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Abstract. We study the diameter of a family of random graphs on the torus
that can be used to model wireless networks. In the random connection model
two points x and y are connected with probability g(y − x) where g is a given

function. We prove that the diameter of the graph is bounded by a constant,
that only depends on ‖g‖1, with high probability as the number of vertices in
the graph tends to infinity.

1. Introduction

The idea of modeling networks using random graphs appeared for the first time
in Gilbert (1961) where he considered a network formed by connecting points of
a Poisson point process that are sufficiently close to each other. His paper marks
the starting point for continuum percolation. He proved the existence of a critical
distance above which an infinite component occurs and below which any connected
component is bounded.

The random connection model was introduced in the context of continuum
percolation by Penrose (1991). Let g : R2 → [0, 1] be such that g(−x) = g(x). The
function g is called the connection function. Let P be a homogeneous Poisson point
process in the plane of intensity λ > 0 and connect every pair of points x, y ∈ P
independently with probability g(y − x). Typically it is also assumed that g only
depends on the distance between x and y, that is g(y − x) = g̃(‖y − x‖) where
g̃ : R+ → [0, 1] and ‖·‖ denotes the Euclidean norm. Moreover, in general g̃ is taken
to be nonincreasing. Gilbert’s graph is the special case of the random connection
model with g̃ = 1[0,1].

The main result that motivates the study of the model is that provided λ
exceeds a critical value λg depending on g, namely the percolation threshold, the
random connection model has an infinite component almost surely. For a survey on
continuum percolation, see the book by Meester and Roy (1996).

The random connection model is a reasonable approximation of a wireless
communication network where nodes cooperate in routing each other’s packets from
source to destination in a multi-hop way (see Franceschetti and Meester, 2008).
Points represent transmission stations and links represent communication channels.
A common assumption is that links become less reliable as the distance between
nodes increases. Another natural application is to the study of spread of a contagious
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disease. Here the points represent individuals susceptible to the disease, the function
g represents the probability of contagion, and the disease spreads from an infected
individual to other individuals along the links of the network.

When we say that a property of the graph holds with high probability, we mean
that the probability that the property does not hold is bounded by a function of n
that goes to zero as n→∞. Equivalently, we say that a sequence of random events
En occurs with high probability if limn→∞P (En) = 1.

In this short note we prove that when we restrict the model to the torus, which
we denote by T d, with high probability the graph is not only connected, but also
the diameter of the graph is bounded by a constant, only depending on ‖g‖1, as the
number of vertices in the graph tends to infinity. It is interesting to note the lack of
conditions for g. The proof works for any measurable function g : T d → [0, 1] that
is not identically zero. In our case, we build the graph on n uniformly distributed
points rather than a Poisson point process but the results are equivalent for the
Poisson case when the intensity λ→∞.

Our argument is based on the existence of disjoint paths starting at a given
origin vertex. If the paths are long enough, the locations of the endpoints of these
paths are close to uniform on T d and we can therefore approximate the probability
that they connect to a destination vertex. The paper is organized as follows: In
Section 2 we introduce the model. In Section 3 we prove the convergence to the
uniform distribution via Fourier analysis. The proof of the main result is done in
Section 4. Finally, in Section 5 we note possible generalizations.

2. The model on the torus

Denote the circle by S1 = [0, 1) and the d-dimensional torus by T d = (S1)d.
T d is a compact Abelian Lie group and given two elements x, y ∈ T d we write x+ y
for the group operation. Let g : T d → [0, 1] be a measurable function satisfying
g(−x) = g(x) and g 6= 0.

Consider a random graph on T d defined as follows. Let X1, . . . , Xn be indepen-
dent random points of T d with a common uniform distribution. These points are
associated with the vertices Vn = {1, . . . , n} of a graph G(n, g) = (Vn, En). With
every pair i, j ∈ Vn, i 6= j, associate an independent uniform [0, 1] random variable
Uij . A pair (i, j) defines an edge of En if

Uij ≤ g(Xj −Xi).

Let Yij = 1(i,j)∈En
and write Di =

∑
j 6=i Yij for the degree of vertex i. Note

that, by linearity, the expected degree of any vertex is given by EDi = ‖g‖1(n− 1)
where ‖g‖1 =

∫
T d g(x)dx because using that the uniform measure is the Haar

measure of T d, i.e., it is translation invariant, we have

EYij = E [g(Xi −Xj)] =

∫
T d

∫
T d

g(y − x) dy dx =

∫
T d

‖g‖1 dx = ‖g‖1.

We prove that with high probability we can find a uniformly bounded length
path between any pair of vertices, in which the length depends only on ‖g‖1. Define
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the diameter of the graph as

diamG(n, g) =

{
supp,q∈Vn

distG(p, q) if the graph is connected,

∞ otherwise.

Therefore, with high probability the diameter of G(n, g) is bounded by a constant.
The main result of this note is the following

Theorem 1. Let g : T d → [0, 1] be a measurable function with ‖g‖1 > 0, and define
m = 2 +

⌈
(1/‖g‖21) log(1/2‖g‖21)

⌉
and γ = ‖g‖m+1

1 /4m. Then, for all n ≥ m+ 2 we
have

P
(
diamG(n, g) ≥ m+ 1

)
≤ n2e−γn.

The following corollary follows immediately.

Corollary 2. If gn depends on n, and mn and γn are defined as above, the conditions
n ≥ mn+2 and γnn−2 log n→∞ imply G(n, gn) is connected with high probability.

3. Rate of convergence of convolutions

In this section we show a exponential bound for the rate of convergence to the
uniform density of the convolution of bounded densities on T d. The technique we
use is based on harmonic analysis. As a general reference for the basic results in this
whole section, see Grafakos (2008). We first prove an upper bound on the Fourier
coefficients of a bounded density. We follow the standard notation and write for
f ∈ L2(T d),

f(x) =
∑
p∈Zd

cp(f)e2πi〈p,x〉.

where 〈·, ·〉 is the inner product obtained by identifying T d with [0, 1)d in Rd and

cp(f) =

∫
T d

f(x)e−2πi〈p,x〉dx.

Note that if f ≥ 0, then c0(f) = ‖f‖1. Denote the family of densities bounded by
B ≥ 1 by

FB = {f : T d → [0, B], ‖f‖1 = 1}.
It is clear that FB ⊂ L∞(T d) ⊂ L2(T d).

Lemma 3. For all p ∈ Zd \ {0} and B ≥ 1,

sup
f∈FB

|cp(f)| = B

π
sin
( π
B

)
.

Proof. Let p ∈ Zd \ {0} be fixed. Given f ∈ FB we compare the coefficient cp(f)
with the corresponding one of a function of the form h(x) = B 1U for a set U
depending on f . There exists θ ∈ [0, 1) such that

|cp(f)| = e2πiθ
∫
T d

f(x)e−2πi〈p,x〉 dx =

∫
T d

f(x)ϕ(x) dx,

where we write ϕ(x) = cos 2π(〈p, x〉 − θ). The second equality above follows from
considering the real part and the fact that |cp(f)| ≥ 0.
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Note that the level sets of ϕ(x) are of the form {x ∈ T d : 〈p, x〉 − c ∈ Z} for
some constant c ∈ [0, 1). In particular the maximum value is attained in

L = {x ∈ T d : 〈p, x〉 − θ ∈ Z}.

If p = (p1, . . . , pd), we let p = `q where ` = gcd(p1, . . . , pd) and q = (q1, . . . , qd) with
q1, . . . , qd coprime. Then, L = ∪`k=1Hk where

Hk = {x ∈ T d : 〈q, x〉 − θ/`− k/` ∈ Z}

and each connected component Hk is a (d− 1)-dimensional submanifold of measure

µ(Hk) = ‖q‖. Hence the total measure is µ(L) =
∑`
k=1 µ(Hk) = ‖p‖. Define

U = {x ∈ T d : dist(x,L) ≤ 1/2B‖p‖}.

We prove that the supremum is attained when h(x) = B 1U .

Note that if x ∈ U and y ∈ T d \U then ϕ(x) ≥ ϕ(y). Since both h, f ∈ FB then∫
U B dx = 1 =

∫
T d f(x) dx and we have

∫
U B − f(x) dx =

∫
T d\U f(x) dx. Therefore,

|cp(h)| − |cp(f)| =
∫
T d

(B 1U − f(x))ϕ(x) dx

=

∫
U

(B − f(x))ϕ(x) dx−
∫
T d\U

f(x)ϕ(x) dx

≥
(∫
U
B − f(x)dx

)
inf
x∈U

ϕ(x)−

(∫
T d\U

f(x)dx

)
sup

y∈T d\U
ϕ(y) ≥ 0.

Therefore, the coefficient is maximized for h. We just compute the supremum now.
Note that U = ∪`k=1Vk where Vk = {x ∈ T d : dist(x,Hk) ≤ 1/2B‖p‖}. Then,

|cp(h)| =
∫
U
Bϕ(x) dx

= B
∑̀
k=1

µ(Hk)

∫ 1/2B‖p‖

−1/2B‖p‖
cos(2π‖p‖t) dt

= B
∑̀
k=1

‖q‖ 1

π‖p‖
sin
( π
B

)
=
B

π
sin
( π
B

)
,

which concludes the proof. �

Given two functions f, h ∈ L2(T d), their convolution is given by

f ∗ h(x) =

∫
T d

f(y)h(x− y) dy.

Recall the relation between convolutions and Fourier coefficients given by

cp(f ∗ h) = cp(f)cp(h).

Let f ∈ L2(T d) and write f (k) = f ∗ f ∗ · · · ∗ f for the k-fold convolution of f . Note
that cp(f

(k)) = cp(f)k. The main result in this section is the following.
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Lemma 4. Let f ∈ FB. Then

sup
x∈T d

|1− f (k)(x)| ≤ B
(
B

π
sin
( π
B

))k−2
.

Proof. For all f ∈ FB , the coefficient c0(f) = ‖f‖1 = 1. Therefore,∣∣∣1− f (k)(x)
∣∣∣ =

∣∣∣∣∣∣
∑

p∈Zd\{0}

cp(f)ke2πi〈p,x〉

∣∣∣∣∣∣ ≤
∑

p∈Zd\{0}

|cp(f)|k.

We can split the terms and apply Parseval’s identity together with Lemma 3 to
obtain ∣∣∣1− f (k)(x)

∣∣∣ ≤ ∑
p∈Zd\{0}

|cp(f)|2|cp(f)|k−2.

≤
∑

p∈Zd\{0}

|cp(f)|2
(
B

π
sin
( π
B

))k−2
.

≤ ‖f‖2
(
B

π
sin
( π
B

))k−2
.

Since f ∈ FB , we have ‖f‖2 ≤ ‖f‖∞ ≤ B, and that concludes the proof. �

4. A bound for the diameter

In this section we prove the main result of this note. We begin by proving
a lemma about the distribution of the position on T d of the end vertex of a
path in G(n, g) started in any given vertex. Introduce gk = (g/‖g‖1)(k), the
k-fold convolution of g/‖g‖1. Given a fixed sequence of vertices j0, . . . , jm, let
E(j0, . . . , jm) = ∩mk=1{(jk−1, jk) ∈ En} denote the event that j0, . . . , jm is a path
in G(n, g).

Lemma 5. The location of the end vertex of a path of length m in G(n, g) has
a distribution with density given by gm. Formally, if E(j0, . . . , jm) occurs and
W = Xjm −Xj0 , the density

fW (x | E(j0, . . . , jm)) = gm(x), x ∈ T d.

Proof. Let Zk = Xjk −Xjk−1
. Note that W =

∑m
k=1 Zk. Also, each Zk is uniformly

distributed on T d because it is the difference of two uniformly distributed points.
By conditioning with respect to X1, . . . , Xn, we have

P (E(j0, . . . , jm)) = P

(
m⋂
k=1

(jk−1, jk) ∈ En

)
= E

[
m∏
k=1

g(Zk)

]
= ‖g‖m1 .

Define the vector Z = (Z1, . . . , Zm) and write u = (u1, . . . , um) ∈ (T d)m for a vector
of m points in the torus. The conditional probability of the path given Z = u is

P (E(j0, . . . , jm) | Z = u) = E

[
m∏
k=1

g(Zk)
∣∣∣ Z = u

]
=

m∏
k=1

g(uk).
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The distribution of Z is uniform on (T d)m because each Zk it uniformly distributed
on T d. Thus, we have fZ(u) = 1 for all u ∈ (T d)m. Then, by Bayes’ theorem, the
conditional density of Z given that j0, . . . , jm is a path in G(n, g) is

fZ(u | E(j0, . . . , jm)) =
P (E(j0, . . . , jm) | Z = u) fZ(u)

P (E(j0, . . . , jm))
=

∏m
k=1 g(uk) · 1
‖g‖m1

.

Note that by similar arguments hk(x) = g(x)/‖g‖1 is the conditional density of
Zk. Hence, the variables Z1, . . . , Zm are conditionally independent given that
E(j0, . . . , jm) occurs. Therefore, the conditional density of the sum W =

∑m
k=1 Zk

is given by

fW (x | E(j0, . . . , jm)) = (h1 ∗ · · · ∗ hm)(x) = gm(x). �

We want to bound the probability that a fixed pair of vertices i, j is not
connected by a path of bounded length. The idea behind the proof is to construct
a large number of disjoint long paths starting in i and then use the fact that the
end points of these paths are independent and relatively close to being uniformly
distributed on T d to show that the probability that none of them connects with j
decays exponentially.

Proposition 6. Let m = 2 +
⌈
(1/‖g‖21) log(1/2‖g‖21)

⌉
and γ = ‖g‖m+1

1 /4m. Then
for all i, j ∈ Vn, and all n ≥ m+ 2 we have

P
(

distG(i, j) > m+ 1
)
≤ e−γn.

Proof. We look for paths of length m+ 1 between any pair of vertices in the graph.
To simplify the notation we look at distG(n− 1, n). Let ` = b(n− 2)/mc and for
s = 0, . . . , `− 1, consider the events

As,0 = {(n− 1, sm+ 1) ∈ En},
As,k = {(sm+ k, sm+ k + 1) ∈ En}, for k = 1, . . . ,m− 1

As,m = {(sm+m,n) ∈ En}.

Let Fs = ∩m−1k=0 As,k be the event that n− 1, sm+ 1, . . . , sm+m is a path in G(n, g)
and Cs = Fs ∩As,m the event that this path connects n− 1 to n. Note that

P

(
`−1⋂
s=0

Ccs

)
= E

[
P

(
`−1⋂
s=0

Ccs

∣∣∣ Xn−1, Xn

)]

= E

[
`−1∏
s=0

P (Ccs | Xn−1, Xn)

]
,(1)

since for different values of s the events Cs involve disjoint subsets of vertices (except
the two endpoints n− 1 and n). For any s the conditional probability above can be
split as follows:

P(Ccs | Xn−1, Xn)

= P (F cs | Xn−1, Xn) + P
(
Acs,m | Fs, Xn−1, Xn

)
P (Fs | Xn−1, Xn) .(2)

Note Fs = E(n− 1, sm+ 1, . . . , sm+m) is independent of Xn and the value
of Xn−1 does not change the probability of Fs by translation invariance. Therefore,
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the conditional probability of having the given path in G(n, g) is equal to

(3) P (Fs | Xn−1, Xn) = ‖g‖m1 .

To compute the probability of making the last connection, let Zs = Xsm+m −
Xn−1. Note that, by Lemma 5, conditional on Fs, the difference Zs is distributed
with density given by gm. Since g : T d → [0, 1] we have that

g(x)

‖g‖1
≤ 1

‖g‖1
so

g

‖g‖1
∈ F‖g‖−1

1
.

Then, by Lemma 4 we have

sup
x∈T d

|1− gm(x)| ≤ 1

‖g‖1

(
sinπ‖g‖1
π‖g‖1

)m−2
≤ 1

‖g‖1
e−‖g‖

2
1(m−2) ≤ ‖g‖1

2
.

The second inequality follows from the fact that (sinπt)/πt ≤ e−t2 for t ∈ [0, 1] and
the last inequality holds by the definition of m. Therefore,

P
(
Acs,m | Fs, Xn−1, Xn

)
= E [1− g(Xn − Zs −Xn−1) | Fs, Xn−1, Xn]

= E [1− g(Zs) | Fs]

=

∫
T d

(1− g(x))gm(x)dx.

= 1− ‖g‖1 +

∫
T d

(1− g(x))(gm(x)− 1)dx.

≤ 1− ‖g‖1
2

.

Combining the bound above with the identity from equation (3) and substituting in
equation (2) we obtain

P (Ccs | Xn−1, Xn) ≤ (1− ‖g‖m1 ) +

(
1− ‖g‖1

2

)
‖g‖m1 = 1− ‖g‖

m+1
1

2
.

Applying this bound in equation (1) we have

P
(

distG(n− 1, n) > m+ 1
)
≤ P

(
`−1⋂
s=0

Ccs

)
≤
(

1− ‖g‖
m+1
1

2

)`
≤ e−γn,

where γ = ‖g‖m+1
1 /4m as in the statement of the lemma. �

The main result is that any pair of vertices i, j is connected by a path of
bounded length with high probability. Below we state the theorem again. The proof
follows immediately from Proposition 6.

Theorem 1. Let g : T d → [0, 1] be a measurable function with ‖g‖1 > 0, and define
m = 2 +

⌈
(1/‖g‖21) log(1/2‖g‖21)

⌉
and γ = ‖g‖m+1

1 /4m. Then, for all n ≥ m+ 2 we
have

P
(
diamG(n, g) ≥ m+ 1

)
≤ n2e−γn.

Proof. By Proposition 6, and a union bound we have

P
(

diamG(n, g) > m+ 1
)
≤

n∑
i,j=1

P
(
distG(i, j) > m+ 1

)
≤ n2e−γn. �
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5. Remarks and Generalizations

The bounds in our results depend only upon n and ‖g‖1 and should thus prove
useful in many applications. For example, for functions g that depend upon the norm
of the argument, all norms can be dealt with at once in a homogeneous manner. If

g(x) =
∏d
i=1 h(xi) is a product, with h : S1 → [0, 1] fixed, then ‖g‖1 = (

∫
h(x)dx)d,

so that the one could in principle let d tend to infinity with n without sacrificing
connectivity. For example, connectivity occurs with high probability if h is fixed
and

d <
1− ε

2
· log logn

− log(
∫
h(x)dx)

.

Note that our proof also works in the directed case, where we do not need
g(−x) = g(x). In this case it implies that the graph is strongly connected. Moreover,
Since the bounds in Proposition 6 are explicit functions of ‖g‖1 we can use the same
argument to show that a more general model, in which we have gn changing with
n still has bounded diameter as long as ‖gn‖1 does not goes to zero too quickly.
The bound is strong enough to obtain a connected graph with high probability for
sequences gn such that ‖gn‖1 > (log n)−β for some 0 < β < 1/2.
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