exists a probahility space (Ω, Q, P) and a $\left(\Omega \times B, C \times \Omega{ }_{B}^{m}\right)-\left(R^{1}, B^{1}\right)$ measurable function h such that for all yel?:

$$
F_{x}(y)=P\{\omega \mid \omega \in \Omega, h(\omega, x) \leq y\}
$$

Notice that if B is countable or finite, then such a probability space and measurable function h can always be found. Thus it makes sense to say that a c.i. random environment is a countable collection of distribution functions on \mathbb{R}^{1}.

The reason for this definition is the following. Let X be any random vector (on some probability space ($\left.\Omega^{\prime}, G^{\prime}, P^{\prime}\right)$ that is different from (Ω, G, P)) taking values in B, then $Y=h(\omega, X)$ is a random variable on the product of both probability spaces.

We will assume, for all the sequences x_{1}, \ldots, x_{n} of random vectors that are applied to the environment, that the corresponding observed losses are independent random variables given that $X_{1}=x_{1}, \ldots$ $\ldots, x_{n}=x_{n}$ for all $x_{i} \in \mathbb{R}^{m}, i=1, \ldots, n$. We will refer to

$$
\begin{equation*}
Q(x)=\int y \cdot d F_{x}(y) \stackrel{\Delta}{=} E_{x}\{Y\} \tag{6}
\end{equation*}
$$

as the stochastic performance index. Q is assumedly a Borel measurable function from B to \mathbb{R}^{1}. Of course except for B, no knowledge is available about ε and Q. The problem is to sequentially find a value $x \in B$ for which Q is minimal or nearly minimal. But this is exactly the stochastic optimization problem. The reader is referred to [6] for a survey of the most popular stochastic optimization techniques. The choice of a particular technique depends upon the a priori knowledge about $\mathcal{\varepsilon}$ and Q (is Q smooth ? unimodal ? differentiable ? etc.). For unknown ε and Q, random search is probably the most frequently used optimization method (see [7],[9] for surveys), the asymptotic behavior of which is studied in [8]. In this paper an expanding automaton is presented which generalizes the finite automaton of [5] for use in general random environments.

We assulle that there is a random generator covering $B, i . e$. a device for generating a sequence $X_{1}, \ldots X_{n}, \ldots$ of iid random vectors taking values in B and distributed as X where X has a (known or unknown) distribution function G. The minimum of Q with respect to G is

$$
\begin{equation*}
q_{m i n}=\text { ess } \inf Q(X) \tag{7}
\end{equation*}
$$

For a definition of the essential infimum, see [10]. Actually, $q_{\text {min }}$ is the unique number with the property that for all $\varepsilon>0: P\left\{Q(X) \leq q_{\min }{ }^{-\varepsilon}\right\}=0$ and $P\left\{Q(X)=q_{\text {min }}+\cdots 0\right.$ provided that $q_{\text {min }}>-\infty$. We remark that if B_{w} is a countable set $\left\{x_{1}, x_{2}, \ldots\right\}$ and G puts mass g_{i} at x_{j} such that

$$
\begin{aligned}
& \because_{i=1}^{g_{i}}=1 ; 0: g_{i} \leq 1 ; i=1,2, \ldots \text {, then } \\
& q_{\min }=\inf _{i: g_{i}>0} Q\left(x_{i}\right) .
\end{aligned}
$$

In this case $a_{\min }$ is independent of G as long as every x_{i} receives positive probability from G. We distinguish between the following types of random environments:
(i) ε is $\&$ (deterministic, noiseless, etc.) if

$$
\begin{equation*}
\sup _{x \in 1} E_{x}\left\{\left(Y-(Q(x))^{2}\right\}=0\right. \tag{8}
\end{equation*}
$$

which is equivalent to saying that for all x in B : $Y=Q(x)$ WPI (with probability one).
(ii) ε is $\varepsilon_{t}(t>0)$ with parameter Loo if

$$
\begin{align*}
\sup _{x \in B} E & \left.x_{x}!|Y-Q(x)|^{t}\right\} \\
& =\sup _{x \leq B} \int|y-Q(x)|^{t} d \Gamma_{x}(y) \leq L<\infty . \tag{9}
\end{align*}
$$

(iii) © is \mathfrak{i} exponential) if for every $\varepsilon>0$ there exists a $c(.) \sim 0$ such that

$$
\begin{gathered}
\sup _{x \in B} E_{x}\left\{e^{\lambda(Y-Q(x))}\right\}=\sup _{x \in B} e^{\lambda(y-Q(x))} d F_{x}(y) \\
\leq e^{|\lambda| \varepsilon} \text { for all } \lambda \in[-c(\varepsilon),+c(\varepsilon)] .
\end{gathered}
$$

If an environment is $:$ then it is K and if it is $: ~:$ then it is ε_{t} for all $t>0$. If ε is ε_{t} then ε is $\varepsilon \mathrm{g}_{\mathrm{g}}$ for all s with $0<\mathrm{s}<\mathrm{t}$. If ε is ε_{2} with parameter $\mathrm{L}=0$ then \leqslant is $\&$. It should be pointed out that most environments of any practical interest are x. For instance, if F_{x} puts mass 1 on $[Q(x)-a, Q(x)+a]$ for some $a<x$ and for all $x \in B$, then the environment is \therefore. Also, if all F_{x} are gaussian with a variance that is not yreater than some $a<$, then ε is:

3. DESCRIPTION OF THE AUTOMATON

In an iterative optimization procedure, one generates a sequence of random vectors Z_{0}, Z_{1}, \ldots where for all $n, Z_{n} \in \mathbb{R}^{m+k}$, i.e. $Z_{n}=\left(x_{n}, Z_{n}^{\prime}\right)$ with $X_{n} \in \mathbb{F}^{m}$ and $Z_{n}^{\prime \in R^{k}} . X_{n}$ is the best estimate of the minimum (or: basepoint) at epoch (or: iteration) n.

We describe two very similar iterative optimization procedures, P1 and P2. Let $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\},\left\{\delta_{n}\right\}$ and $\left\{n_{n}\right\}$ be sequences from $[0,1]$ that are picked by the designer in a special way in order to insure the convergence of the procedures Pl and P 2 and to obtain the desired rates of convergence. For procedure Pl , let $\left\{\mathrm{b}_{n}\right\}$ be a sequence of integers with $1 \leq b_{n} \leq n$ for all n. For procedures $P 2$, let $\left\{k_{n}\right\}$ be a sequence of integers with $1 \leq k_{n} \leq n$ for all n. Then the expanding probabilistic automaton can be described as follows.
(i) Z_{0} (and thus X_{0}) is either given or selected by the designer. Z_{0} is sometimes referred to as the initial state. Notice that one can always randomly generate X_{0} with distribution function G in $\mathbb{R}^{m} \cdot X_{0}$ is then applied to the environnent and a loss Y_{0} is observed. Let $H_{0}=\left(X_{0}, Y_{0}, 1,0\right)$ and let $\left\{H_{n}\right\}(n \geq 0)$ be a sequence of randon vectors composed of a growing number of quadruples. H_{n} can be thought of as the memory at epoch n. Let L_{n} be the number of quadruples in H_{n}, say

$$
H_{n}=\left(W_{1}, \bar{Y}_{1}^{n}, \bar{N}_{i}^{n}, T_{1}\right), \ldots,\left(W_{L_{n}}, \bar{Y}_{L_{n}}^{n}, \bar{N}_{L_{n}}^{n}, T_{L_{n}}\right)
$$

where $W_{i} \in R^{\prime \prime \prime}$ and where $N_{i}^{\prime \prime}$ is the experience gained with W_{i} up to epoch n,i.e. N_{i}^{n} is the number of times that W_{i} was applied to the environment up to epoch n. T_{i} is the iteration at which W_{i} was first generated and added to H_{n}. We say that T_{i} is the birth date of $W_{i} . \stackrel{Y}{Y}_{i}^{n}$ is the average of the N_{i}^{n} losses that were observed after W_{i} was applied to the environment. \bar{Y}_{i}^{n} obviously serves as an estimate of $Q\left(W_{i}\right)$. We will see that $1=L_{0}{ }^{K} L_{1}-L_{2} \leq .$.
(ii) Proceed to the next iteration, say the n-th. H_{n-1} and Z_{n-1} are known. X_{n-1} is the basepoint before the n-th iteration and H_{n-1}, as we know, contains L_{n-1} quadruples. We generate an independent random variable U_{n}^{\prime} where

$$
\begin{align*}
U_{n}^{\prime}= & 1 \\
& \text { with probability } \alpha_{n} \tag{11}\\
& 0 \text { otherwise . }
\end{align*}
$$

If $U_{n}^{\prime}=0$, no new quadruple is generated so that $L_{n}=L_{n-1}$. We proceed to (iv). If $U_{n}^{\prime}=1$, a new quadruple is generated and tested. We let $L_{n}=L_{n-1}+1$ and proceed to (iii) for the generation of this new quadruple.
(iii) Generate an independent random variable U_{n} where

$$
\begin{align*}
U_{n}=1 & \text { with probability } \eta_{n} \tag{12}\\
0 & \text { otherwise . }
\end{align*}
$$

If $U_{n}=1$, we generate W_{L} at random in B using the random generator with the distribution function G. If $U_{n}=0$, then W_{L} is a random vector taking values in B and having an arbitrary distribution function in \mathbb{R}^{m}. W_{L} may depend in an arbitrary fashion upon H_{n-1} and Z_{n-1}. We require that $P\left\{W_{L_{n}} \in B\right\}=1$ for all n.
$W_{L_{n}}$ is then applied to the environment and Y_{n} is the observed loss. We can now obtain H_{n} as
follows. Let

$$
H_{n}=H_{n-1},\left(W_{L_{n}} \cdot \bar{Y}_{L_{n}}^{n}, \bar{N}_{L_{n}}^{n}, T_{L_{n}}\right)
$$

where $Y_{L_{n}}^{n}=Y_{n}, N_{L_{n}}^{n}=1$ and $T_{L_{n}}=n$. Proceed to (v).
(iv) If no new quadruple is generated then the experience with one of the W_{i} in H_{n-1} has to be increased. We describe first how to pick a member W_{i} from H_{n-1}. Generate an independent random variable V_{n} where

$$
\begin{align*}
V_{n}= & \text { with probability } \beta_{n} \tag{13}\\
0 & \text { with probability } \gamma_{n} \\
& -1 \text { with probability } \delta_{n}=1-\beta_{n}-\gamma_{n} .
\end{align*}
$$

If $V_{n}=1$, we pick the basepoint X_{n-1} from $W_{1}, \ldots, W_{L_{n-1}}$. If $V_{n}=0$, a point is picked at random from $W_{1}, \cdots, W_{L_{1}}$,i.e. a uniform distribution is used over the L_{n} points in H_{n-1}. If $V_{n}=-1$, then a point is picked from $W_{1}, \ldots, W_{L_{~}}$ in some clever way (in order to achieve some goà , accelerate the rate of convergence, etc.) but it is not specified how the selection. is to be made.

Let the selected point be $W_{I_{n}}$ where $1 \leq I_{n} \leq L_{n-1}=L_{n}$. Apply $W_{I_{n}}$ to the environment, observe a loss Y_{n} and update H_{n-1} in the obvious way. That is, let $H_{n}=H_{n-1}$ except that $\left(W_{I_{n}}, \bar{Y}_{I_{n}}^{n-1}, N_{I_{n}}^{n-1}, T_{I_{n}}\right)$ is replaced by $\left(W_{I_{n}}, \bar{Y}_{I_{n}}^{n}, N_{I_{n}}^{n}, T_{I_{n}}{ }^{n}\right)$ where

$$
\begin{align*}
& \bar{Y}_{I_{n}}^{n}=\left(Y_{n}+N_{I_{n}}^{n-1} \cdot \bar{Y}_{I_{n}}^{n-1}\right) /\left(1+N_{I_{n}}^{n-1}\right) \tag{14}\\
& N_{I_{n}}^{n}=1+N_{I_{n}}^{n-1} .
\end{align*}
$$

(v) Now that we have made one observation at the n-th iteration and have obtained H_{n} and L_{n}, we have to decide which of the points $W_{1}, \ldots, W_{L_{n}}$ is most likely to have the lowest corresponding value $Q\left(W_{i}\right), i=1, \ldots, L_{n}$. The new basepoint X_{n} is picked from $W_{1}, \ldots, W_{L_{n}}$ in the following way (notice that it is at this ${ }^{n}$ point that the procedures P 1 and P 2 are different from each other). With the procedure P1, we look for all the quadruples in H_{n} for which

$$
\begin{equation*}
N_{i}^{n} \geq b_{n} \quad\left(i=1, \ldots, L_{n}\right) \tag{15}
\end{equation*}
$$

Among these quadruples, pick the one that corresponds to the lowest value \bar{Y}_{j}^{n} and let the corresponding W_{i} be X_{n}. Ties are broken randomly. If there are no quadruples with $N_{i}^{n}>b_{n}$, let $X_{n}=X_{n-1}$. With procedure P2, we look for all the quadruples in H_{n} for which

$$
\begin{equation*}
T_{i} \leqslant k_{n} \quad\left(i=1, \ldots, L_{n}\right) \tag{16}
\end{equation*}
$$

and proceed in a similar fashion. We remark here that the procedures P1 and P2 can be carried out recursively,i.e.we do not have to check all the quadruples in H_{n} all over again at every iteration. The methods for reducing the computational burden are standard and are left to the reader. Note that P1 selects the basepoint among the W_{i} of H_{n} with a large experience while P 2 selects the basepoint among the W_{i} of H_{n} with the highest "ages" (i.e.,earliest birth dates).
(vi) We remark that it is up to the designer to specify the random vector Z_{n}^{\prime}. How Z_{n}^{\prime} is updated or computed from Z_{n-1}^{1}, H_{n}, etc. is left in the middle. These updating mechanisms can play an
important role in obtaining a high rate of convergence. In fact, it is in this stage that the vast experience of the designer can pay off. For instance, Z_{n-1}^{1} can be used to help generate $W_{L_{n}}$ in a promising small subset of B. In any case, the nature of Z_{n-1}^{1} and of the updating mechanisms is of no importance whatsoever to establish the convergence of the algorithm.
(vii) (ii-vi) constitute one basic cycle (iteration) of the search process. Go back to (ii). If the random environment is countably infinite, then the algorithm can be modified because the identification problem for points in B can be solved. That is, if $U_{n}^{\prime}=1$, (and thus $W_{L_{n}}$ is some random vector taking values in B), then it is decidable whether $W_{L_{n}}=W_{i}$ for some i with $1 \leq i \leq L_{n-1}$. If this should happen, then of course $L_{n}=L_{n-1}$ (not : $L_{n}=L_{n-1}+1$) and we can proceed from step (iii) to step (iv) for updating H_{n-1}. For this slightly modified procedure, all the theorems of this paper remain valid. Another modification for which the theorems of convergence remain valid (the proofs need minor modification), consists of rejecting $W_{L_{n}}$ if $U_{n}^{\prime}=1$ and $W_{L_{n}}=W_{i}$, some $1 \leq i \leq L_{n-1}$. In case of a rejection, other points are generated (using new and independent U_{n}) until one point is found outside $W_{1}, \ldots, W_{L_{n-1}}$. If the random environment is not finite, if the support of G is infinite and if $\eta_{n}>0$ then this procedure is bound to stop in finite time.

Both modifications are geared to prevent a loss of information in the sense that, with the modifications, we will have for all n and all i, j, with $i=1, \ldots, L_{n} ; j=1, \ldots, L_{n} ; i \neq j$, that $W_{i} \neq W_{j}$.
Let $W_{0}^{1}, W_{1}^{\prime}, W_{2}^{\prime}, \ldots$ be the sequence of inputs to the environment. The reader will have no difficulty, assuming that the random environment is countably infinite, finding the description of the infinite dimensional discrete probability vector according to which the W_{n}^{\prime} are to be generated, both with the original procedure and the modified procedures.

4. CONVERGENCE OF THE PROCEDURE

The random variables that are of interest to us all have the form $f\left(Z_{n}\right)$ where f is a Borel measurable mapping from \mathbb{R}^{m+k} to \mathbb{P}^{l}. Let $x_{0}, x_{1}, x_{2}, \ldots$ be the sequence of basepoints in B and let $W_{0}^{\prime}, W_{1}^{\prime}, W_{2}^{\prime}, \ldots$ be the sequence of inputs to the environment. In classical optimization one is mainly interested in

$$
\begin{equation*}
Q_{n} \triangleq Q\left(X_{n}\right) \tag{17}
\end{equation*}
$$

while in automata theory, the expected loss at epoch n is also important :

$$
\begin{align*}
& M_{n}=E\left\{Y_{n} \mid\left(H_{n-1}, Z_{n-1}\right)\right\}= \\
& E\left\{Q\left(W_{n}^{\prime}\right) \mid\left(H_{n-1}, Z_{n-1}\right)\right\} \\
& =\alpha_{n} \cdot E\left\{Q\left(W_{L_{n}}\right) \mid\left(H_{n-1}, Z_{n-1}\right)\right\}+ \tag{18}\\
& \left(1-\alpha_{n}\right) \cdot E\left\{Q\left(W_{I}\right) \mid\left(H_{n-1}, Z_{n-1}\right)\right\}
\end{align*}
$$

Further we can also define

$$
\begin{align*}
M_{n}^{\prime} & =E\left\{Y_{n} \mid\left(H_{n-1}, Z_{n-1}, U_{n}^{\prime}, U_{n}, V_{n}\right)\right\} \\
& = \begin{cases}Q\left(W_{L_{n}}^{\prime}\right) & \text { if } U_{n}^{\prime}=1 \\
Q\left(W_{I_{n}}\right) & \text { if } U_{n}^{\prime}=0\end{cases} \tag{19}
\end{align*}
$$

$$
(n=1,2, \ldots)
$$

where $M_{1}^{\prime}, M_{2}^{\prime}, \ldots$ is the sequence of observed losses if ε were a noiseless environment. We will see in theorem 1 that the convergence of Q_{n} to $q_{\text {min }}$ is of crucial importance in the study of the convergence of M_{n} and M_{n}^{\prime}.
Let $a v b=\operatorname{Max}(a, b)$ and introduce the condition

$$
\begin{equation*}
\sup _{x \in B}|Q(x)| \leq K_{1}<\infty . \tag{20}
\end{equation*}
$$

We already know that if $Q_{n} v q_{\text {min }} \rightarrow q_{\text {min }}$ in L_{r} (where $r>0$) as $n+\infty$ (i.e. $\lim _{n} E\left\{\left|Q_{n} v q_{\min }-q_{\text {min }}\right| \mu=0\right.$) , then $Q_{n} v q_{\text {min }} \rightarrow q_{\text {min }}$ in probability as $n \rightarrow \infty[10]$. If (20) holds, then the converse is also true. We further have

$$
\begin{equation*}
M_{n}=E\left\{M_{n}^{\prime} \mid\left(H_{n-1}, Z_{n-1}\right)\right\} \tag{21}
\end{equation*}
$$

with probability one. In all the following theorems we assume that the condition Cl holds : Condition Cl : Let Z_{0}, Z_{1}, \ldots be generated through the procedure ($i-v i i$) where $B \subset \mathbb{R}^{m}$, is a random environment with search domain $B,\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\}$ and $\left\{n_{n}\right\}$ are sequences from $[0,1],\left\{b_{n}\right\}$ (for $P 1$) and $\left\{k_{n}\right.$ ' (for P2) are integer sequences such that $1 \leq b_{n} \leq n, l \leq k_{n} \leq n$ for all n and $q_{\min }>-\infty$.

Theorem 1 :

(i) Let the conditions Cl and (22) hold.

$$
\begin{equation*}
\lim _{n} \alpha_{n}=0 \quad i \lim _{n} \beta_{n}=1, \tag{22}
\end{equation*}
$$

If

$$
\begin{equation*}
Q_{n} v q_{\min } \rightarrow q_{\min } \text { in probability as } n \rightarrow \infty \tag{23}
\end{equation*}
$$

then

$$
M_{n}^{\prime} v q_{\min } \rightarrow q_{\min } \text { in probability as } n \rightarrow \infty
$$

If in addition (20) holds, then $M_{n}^{\prime} v q_{\min } \rightarrow q_{\min }$ in L_{r} as $n \rightarrow \infty$ for all $r>0$ and $M_{n} v q_{\min } \rightarrow q_{\min }$ in probability and in L_{r} (for all $r>0$) as $n \rightarrow \infty$.
(ii) Let the conditions Cl and (22) hold. If

$$
\begin{equation*}
Q_{n} v q_{\min } \rightarrow q_{\min } W P I \text { as } n \rightarrow \infty \tag{24}
\end{equation*}
$$

then

$$
M_{n} v q_{\min } \rightarrow q_{\min } W P l \text { as } n \rightarrow \infty
$$

Theorem 1 is proved in the Appendix. Note that in general it will be impossible to insure that $M_{n}^{\prime} v q_{\text {min }} \rightarrow q_{\text {min }} W P 1$ as $n \rightarrow \infty$. Indeed, for the latter type of convergence we need that $\Sigma \alpha_{n}<\infty$ but this contradicts the condition $\Sigma \alpha_{n}=\infty$ that is needed, as we will see, for the convergence of $Q_{n} v q_{\min }$ to $q_{\text {min }}$ as $n \rightarrow \infty$. in the sense of (23). We will now show under which conditions we can insure that (23) is true.

Theorem 2 (procedure P 1) : Let the conditions Cl , (25) and (26) hold.

$$
\begin{align*}
& \sum_{n=1}^{\infty} \alpha_{n} \cdot \eta_{n}=\infty \tag{25}\\
& \lim _{n}\left(\sum_{i=1}, Y_{i} \cdot\left(1-\alpha_{i}\right)\right) /\left(b_{n} \cdot \sum_{i=1}^{n} \alpha_{i}\right)=\infty \tag{26}
\end{align*}
$$

If the environment is either (in which case (26) is replaceable by the condition that $b_{n}=1$ for all n), or $\varepsilon_{t}(t>1)$ and (27) holds, or \mathfrak{k} and (28) holds,

$$
\begin{array}{ll}
\operatorname{lin}_{n} & b_{n} /\left(\sum_{i=1}^{n} \alpha_{i}\right)^{1 /(t-1)}=\infty \\
\lim & b_{n} / \log \left(\sum_{i=1, i}^{n} \alpha_{i}\right)=\infty \tag{28}
\end{array}
$$

then $Q_{n} v q_{\text {min }} \rightarrow q_{\text {min }}$ in probability as $n \rightarrow \infty$.
Theorem 3 (procedure P2) :Let the conditions C1, (25) and (29) hold.

$$
\begin{equation*}
\lim _{n} k_{n}=\infty \tag{29}
\end{equation*}
$$

If the environment is either (in which case we can, but need not, let $k_{n}=n$ for all n) or ε_{t} for some $t>1$ and (30) holds, or \mathcal{K} and (31) holds, $\lim _{n}\left(\sum_{i=k_{n}+1}^{n}, \gamma_{i} \cdot\left(1-\alpha_{i}\right) / \sum_{i=1}^{n} \alpha_{i}\right) \cdot\left(\sum_{i=1}^{k_{n}} \alpha_{i}\right)^{-1 /(t-1)}=\infty$
$\lim _{n}\left(\sum_{i=k_{n}+1}^{n}, \gamma_{i} \cdot\left(1-\alpha_{i}\right) / \sum_{i=1}^{n} \alpha_{i}\right) \cdot\left(\log \sum_{i=1}^{k},_{i}\right)^{-1}=\infty$.
then $Q_{n} v q_{\text {min }}{ }^{\rightarrow q_{\text {min }}}$ in probability as $n \rightarrow \infty$.
The proofs of theorems 2 and 3 are given in the appendix. Let us briefly discuss some of the conditions of convergence. Notice that b_{n} can be considered as the minimum experience required for any W_{i} in H_{n} to be a candidate basepoint with procedure Pl ; on the other hand, $n-k_{n}$ is the minimum age required for any W_{i} in H_{n} to be a candidate basepoint with procedure P2.
Condition (25) not only insures that, WP1, $L_{n}+\infty$ but also that with probability one there is an infinite sequence of points W_{i} that are generated by the "random generator" (thus having distribution function G). Notice that if L_{n} is large, then all the N_{i}^{n} are small, $i=1, \ldots, L_{n}$ and thus the \bar{Y}_{i}^{n} are relatively noisy estimates of the $Q\left(W_{j}\right)$ (how noisy depends of course upon the type of environment). If L_{n} is small, then the N_{i}^{n} are large, but at the same time, the probability that any of the $Q\left(W_{i}\right)$ is close to $q_{\min }$ is small because H_{n} contains so few members. Thus there should be a trade-off between the size of H_{n} (L_{n} roughly increases as $\sum_{i=1} \alpha_{i}$ as we know) and the minimum experience or age of the candidate basepoints. This is exactly expressed in the conditions (27) and (28) of theorem 2. Condition (26) insures that given b_{n},
enough points are available in H_{n} for which $N_{i}^{n} \geq b_{n}$. Conditions (30) and (31) in theorem 3 are the counterparts of (27) and (28) if one remarks that

$$
\sum_{i=1}^{n}: 1, \gamma_{i} \cdot\left(1-\alpha_{i}\right) / \sum_{i=1}^{n} o_{i}
$$

can be considered as the minimum experience associated with any W_{i} in H_{n} with birth date $T_{i}=k_{n}$ (i.e. points that are candidate basepoints with procedure P2).

It is not hard to see that $P 1=P 2$ if $b_{n}=1$ with $P 1$ and $k_{n}=n$ with P2. This procedure is easily recognized as the classical random search algorithm for deterministic environments (see [6],[8]).

Let us give an example of sequences $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\}$, $\left.{ }_{n}\right\},\left\{b_{n}\right\}$ and $\left\{k_{n}\right\}$ satisfying the conditions of theorems 2,3. For any nonnegative number sequences $\left.a_{n}\right\}$ and $\left\{c_{n}\right\}$, we say that $a_{n}=0\left(c_{n}\right)$ if there exists a K with $0-K-\infty$ such that $a_{n} \leq K . c_{n}$ for all n. Let for some K_{2}, K_{4}, K_{5} from ($0, \cdots$):
$x_{n}=K_{2} / n^{a} ; \alpha_{n} \leq 1 / 2$ for all large n; ${ }_{\mathrm{E}}^{\mathrm{n}}$ arbitrary

$$
\begin{align*}
& b_{n}=K_{4} \cdot n^{b} ; y_{n}^{-1}=O\left(n^{g}\right) ; \eta_{n}^{-1}= \tag{32}\\
& \rho\left(n^{h}\right) ; k_{n} \cdots K_{5} \cdot n^{k} \tag{25}
\end{align*}
$$

where, obviousiy, $a-0, b=0, k \geqslant 0, g \geqslant 0, h \geq 0$.
It. is a straightforward exercise to show that
is implied by $a+h-l$, (26) is implied by $a \operatorname{g}+b$,
(27) is implied by $b \cdot(1-a) /(t-1),(28)$ is implied by $b-0$, (29) is implied by $k-0,(30)$ follows from g-a - (1-a)k/(t-1) and $k_{n}-n / 2$ for all n large enough, and (31) follows from gea and $k_{n}=n / 2$ for all n large enough.

7. CONCLUSION

A probabilistic automaton with an expanding memory is presented. The important feature of the probabilistic automaton is that all the past observations are used which makes the technique information intensive. The automaton is constructed in :ur.h a way that the size of the memory is continucusly growing (which enables the automaton to a., a: a search procedure) and that the accuracy if the information that is e,tored in the memory i: esntinuesiol, improving with time by virtue of
an averaging process (which makes the automaton suited for use in stochastic environnents).

A detailed study is made of the properties of convergence of the automaton. Among other things we proved the optimality of the automaton in a large class of random environments. To achieve this optimality, it was shown that the rate of increase of the size of the memory and the rate of increase of the accuracy of the information that is stored in the memory have to satisfy a trade off condition that depends upon the noise characteristics of the random environment. The advantage of the technique is that the class of allowable stochastic performance indices includes the class of all Borel measurable functions on \mathbb{R}^{m} that are bounded from below. We did not intend to present a procedure that is quickly convergent. For this, it is necessary to use the freedom in the design of the automaton as well as possible. In particular it seems natural to use the information contained in $\mathrm{H}_{\mathrm{n}-1}$
(i) to direct the search process (see stage (iii) of the algorithm). If $U_{n}=0$, use the data in H_{n-1} to determine pronising subregions of B, outside $W_{1}, \ldots, W_{L_{n-1}}$. One can for instance consider a variable distribution for $W_{L_{L}}$ that puts all of its weight in a small neighborRood of those points $W_{i}, 1 \leq i-L_{n-1}$ with low corresponding estimates Y_{i}^{n-1}.
(ii) to control the sampling process (see stage (iv) of the algorithm). If $V_{n}=-1$, use the data in H_{n-1} to determine which W_{i} of H_{n-1} need more sampling. To do this we can be guided by the same sampling techniques that are in use for finite probabilistic automata in finite random environments (see,e.g. [5]).

The heuristics used in (i) and (ii) are of the utmost importance to ubtain high rates of convergence. One of the reasons we are particularly interested in high rates of convergence is an economical one. Given a certain stopping rule, it is hoped that Q_{n} is close to $q_{\text {min }}$ at the stopping time and that, at the same time, the size of H_{n} is not excessively larije (because of the limitations for the active memory in the computer).

We remark that in general random environments, our technique is competitive with random search which requires only a fixed finite amount of memory from the computer. Thus, the expanding automaton should be used when the effort of storing all the past information can pay off, i.e. when the cost of making observations is relatively high or when Q is very "abnormal" or when the environment is extremely "noisy".

8. APPENDIX

Lemma 1: Let Y_{1}, \ldots, Y_{n} be a sequence of independent random variables with

$$
Y_{i}=1 \text { with probability } \alpha_{i}
$$ 0 otherwise

($i=1, \ldots, n$)
where $\alpha_{i}[0,1]$. Then,

$$
\operatorname{P}\left\{\sum_{i=1}^{n} Y_{i} \leq \sum_{i=1}^{n} \alpha_{i}\right\} \leq \exp \left\{-\sum_{i=1}^{n}, \alpha_{i} / 10\right\}
$$

and

$$
\begin{gathered}
P\left\{\left|\sum_{i=1,}^{n}\left(Y_{i}-\alpha_{i}\right)\right| \geq(1 / 2) \sum_{i=1, i}^{n} \alpha_{i}\right\} \\
\\
\leq 2 \exp \left\{-\sum_{i=1, i}^{n} \alpha_{i} / 10\right\} .
\end{gathered}
$$

Proof: Let

$$
\begin{aligned}
& \sigma^{2} \triangleq n^{-1} \cdot \sum_{i=1}^{n} E\left\{\left(Y_{i}-E\left\{Y_{i}\right\}\right)^{2}\right\}= \\
& \quad n^{-1} \cdot \sum_{i=1, i}^{n} \alpha_{i}\left(1-\alpha_{i}\right) \leq n^{-1} \cdot \sum_{i=1, i}^{n} \alpha_{i} \cdot
\end{aligned}
$$

From Bennett's inequality (e.g., see equation 43 of [13] and use the inequality $\log (1+u) \geq 2 u /(2+u)$ for $u>0$) we know that for every $\varepsilon>0$:

$$
\begin{aligned}
& P\left\{n^{-1} \cdot \sum_{i=1}^{n}\left(Y_{i}-\alpha_{i}\right) \geq \varepsilon\right\} \leq \exp \left\{-n \varepsilon^{2} /\left(2 \sigma^{2}+\varepsilon\right)\right\} \\
& P\left\{n^{-1} \cdot \sum_{i=1}^{n}\left(Y_{i}-\alpha_{i}\right) \leq-\varepsilon\right\} \leq \exp \left\{-n \varepsilon^{2} \cdot /\left(2 \sigma^{2}+\varepsilon\right)\right\}
\end{aligned}
$$

With $\sigma^{2} \leq n^{-1} \cdot \sum_{i=1}^{n}, \alpha_{i}$ and $\varepsilon=(1 / 2 n) \cdot \sum_{i=1,}^{n}, \alpha_{i}$, we obtain the bounds

$$
\begin{aligned}
& P\left\{n^{-1} \cdot \sum_{i=1}^{n} Y_{i} \leq(1 / 2 n) \cdot \sum_{i=1}^{n} \alpha_{i}\right\} \leq \exp \left\{-\sum_{i=1}^{n} \alpha_{i} / 10\right\} \\
& \text { and } P\left\{n^{-1} \cdot \sum_{i=1}^{n} Y_{i} \geq(3 / 2 n) \cdot \sum_{i=1}^{n} \alpha_{i}\right\} \leq \exp \left\{-\sum_{i=1,}^{n} \alpha_{i} / 10\right\}
\end{aligned}
$$

from which lemma 1 follows trivially. Q E D

Lemma 2: Let $\left\{a_{n}\right\},\left\{c_{n}\right\}$ and $\left\{d_{n}\right\}$ be nonnegative number sequences such that $\left\{d_{n}\right\}$ is bounded. Then

$$
\sum_{n=1,}^{\infty} a_{n}=\infty \quad \text { and } \quad \lim _{n} d_{n} \cdot \sum_{i=1, i}^{n} c_{i}=\infty
$$

if and only if there exists a sequence $\left\{k_{n}\right\}$ of integers with $1 \leq k_{n} \leq n$ for all n and

$$
\lim _{n} \sum_{i=1}^{k_{n}} a_{i}=\infty \quad \text { and } \lim _{n} d_{n} \cdot \sum_{i=k_{n}+1}^{n} c_{i}=\infty
$$

Proof: (if part) By hypothesis,

$$
\text { And } \begin{aligned}
& d_{n} \cdot \sum_{i=1}^{n} c_{i} \geq d_{n} \cdot \sum_{i=k_{n}+1,}^{n} c_{i} \rightarrow \infty \text { as } n \rightarrow \infty \\
& \quad \sum_{i=1} a_{i} \geq \sum_{i=1,} a_{i} \rightarrow \infty \text { as } n \rightarrow \infty \quad .
\end{aligned}
$$

(only if part) We need only find a sequence $\left\{k_{n}\right\}$ of integers with $k_{n}{ }^{+\infty}$ as $n \rightarrow \infty$ and

$$
d_{n} \cdot \sum_{i=k_{n}+1,}^{n} c_{i} \rightarrow \infty \text { as } n_{i \rightarrow \infty}
$$

because

$$
\sum_{n=1}^{\infty} a_{n}=\infty \quad \text { and } \lim _{n} k_{n}=\infty
$$

$$
\text { imply that } \lim _{n} \sum_{i=1}^{k_{n}} a_{i}=\infty .
$$

Now, if $\underset{n=1, ~}{\infty} c_{n}<\infty \quad$ then $d_{n} \cdot \sum_{i=1}^{n} c_{i} \rightarrow \infty$ as $n_{\rightarrow \infty}$

$$
\text { implies that } \lim _{n}=\infty \quad \text {, but }
$$

this contradicts the hypothesis that $\left\{d_{n}\right\}$ is bounded. So we can assume that $\sum_{n=1,}^{\infty} c_{n}=\infty$. Let k_{n} be the largest integer such that

$$
\sum_{i=k_{n}+1}^{n} c_{i}>\sum_{i=1,}^{n} c_{i} / 2 .
$$

It is clear that k_{n} is monotonically nondecreasing and that if $k_{n} \ngtr \infty$ as $n \rightarrow \infty$, then $k_{n} \rightarrow K<\infty$, and, in fact, $k_{n}=K$ for all n large enough. Because k_{n} is largest, we have for all n large enough:
so that

$$
\sum_{i=K+2,}^{n} \quad c_{i} \leq \sum_{i=1, i}^{n} c_{i} / 2
$$

$$
\sum_{i=K+2}^{n}, c_{i} \leq \sum_{i=1}^{K+1} c_{i}
$$

for all n large enough. But this would imply that

$$
\sum_{n=1}^{\infty} c_{n} \leq 2 \cdot \sum_{n=1}^{k+1} c_{n}<=
$$

$$
d_{n} \cdot \sum_{i=k_{n}+1}^{n} c_{i}=\left(d_{n} / ?\right) \cdot \because_{i=1}^{n} c_{j} \quad \text { a as } n-1 \cdots \text {. }
$$

Lemma 3: If $\left\{c_{n}\right\}$ and $\left\{d_{n}\right\}$ are nonnegative number sequences with $\lim _{n} c_{n}=\infty$, then

$$
\lim _{n} c_{n} \cdot e^{-\lambda \cdot c_{n}}=0 \text { for all } \lambda>0
$$

if and only if

$$
\lim _{n} a_{n} / \operatorname{loj} c_{n}=
$$

Proof: (if part) Assume, without loss of generality that $c_{n}>1$ for all n. Given $\lambda>0$ find an integer N such that for all $n \geqslant N: d_{n}>(2 / \lambda) . \log c_{n}$. Then $c_{n} \cdot e^{-\lambda \cdot d_{n}} \leqslant c_{n} \cdot e^{-2 \log c_{n}}=1 / c_{n} \rightarrow 0$ as $n_{\rightarrow \infty}$. (only if part) Assume, without loss of generality, that $c_{n}>1$ for all n. Suppose that $d_{n} / \log c_{n} \nrightarrow \infty$ as $n \rightarrow \infty$. Then there exists a constant $M<\infty$ and a subsequence $\left\{n^{\prime}\right\}$ such that $d_{n}{ }^{\prime} / \log c_{n} \leq M$ for all n'. Thus,

$$
c_{n^{\prime}} \cdot e^{-d_{n^{\prime}} / M} \geq c_{n^{\prime}} \cdot e^{-\log c_{n^{\prime}}}=1
$$

for all $n \prime$. Therefore, $c_{n} \cdot e^{-d_{n} / M}$ does not converge to 0 as $n \rightarrow \infty$, contradicting the hypothesis. QED Lemma 4: Let $\left\{a_{n}\right\},\left\{b_{n}\right\}$ and $\left\{c_{n}\right\}$ be nonnegative number sequences.
(i) If $r>0$, then
$\lim _{n} a_{n} / b_{n}^{r}:=0$ and $\lim _{n} b_{n} c_{n}=0$
for some sequence $\left\{b_{n}\right\}$ if and only if
(ii) Let $\lim _{n} a_{n}=\infty$. Then n

Lin! $a_{n} c^{-\lambda b_{n}}=0$ for all $\lambda>0$ and lin $h_{n} c_{n}=0$
for some sequence $\left\{b_{n}\right\}$ if and only if

$$
\lim _{!} A_{n} \cdot e^{-\lambda / c_{n}}=0 \text { for all } \lambda>0
$$

which, on its turn, is equivalent to the condition: $\lim _{n} c_{n} \log _{n}=0$

Proof: (i,"if" part) Let $b_{n}^{r+1}=a_{n} / c_{n}$. Then

$$
b_{n} c_{n}=a_{n} / b_{n}^{r}=a_{n}^{1-r /(r+1)} \cdot c_{n}^{r /(r+1)}=
$$

$$
\left(a_{n} c_{n}^{r}\right)^{1 /(r+1)} \rightarrow 0 \text { as } n \rightarrow \infty
$$

(i,"only if"part) Trivially, $a_{n} c_{n}^{r}=\left(a_{n} / b_{n}^{r}\right)$. $\left(b_{n} c_{n}\right)^{r}+0$ as $n \rightarrow \infty$. (ii, "if"part) We remark that $c_{n} \log a_{n} \rightarrow 0$ as $n \rightarrow \infty$ if and only if $a_{n} e^{-\lambda / c_{n}} \rightarrow 0$
as $n \rightarrow \infty$ for all $\lambda>0$ by lemma 3. Choose

$$
b_{n}=\log a_{n} /\left(c_{n} \log a_{n}\right)^{1 / 2}
$$

and note that $b_{n} c_{n}=\left(c_{n} \log a_{n}\right)^{1 / 2}$ and
$b_{n} / \log a_{n}=\left(c_{n} \log a_{n}\right)^{-1 / 2}$. The theorem follows if we note that, by lemma $3, a_{n} e^{-\lambda b_{n}} \rightarrow 0$ as $n \rightarrow \infty$ for all $\lambda>0$ in view of $b_{n} / \log a_{n}+\infty$ and $a_{n} \rightarrow \infty$ as $n \rightarrow \infty$. (ii,"only if"part) Trivially, employing lemma 3 again,

$$
c_{n} \log a_{n}=\left(b_{n} c_{n}\right) /\left(b_{n} / \log a_{n}\right)+0 \text { as } n+\infty
$$

QED
Lemma 5: Let $t>1,0 \leq c<\infty$, and let $a_{t, c}$ be the class of random variables Y with $E\{Y\}=0$ and $\sup _{Y \in C_{t, C}} E\left\{|Y|^{t_{\}}} \leq C\right.$. Let $Y_{1}, Y_{2}, \ldots, Y_{n}$ be iid random
variables that are distributed as Y. Then for each $\varepsilon>0$ there exists a constant K depending upon ε, t and C such that
$\sup _{\text {Yf }_{t, C}} P\left\{\bigcup_{k=n,}^{\infty}\left\{k^{-1} \cdot \sum_{i=1,1,}^{k} Y_{i} \mid \geqslant \varepsilon\right\}\right\} \leq K / n^{t-1}$.

Let \cap be the class of random variables Y with $E\{Y\}$ $=0$ and with the property that for every $\delta>0$ there exists a $c(\delta)>0$ with

$$
\sup _{Y \in \mathcal{d}} E\left\{e^{\lambda Y}\right\} \leq e^{|\lambda| \delta}
$$

$$
\begin{equation*}
\text { , all } \lambda \in[-c(\delta),+c(\delta)] \tag{43}
\end{equation*}
$$

Then for each $\varepsilon>0$ there exist numbers $B>0$ and $M>0$ (both depending upon ε and the function c) such that
$\sup _{Y \in \mathcal{E}} P\left\{\bigcup_{k=n}^{\infty}\left\{\left.\right|^{-1} \cdot \sum_{i=1}^{k} Y_{i} \cdot \mid \geqslant \varepsilon\right\}\right\} \leq M \cdot e^{-B n}$.
Proof: (42) is obtained by inspecting the proof of [11,theorem 1]. To show (44), let $\varepsilon>0$ be arbitrary. We will extend the proof of a theorem of [12]. In particular, we show that (44) holds with $B=c(\varepsilon / 2) \cdot \varepsilon / 2$ and $M=2 /\left(1-e^{-B}\right)$. Let Y be a random variable from 9 and note that by Chebyshev's inequality and by (43),

$$
\begin{gathered}
P\left\{\left|k^{-1} \cdot \sum_{i=1,1}^{k} Y_{i}\right| \geq \varepsilon\right\} \leq e^{-|\lambda| \epsilon k} . \\
\leq 2 e^{-|\lambda| \varepsilon k \cdot e^{-\lambda}|\lambda| k \varepsilon / 2} \text { for all } \lambda \in[-c(\varepsilon / 2),+c(\varepsilon / 2)] \\
\leq 2 e^{-k \cdot c(\varepsilon / 2) \cdot \varepsilon / 2 \quad \text { by choice of } \lambda .}
\end{gathered}
$$

$=2 e^{-B k}$
Further, $P\left\{\bigcup_{k=n}^{\infty}\left\{\left|k^{-1} \cdot \sum_{i=1}^{k} Y_{i}\right| \geq \varepsilon\right\}\right\} \leq$

$$
\sum_{k=n}^{\infty} P\left\{\left|k^{-1} \cdot \sum_{i=1,}^{k} Y_{i}\right| z^{\varepsilon}\right\}
$$

$$
\begin{aligned}
& \leq \sum_{k=n}^{\infty} 2 e^{-B k} \leq\left(2 /\left(1-e^{-B}\right)\right) \cdot e^{-B n}=M \cdot e^{-B n} \\
& \text { Proof of theorem 1: Let } \varepsilon>0 \text { be arbitrary. Then, }
\end{aligned}
$$ if $x_{\{.\}}$denotes the indicator function of $\{$.$\} ,$

$$
\begin{aligned}
& P\left\{M_{n}^{\prime}>q_{\min ^{\prime}}+\varepsilon \mid\left(H_{n-1} \cdot Z_{n-1}\right)\right\}= \\
& \alpha_{n} \cdot P\left\{Q\left(W_{L_{n}}\right)>q_{\min }+\varepsilon \mid\left(H_{n-1}, Z_{n-1}\right)\right\} \\
& +\left(1-\alpha_{n}\right) \cdot P\left\{Q\left(W_{I_{n}}\right)>q_{\min }+\varepsilon \mid\left(H_{n-1}, Z_{n-1}\right)\right\} \\
& \left\{\alpha_{n}+1-\beta_{n}+\beta_{n} \cdot x_{\left\{Q\left(X_{n-1}\right)>q_{\min }\right.}+\varepsilon\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& P\left\{M_{n}^{\prime}>q_{\min }^{+\varepsilon}\right. \leq \alpha_{n}+1-\beta_{n}+ \\
& P\left\{Q\left(X_{n-1}\right)>q_{\min }+\epsilon\right\}
\end{aligned}
$$

which tends to 0 as $n \rightarrow \infty$ in view of (22) and (23). If (20) holds, then $\left|M_{n}^{\prime}\right| \leq K_{1}<\infty$ for all n so that $M_{n}^{\prime} v q_{\text {min }} \rightarrow q_{\text {min }}$ in L_{r} for all $r>0$. Also, under (20), $M_{n} v q_{\min }+q_{\min }$ in L_{r} for all $r>0$ if and only if $M_{n} v q_{\text {min }}>q_{\text {min }}$ in probability as $n \rightarrow \infty$. But note that $E\left\{M_{n}\right\}=E\left\{M_{n}^{\prime}\right\}$ so that the "in probability" part of theorem 1 is proved. For the second part of the theorem, we remark that
$P\left\{\bigcup_{k=n}\left\{M_{k}>q_{\min }+\epsilon\right\}\right\}=$

$$
P\left\{\bigcup_{k=n}^{\infty}\left\{\alpha_{k}+1-\varepsilon_{k}>\varepsilon / 2 K_{1}\right\}\right\}
$$

$$
+P\left\{\bigcup_{k=-n}^{\infty}\left\{Q\left(x_{k-1}\right)>q_{\min }+\varepsilon / z\right\}\right\}
$$

$$
=p\left\{\bigcup_{k=n}^{\infty}\left\{Q\left(X_{k-1}\right)>q_{\min }+c / 2\right]\right\}
$$

for all n large enough in view of (22). Thus, if $Q_{n} v q_{\text {min }} \rightarrow q_{\text {min }}$ WP1 as $n \rightarrow \infty$, then
$M_{n} v q_{\min } \rightarrow q_{\min }$ WPI as $n \rightarrow \infty$.
Q E D
Proof of theorem 2: Let $\alpha_{0}=1$ and note that the sequence $\left\{1 / b_{n} \cdot \sum_{i=0,} \alpha_{i}\right\}$ is bounded. From (25), (26) and lemma 2 find a sequence $\left\{k_{n}\right\}$ of integers

$$
\begin{aligned}
& \text { with } \\
& \quad \lim _{n} k_{n}=\infty ; \lim _{n} \sum_{i=1}^{\sum_{n}} \alpha_{i} \pi_{i}=\infty ; \\
& \\
& \quad \lim _{n}\left(1 / b_{n}, \sum_{i=0}^{n} \alpha_{i}\right) \cdot \sum_{i=k_{n}+1}^{n} \gamma_{i} \cdot\left(1-\alpha_{i}\right)=\infty
\end{aligned}
$$

Let $\varepsilon>0$ be arbitrary and define the following events:

$$
\begin{aligned}
& A_{n l}=\left\{\left|L_{n}-\sum_{i=0,}^{n} \alpha_{i}\right| \leq \sum_{i=0,}^{n} \alpha_{i} / 2\right\} \\
& A_{n 2}=\left\{\left|L_{i}-\sum_{n}^{k} \sum_{i=0}^{k} \omega_{i}\right| \leq \sum_{i=0, i}^{k_{n}} \omega_{i} / 2\right\} \\
& A_{n 3}={\underset{i}{n}=1 .}_{L_{n}}^{n}\left\{N_{i}^{n} \geq b_{n}\right\} \\
& A_{n 1}=U_{i=1}^{L_{k}},\left\{Q\left(W_{i}\right) \leqslant q_{\min }+c / 2\right\} \\
& A_{n 5}=\bigcap_{i=1}^{L},\left\{\{ | \overline { Y } _ { i } ^ { n } - Q (W _ { i }) | < \varepsilon / 4 \} \cap \left\{\left(N_{i}^{n},\right.\right.\right. \\
& \left.\left.\left.b_{n}\right\}\right\} \cup\left\{N_{i}{ }^{n}<b_{n}\right\}\right\}
\end{aligned}
$$

$$
\Lambda_{n 0}=-\left\{Q\left(X_{n}\right)=q_{m i n}+\varepsilon\right\}
$$

Noting that $A_{n 1} A_{n 2} r A_{n} 3^{n A_{n}}{ }^{\Gamma A} A_{n 5} \varepsilon_{n} A_{n}$, we have:

$$
\begin{gathered}
P\left\{A_{n 0}^{C}\right\} \leq P\left\{A_{n 1}^{C}\right\}+P\left\{A_{n 2}^{C}\right\}+ \\
P\left\{A_{n 1} A A_{n 2} A_{n 3}^{C}\right\}+P\left\{A_{n A}^{C}\right\}+P\left\{A_{n 1} \cap A_{n 5}^{C}\right\}
\end{gathered}
$$

where (. $)^{c}$ denotes the complement of a set. By lemma 1,

$$
\begin{align*}
& P\left\{\Lambda_{n 2}^{c}\right\} \leq 2 \exp \left\{-\sum_{i=0}^{n} \alpha_{i} / 10\right\} \tag{46}\\
& r\left\{A_{n 2}^{c}\right\} \leq 2 \exp \left\{-\sum_{i=0}^{n} \alpha_{1} / 20\right\} \tag{47}
\end{align*}
$$

If X denotes a random vector with the distribution function G in \mathbf{R}^{m}, then we know that $P\left\{Q(X) \leq q_{\min }+\varepsilon / 2\right\}=\xi>0$. Then, using lemma 1 again:

$$
\begin{aligned}
& \leq P\left\{\sum_{i=1}^{k_{1}},\left\{U_{i}^{\prime}=U_{i}=1\right\}<\sum_{i=1}^{i_{n}} a_{i}{ }_{i}^{\prime} i^{\prime} 2\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{i}=1 \text {, } \\
& \left.\left.\left.\left\{\mathrm{T}_{\mathrm{i}}=1\right\}\right\} \cup\left\{\mathrm{U}_{\mathrm{T}_{1}}-0\right\}\right\}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& k_{n} \\
& \sum_{i=1} \alpha_{i} \tau_{i} / 2
\end{aligned}
$$

Further,

$$
\begin{gathered}
P\left\{\Lambda_{n 1} \cap A_{n 5}^{c}\right\} \leq P\left\{U _ { i = 1 } ^ { L _ { n } } \left\{\left\{\left|\bar{Y}_{i}^{n}-Q\left(W_{i}\right)\right| \geq\right.\right.\right. \\
\left.\left.\varepsilon / 4\} \cap\left\{N_{i}^{n} \geq b_{n}\right\}\right\} ; L_{n} \leq(3 / 2) \cdot \sum_{1=0}^{n} \alpha_{i}\right\} \\
\leqslant(3 / 2) \cdot \sum_{i=0,}^{n} \alpha_{i} \sup _{x \in B} P\left\{\bigcup_{l=b_{n}^{\prime}}^{\infty}\left\{\left|\bar{Y}_{(x, 1)}-Q(x)\right| \geq \varepsilon / 4\right\}\right\}
\end{gathered}
$$

where $\bar{Y}_{(x, 1)}$ is the average of 1 iid random variables all having distribution function F_{X} in R^{1} (and mean $Q(x)$, obviously). By lemma 5 , we can upper bound the last term by

$$
\begin{equation*}
(3 / 2) \cdot \sum_{1=0,1}^{n} \alpha_{1} \cdot g\left(\varepsilon, \varepsilon, b_{n}\right) \tag{49}
\end{equation*}
$$

where

$$
\begin{aligned}
& g\left(\varepsilon, \varepsilon, b_{n}\right)= \\
& 0 \\
& K_{2} / b_{n}^{t-1} \text { if } \varepsilon \text { is } \varepsilon \\
& t>1\left(K_{2}>0\right. \text { depends some } \\
& K_{3} e^{-K_{4} b_{n}} \text { if } \varepsilon \text { is } K \text { where } K_{3}>0 \text { and } \\
& K_{4}>0 \text { are constants dependins upon } \varepsilon \text { and } \varepsilon .
\end{aligned}
$$

$$
\begin{align*}
& \text { We also have that } \\
& \qquad P\left\{A_{n 1} \cap A_{n 2} \cap A_{n 3}^{c}\right\}
\end{align*}
$$

Note that $E\left\{X_{\left\{U_{i}=V_{i}=0\right\}} \mid L_{i-1}\right\}=\gamma_{i}\left(1-\alpha_{i}\right) / L_{i-1}$
with probability one. As we pointed out, we have for all n large enough:

$$
b_{n}<(2 / 30) . \sum_{i=k_{n}+1}^{n}, \gamma_{i}\left(1-k_{i}\right) / \sum_{i=0,}^{n} \gamma_{i}
$$

Therefore, (50) is for all n large enough upder

$$
\begin{aligned}
& <-(1 / 2) \cdot\left(\sum_{i=k_{n}+1}^{n} \gamma_{i}\left(1-\alpha_{i}\right)\right) /\left((3 / 2) \sum_{i=0,}^{n} \alpha_{i}\right) \mid L_{n} \leqslant \\
& \text { (3/2). } \left.\sum_{i=0, i}^{n} \alpha_{i}\right\} \\
& \leq(3 / 2) \sum_{i=0}^{k_{n}} \alpha_{i} \cdot \exp \left\{-\sum_{i=k_{n}+1}^{n} .\right. \\
& \left.\gamma_{i}\left(1-\alpha_{i}\right) /\left((30 / 2) \cdot \sum_{i=0,}^{n} o_{i}\right)\right\} \\
& \leq(3 / 2) \sum_{i=0,}^{k_{n}} \alpha_{i} \cdot e^{-b_{n}} \text {. }
\end{aligned}
$$

We remark that for all the environments considered in theorem 2, $\lim _{n} P\left\{A_{n 1} A_{n 5}^{C}\right\}=0$. Further, (25) implies that $P\left\{A_{n 1}{ }^{c}\right\}+P\left\{A_{n 2}{ }^{c}\right\}+P\left\{A_{n 4}{ }^{C}\right\} \rightarrow 0$ as $n \rightarrow \infty$ in view of (46-48). Finally, by (51), for all n large enough,

$$
\begin{aligned}
& P\left\{A_{n 1} \cap A_{n 2} \cap A_{n 3} C^{\prime}\right\} \leq(3 / 2) \cdot \sum_{i=0}^{k_{n}} \alpha_{i} \cdot e^{-b_{n}} \rightarrow 0 \\
& \text { as } n \rightarrow \infty
\end{aligned}
$$

in view of $k_{n} \leq n$ and (28) (where we use the fact that (27) implies (28)) for environments that are K or ε_{t} for some $t>1$. Thus, for these environments, $\lim _{n} P\left\{A_{n 0}{ }^{c}\right\}=0$ for all $\varepsilon>0$ in view of (45). If the environment is \mathbb{Q}, notice that $P\left\{A_{n 0}{ }^{C}\right\} \leq P\left\{A_{n 4}{ }^{c}\right\} \leq 2 \exp \{-\operatorname{Min}(1 / 10 ; \xi / 2)$. $\left.\cdot \sum_{i=1}^{k}, \alpha_{j} n_{i}\right\} \rightarrow 0$ as $n \rightarrow \infty$ in view of (25-26).
However, with $b_{n}=1$ and $k_{n}=n$, the condition (26) is not needed.

Q E D
Proof of theorem 3: Consider first environments that are ε_{t} for some $t>1$. By lemma 4 and (30), we can find a sequence $\left\{b_{n}\right\}$ of integers with $b_{n} \geq 1$,

$$
\begin{equation*}
\lim _{n}\left(\sum_{i=1}^{k_{n}} \alpha_{i}\right) / b_{n}^{t-1}=0 \tag{52}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n} b_{n} \cdot\left(\sum_{i=0,}^{n} \alpha_{i}\right) /\left(\sum_{i=k_{n}+1}^{n} \gamma_{i}\left(1-\alpha_{i}\right)\right)=0 \tag{53}
\end{equation*}
$$

Let $\varepsilon>0$ be arbitrary and define $A_{n 0}, A_{n 1}, A_{n 2}, A_{n 3}$ and $A_{n 4}$ as in the proof of theorem 2. Let further

$$
\begin{equation*}
A_{n 6}=\bigcap_{i=1}^{L_{k_{n}}}\left\{\left|\bar{Y}_{i}^{n}-Q\left(W_{i}\right)\right|<\varepsilon / 4\right\} \tag{54}
\end{equation*}
$$

and note that $A_{n 1} \cap A_{n 2} \cap A_{n 3} \cap A_{n 4} \cap A_{n 6} \subseteq A_{n 0}$.
Therefore,

$$
\begin{gather*}
P\left\{A_{n 0}^{c}\right\} \leqslant P\left\{A_{n 1}^{c}\right\}+P\left\{A_{n 2}^{c}\right\}+P\left\{A_{n 1} \cap A_{n 2} \cap A_{n 3}^{c}\right\}+ \\
P\left\{A_{n 4}^{c}\right\}+P\left\{A_{n 2} \cap A_{n 3} \cap A_{n 6}^{c}\right\} . \tag{55}
\end{gather*}
$$

We recall from the proof of theorem 2 that

$$
\begin{equation*}
P\left\{A_{n 1}^{c}\right\}+P\left\{A_{n 2}^{c}\right\} \leq 4 \exp \left\{-\sum_{i=0}^{k} \alpha_{i} / 10\right\} \tag{56}
\end{equation*}
$$

$$
\begin{equation*}
P\left\{A_{n 4}^{c}\right\} \leq 2 \exp \left\{-\operatorname{Min}(1 / 10 ; \varepsilon / 2) \cdot \sum_{i=1}^{k_{n}} \alpha_{i} \Gamma_{i}\right\} \tag{57}
\end{equation*}
$$

and, in view of (53), for all n large enough,

$$
\begin{equation*}
P\left\{A_{n 1} \cap A_{n 2} \cap A_{n 3}^{c}\right\} \leq(3 / 2) \cdot \sum_{i=0,}^{k_{n}} \alpha_{i} \cdot e^{-b_{n}} \tag{58}
\end{equation*}
$$

Next, using an argument as in theorem 2,

$$
\begin{align*}
& P\left\{A_{n 2} \cap A_{n 3} \cap A_{n 6}^{c}\right\} \leqslant(3 / 2) \cdot \sum_{i=0}^{k_{n}} \alpha_{i} \\
& \sup P\left\{\bigcup_{i=b_{n}}^{\infty}\left\{\mid \bar{Y}_{(x, 1)}^{-Q(x) \mid \geq \varepsilon / 4\}}\right\}\right. \\
& \leq(3 / 2) \cdot\left(\sum_{i=0}^{k_{n}} \alpha_{i}\right) \cdot g\left(\varepsilon, \varepsilon, b_{n}\right) \leq \tag{59}\\
& \left(3 K_{2} / 2\right) \cdot\left(\sum_{i=0,}^{k} \alpha_{i}\right) / b_{n}
\end{align*}
$$

where $g(., .,$.$) is defined in (49) and K_{2}$ is a positive constant depending upon ε and ε. It is not hard to see that $\lim _{\mathrm{n}} \mathrm{P}\left\{\mathrm{A}_{\mathrm{n} 0}^{\mathrm{C}}\right\}=0$ in view of (55), (56-59),(29), (25) and (52) (where we use the fact that (52) implies that the right-hand side of (58) tends to 0 as $n \rightarrow \infty$).

If ε is deterministic, then $P\left\{A_{n 0}{ }^{C}\right\} \leq P\left\{A_{n 4}{ }^{C}\right\}$, which can be bounded as in (57). Clearly, $\lim _{n} P\left\{A_{n 0}{ }^{c}\right\}=0$ in view of (25) and (29). If ε is κ, then, by lemma 4 and (31), it is possible to find a sequence $\left\{b_{n}\right\}$ of integers with $b_{n} \geq 1$, (53) and

$$
\begin{equation*}
\lim _{n}\left(\sum_{i=1}^{k_{n}} \sigma_{i}\right) \cdot 0^{-\lambda b_{n}}=0 \quad \text { for all } \lambda>0 \tag{60}
\end{equation*}
$$

All the terms on the right hand side of (55) are bounded as for ε_{t} type environments (see (56-58)) with the exception that for some constants $K_{3}>0$ and $K_{4}>0$ (depending upon' ε and ε):
$P\left\{A_{n 2} \cap A_{n 3} \cap A_{n 6}^{c}\right\} \cdot \leq\left(3 K_{3} / 2\right) \cdot\left(\sum_{i=0}^{K_{n}} \alpha_{i}\right) \cdot e^{-K_{4} b_{n}}$.
Again, it is not hard to see that $\lim P\left\{A_{n 0}{ }^{c}\right\}=0$ in view of (55-58), (60) and (61). Theorem 3 then follows from the arbitrariness of ε. Q E D

9. REFERENCES

1. Ya. Z. Tsypkin, A.S. Poznyak: "Finite learning automata." , Engineering Cybernetics, Vol. 10, No. 3, pp. 479-490, 1972.
2. I.J. Shapiro, K.S. Narendra: "Use of stochastic automata for parameter selfoptimization with multimodal performance criteria.", IEEE Transactions on Syst., Sci. and Cybernetics, Vol. SSC-5, No. 4, pp. 352-360, 1969.
3. R. Viswanathan, K.S. Narendra: "Application of stochastic automata models to learning systems with multimodal performance criteria.", Becton Center, Yale Univ., New Haven, Conn., Techn. Rept. CT-40, 1972.
4. G.J. McMurtry, K.S. Fu: "A variable structure automaton used as a multimodal searching technique.", IEEE Transactions on Autom. Contr., Vol. AC-11, No. 3, pp. 379387, 1966.
5. L.P. Devroye: "A class of optimal performance directed probabilistic automata.", IEEE Transactions on Syst., Man and Cybernetics, Vol. SMC-6, No. 11, pp. 777-784. 1976.
6. G.J. McMurtry: "Adaptive optimization procedures.", in: "Adaptive, learning and pattern recognition systems." J.M. Mendel and K.S. Fu Ed., Ac. Press, N.Y., 1970.
7. L.D. Cockrell, K.S. Fu: "On search techniques in adaptive systems.", Purdue Univ., Lafayette, Ind., Techn. Rept. TR-EE-70-01, 1970.
8. L.P. Devroye: "On the convergence of statistical search.", IEEE Transactions on Syst., Man and Cybernetics, Vol. SMC-6, No. 1, pp.46-56, 1976.
9. R.A. Jarvis: "Optimization strategies in adaptive control: a selective survey.", IEEE Transactions on Syst., Man and Cybernetics, Vo7. SMC-5, No. 1, pp. 83-94, 1975.
10. M. Loeve: "Probability theory.", 3d ed., Van Nostrand, Princeton, N.J., 1968.
11. T.J. Wagner: "On the rate of convergence for the law of large numbers.", Ann.Math.Stat., Vol. 40, No. 6, pp. 2195-2197, 1969.
12. L. Baum, M. Katz, R.R. Read: "Exponential convergence rates for the law of large numbers.", Trans.Amer.Math. Soc., Vol. 102, pp. 187-199, 1962.
13. D.K. Fuk, S.V. Nagaev: "Probability inequalities for sums of independent random variables.", Theory of Probab. and its Applications, Vol. 16, No. 4, pp. 643-660, 1971.
14. L. Baum, M. Katz: "Convergence rates in the law of large numbers.", Trans.Amer.Math.Soc., Vol. 121, pp. 108-123, 1965.

[^0]: * The research was partially supported by Air Force Grant No. 72-2371.

