Bounds for the Uniform Deviation of Empirical Measures

Luc Devroye ${ }^{*}{ }^{\dagger}$

McGill University
Communicated by M. Rosenblatt

If X_{1}, \ldots, X_{n} are independent identically distributed R^{d}-valued random vectors with probability measure μ and empirical probability measure μ_{n}, and if σ is a subset of the Borel sets on R^{d}, then we show that $P\left\{\sup _{A \in \mathcal{A}}\left|\mu_{n}(A)-\mu(A)\right| \geqslant \varepsilon\right\} \leqslant$ $c s\left(O, n^{2}\right) e^{-2 n \epsilon^{2}}$, where c is an explicitly given constant, and $s(O, n)$ is the maximum over all $\left(x_{1}, \ldots, x_{n}\right) \in R^{d n}$ of the number of different sets in $\left\{\left\{x_{1}, \ldots, x_{n}\right\} \cap A \mid A \in G\right\}$. The bound strengthens a result due to Vapnik and Chervonenkis.

1. Introduction

The approximation of a probability measure μ on the Borel sets \mathscr{B} of R^{d} by an empirical measure μ_{n} constructed from X_{1}, \ldots, X_{n}, a sample of independent random vectors with common probability measure μ, has been of interest to statisticians for different applications. The classical empirical measure μ_{n} is defined by

$$
\mu_{n}(B)=\frac{1}{n} \sum_{i=1}^{n} I_{B}\left(X_{1}\right),
$$

where I is the indicator function.
Let

$$
U_{n}=\sup _{a}\left|\mu_{n}(A)-\mu(A)\right|,
$$

Received August 4, 1980.
AMS 1970 subject classification: 62 H 99 .
Key Words and phrases: Random vector, empirical measure, probability inequality, uniform consistency.

* The author is with the School of Computer Science, McGill University, 805 Sherbrooke Street West, Montreal H3A 2K6, Canada.
${ }^{\dagger}$ Research of the author was supported by the Air Force Office of Scientific Research under Grant AFOSR 76-3062 and 77-3385 while the author was at the University of Texas at Austin during the summers of 1979 and 1980.
where G is a subclass of \mathscr{O}. Steele [12] gives necessary and sufficient conditions for the almost sure convergence to 0 of U_{n}. Dudley [4] studies the convergence in distribution of $\sqrt{n} U_{n}$, and Gaenssler and Stute [7] give a comprehensive survey of the literature on empirical measures. We want to find good upper bounds for

$$
P\left\{U_{n}>\varepsilon\right\},
$$

that do not depend upon μ. Obviously, $U_{n}=1$ when $~ O=\mathscr{B}$ and μ is absolutely continuous with respect to Lebesgue measure. Also, $U_{n}=1$ when $O t$ is the class of all convex Borel sets, and μ puts its mass uniformly on the surface of the unit sphere (Rao [10]). These classes are too rich.

On the other hand, if $\mathcal{O}=\{A\}$ is a singleton set, then

$$
\begin{equation*}
P\left\{U_{n}>\varepsilon\right\} \leqslant 2 e^{-2 n \varepsilon^{2}} \tag{1.1}
\end{equation*}
$$

by Hoeffding's inequality (Hoeffding, [15]). For the class of all left-infinite intervals on R^{1}, Dvoretzky et al. [5] showed that

$$
\begin{equation*}
P\left\{U_{n}>\varepsilon\right\} \leqslant c e^{-2 n \epsilon^{2}} \tag{1.2}
\end{equation*}
$$

for some universal constant c not exceeding 611 (Devroye and Wise [3]). When $C t=\left\{\left(-\infty, a_{1} \mid x \cdots x\left(-\infty, a_{d}\right] ;\left(a_{1}, \ldots, a_{d}\right) \in R^{d}\right\}\right.$, Kiefer $[8,9]$ showed that for each $\alpha<2$, there exists a constant $c(d, \alpha)$ such that

$$
\begin{equation*}
P\left\{U_{n}>\varepsilon\right\} \leqslant c(d, \alpha) e^{-\alpha n \varepsilon^{2}} . \tag{1.3}
\end{equation*}
$$

Devroye [2] showed that for this class

$$
\begin{equation*}
P\left\{U_{n}>\varepsilon\right\} \leqslant 2 e^{2}(2 n)^{d} e^{-2 n \epsilon^{2}}, \quad n \varepsilon^{2} \geqslant d^{2} . \tag{1.4}
\end{equation*}
$$

Bound (1.3) is a moderate deviation result ($n \varepsilon^{2} \rightarrow \infty$ makes it go to 0) while (1.4) is a large deviation result $\left(n \varepsilon^{2} / \log n \rightarrow \infty\right.$ makes it go to 0$)$ that for fixed ε decreases more rapidly to 0 than (1.3).

Wolfowitz [14] discusses the behavior of U_{n} if $O t$ is the class of all linear halfspaces. For different classes of sets σ, a general method for obtaining upper bounds was developed by Vapnik and Chervonenkis [13].

Throughout this paper, we assume that
(i) $\sup _{A \in \mathscr{Z}}\left|\mu_{n}(A)-\mu(A)\right|$,
(ii) $\sup _{A \in \sigma} \mu_{n}(A)$
and

$$
\text { (iii) } \sup _{A \in \mathbb{Y}}\left|\mu_{n}(A)-\mu_{m}^{\prime}(A)\right|
$$

are random variables where μ_{m}^{\prime} is the empirical measure constructed from $X_{1}^{\prime}, \ldots, X_{m}^{\prime}$, a sample of independent random vectors with common probability measure μ, and independent of X_{1}, \ldots, X_{n}. For the classes $C l$ discussed below, this is the case (e.g., the products of closed left-infinite intervals; the products of intervals; the open spheres; the closed spheres; the open linear halfspaces; the closed linear halfspaces; the finite intersections of open (closed) linear halfspaces; the open convex sets; etc.).

Theorem (Vapnik and Chervonenkis, [13|). If $N_{n}\left(x_{1}, \ldots, x_{n}\right)$ is the number of different sets in

$$
\left\{\left\{x_{1}, \ldots, x_{n}\right\} \cap A \mid A \in O\right\}
$$

and

$$
s(C, n)=\max _{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{d n}} N_{n}\left(x_{1}, \ldots, x_{n}\right),
$$

then

$$
\begin{equation*}
P\left\{U_{n}>\varepsilon\right\} \leqslant 4 s(C, 2 n) e^{-n \epsilon 2 / 8}, \quad n \varepsilon^{2} \geqslant 1 . \tag{1.5}
\end{equation*}
$$

We prove the following
Theorem. There exists a universal constant c such that

$$
\begin{equation*}
P\left\{U_{n}>\varepsilon\right\} \leqslant c s\left(O \not, n^{2}\right) e^{-2 n \epsilon^{2}} \tag{1.6}
\end{equation*}
$$

The constant does not exceed $4 e^{\left(4 \epsilon+4 \epsilon^{2}\right)}$.
The proof of (1.6) is tailored to the proof of Vapnik and Chervonenkis [13]. A slightly different inequality is due to Devroye and Wagner [1].

Note. The quantity $s(O, n)$ measures how "complex" the class $C l$ is. For example, we have
(1) $O t=\{A\}: s(C, n)=1$.
(2) $C T=\left\{\left(-\infty, a_{1}\right] x \cdots x\left(-\infty, a_{d}\right] \mid-\infty \leqslant a_{1} \leqslant+\infty, \ldots,-\infty\right.$
$\left.\leqslant a_{d} \leqslant+\infty\right\}:$

$$
s(O t, n)=(1+n)^{d}
$$

(3) $O t=\left\{\right.$ all rectangles in $\left.R^{d}\right\}$, where a rectangle is a d-fold product of intervals of the type $(a, b],(a, b),[a, b)$, or $[a, b]$ with $-\infty \leqslant a \leqslant b \leqslant+\infty$:

$$
\begin{aligned}
& s(C l, n) \leqslant \sum_{i=0}^{2 d}\binom{n}{i} \leqslant 1+n^{2 d} \leqslant 2 n^{2 d}, \\
& s(O t, n) \leqslant \sum_{i=0}^{2 d}\binom{n}{i} \leqslant \frac{2}{(2 d-1)!} n^{2 d}, \quad n \geqslant 2 d .
\end{aligned}
$$

(4) $a=\left\{\right.$ all linear halfspaces in $\left.R^{d}\right\}$, where a linear half-space is a set of $\left(x_{1}, \ldots, x_{d}\right) \in R^{d}$ satisfying

$$
a_{1} x_{1}+\cdots+a_{d} x_{d}+a_{0}>0
$$

or

$$
a_{1} x_{1}+\cdots+a_{d} x_{d}+a_{0} \geqslant 0
$$

for some $\left(a_{1}, \ldots, a_{d}, a_{0}\right) \in R^{d+1}$. We have:

$$
\begin{aligned}
s(O, n) \leqslant 2 \sum_{i=0}^{d}\binom{n}{i}-1 & \leqslant 2 n^{d}, \\
& \leqslant \frac{4}{(d-1)!} n^{d}, \quad n \geqslant d .
\end{aligned}
$$

(5) $G=\left\{\right.$ all closed or open l_{2}-spheres in $\left.R^{d}\right\}$:

$$
s(O l, n) \leqslant 2 \sum_{i=0}^{d+1}\binom{n}{i}-1 \leqslant 2 n^{d+1} .
$$

The proofs of these inequalities use straightforward combinatorial arguments; most of them are summarized by Vapnik and Chervonenkis [13] and Feinhloz [6].

Note. For small ε, the bound in (1.6) becomes very close to $4 s\left(O, n^{2}\right) e^{-2 n \epsilon^{2}}$. For $G=\{A\}$, it is just twice as large as Hoeffding's bound (1.1).

2. Proof of the Theorem

Define $n^{\prime}=n^{2}-n, T=\left(X_{1}, \ldots, X_{n}\right), V=\left(X_{n+1}, \ldots, X_{n+n^{\prime}}\right)$, where $X_{1}, \ldots, X_{n^{2}}$ are independent identically distributed random vectors from R^{d} with
probability measure μ. Let μ_{T} and μ_{V} be the classical empirical measures for T and V, respectively. For each Borel subset A of R^{d}, let

$$
\rho_{A}=\left|\mu_{\nu}(A)-\mu_{T}(A)\right|
$$

and define

$$
\begin{aligned}
\rho & =\sup _{A \in \pi} \rho_{A} \\
\sigma & =\sup _{A \in \mathscr{Z}}\left|\mu(A)-\mu_{T}(A)\right| .
\end{aligned}
$$

Also, let P, P_{T} and P_{V} be the probability measures induced by the overall sample (T, V), T and V in $R^{n^{2} d}, R^{n d}$ and $R^{n^{\prime} d}$. We will first show that for $0<\alpha<1, \varepsilon>0$,

$$
P\{\rho>(1-\alpha) \varepsilon\} \geqslant\left(1-\frac{1}{4 \alpha^{2} \varepsilon^{2} n^{\prime}}\right) P\{\sigma>\varepsilon\}
$$

Indeed, notice that $\sigma>\varepsilon$ implies that $\left|\mu\left(A^{*}\right)-\mu_{T}\left(A^{*}\right)\right|>\varepsilon$ for some $A^{*} \in a$ (depending upon T), and that on $\{\sigma>\varepsilon\},\left\{\left|\mu_{V}\left(A^{*}\right)-\mu\left(A^{*}\right)\right| \leqslant \alpha \varepsilon\right\} \subseteq\left\{\rho_{A^{*}}>\right.$ $(1-\alpha) \varepsilon\} \subseteq\{\rho>(1-\alpha) \varepsilon\}$. Thus,

$$
\begin{aligned}
P\{\rho>(1-\alpha) \varepsilon\} & =\int_{R^{n} d} I_{[\rho>(1-\alpha) \epsilon]} d P \\
& =\int_{R^{n d}} d P_{T} \int_{R^{\prime} d} I_{[\rho>(1-\alpha) \epsilon]} d P_{V} \\
& \geqslant \int_{[\sigma>\epsilon]} d P_{T} \int_{R^{n^{\prime} d}} I_{[\rho>(1-\alpha) \epsilon]} d P_{V} \\
& \geqslant P_{T}\{\sigma>\varepsilon\} \cdot \inf _{A \in \mathscr{A}} P\left\{\left|\mu_{V}(A)-\mu(A)\right| \leqslant \alpha \varepsilon\right\} \\
& \geqslant P\{\sigma>\varepsilon\} \cdot\left(1-\frac{1}{4 \alpha^{2} \varepsilon^{2} n^{\prime}}\right)
\end{aligned}
$$

Let $\left(T_{i}, V_{i}\right)$ denote one of the possible n^{2} ! permutations of (T, V), and let $\rho_{A}(i), \rho(i)$ be defined as ρ_{A}, but with (T_{i}, V_{i}) replacing (T, V). Two sets A and B from R^{d} are equivalent for (T, V) if

$$
A \cap\left\{X_{1}, \ldots, X_{n^{2}}\right\}=B \cap\left\{X_{1}, \ldots, X_{n^{2}}\right\}
$$

For such equivalent sets, we have of course $\mu_{V_{i}}(A)=\mu_{V_{i}}(B), \mu_{T_{i}}(A)=\mu_{T_{i}}(B)$, all $i=1, \ldots, n^{2}$!

Proceeding as in Vapnik and Chervonenkis [13], we have

$$
\begin{align*}
& \frac{1}{n^{2}!} \sum_{i=1}^{n^{2!}} I_{[\rho(i)>(1-\alpha) \epsilon]} \\
& =\frac{1}{n^{2}!} \sum_{i=1}^{n^{2}!} \sup _{A \in Q} I_{\left[\rho_{A}(i)>(1-\alpha) \epsilon\right]} \\
& \leqslant \frac{1}{n^{2}!} \sum_{i=1}^{n^{2}!} \sum_{A \in \tilde{O}_{(T, V)}} I_{\left[\rho_{A}(i)>(1-\alpha) \epsilon\right]} \\
& \leqslant \sum_{A \in \mathcal{O}_{(T, V)}} \frac{1}{n^{2}!} \sum_{i=1}^{n^{2}!} I_{\left[\rho_{A}(i)>(1-\alpha) \epsilon\right]} \\
& \leqslant N_{a}\left(X_{1}, \ldots, X_{n^{2}}\right) e^{-2 n \epsilon^{2}+4 \alpha n \epsilon^{2}+4 \epsilon^{2}} \\
& \leqslant s\left(C, n^{2}\right) e^{-2 n \epsilon^{2}+4 \alpha n \epsilon^{2}+4 \epsilon^{2}}, \tag{2.1}
\end{align*}
$$

where $\mathcal{Z}_{(T, V)} \subseteq O$ is a subclass from $C l$ with the properties
(i) $A, B \in O t_{(T, V)}$ implies tat A and B are not equivalent for (T, V),
(ii) for every $A \in O$, there exists a $B \in \overbrace{(T, V)}$ that is equivalent to A for (T, V).

Thus, $G_{(T, V)}$ cannot have more than $s\left(G, n^{2}\right)$ sets. Let us now explain the third inequality in (2.1).

If $Y_{1}, \ldots, Y_{n^{2}}$ is a permutation of $y_{1}, \ldots, y_{n^{2}}$, a sequence of 0 's and 1 's, with $Y_{i}=I_{\left[X_{i} \in A\right]}$, then

$$
\begin{aligned}
& \frac{1}{n^{2}!} \sum_{i=1}^{n^{2}!} I_{\left[\rho_{A}(i)>(1-\alpha) \epsilon\right]} \\
&=P\left\{\left|\frac{1}{n} \sum_{i-1}^{n} Y_{i}-\frac{1}{n^{\prime}} \sum_{i=1}^{n^{\prime}} Y_{n+i}\right|>(1-\alpha) \varepsilon\right\} \\
&=P\left\{\left|\frac{1}{n} \sum_{i=1}^{n} Y_{i}-\frac{1}{n^{\prime}}\left(n^{2} \mu_{(T, V)}(A)-\sum_{i=1}^{n} Y_{i}\right)\right|>(1-\alpha) \varepsilon\right\} \\
&=P\left\{\left|\frac{1}{n} \sum_{i=1}^{n} Y_{i}-\mu_{(T, V)}(A)\right|>(1-\alpha) \varepsilon \frac{n^{\prime}}{n^{2}}\right\} \\
& \leqslant 2 \exp \left\{-2 n(1-\alpha)^{2} \varepsilon^{2}\left(\frac{n^{\prime}}{n^{2}}\right)^{2}\right\} \\
& \leqslant 2 \exp \left\{-2 n \varepsilon^{2}+4 \alpha n \varepsilon^{2}+4 \varepsilon^{2}\right\},
\end{aligned}
$$

where $\mu_{(T, V)}$ is the classical empirical measure for (T, V), and where we used Hoeffding's inequality for sampling without replacement from n^{2} binary-
valued elements with sum $n^{2} \mu_{(T, V)}(A)$ (Hoeffding |15|; Serfling [11]). Taking expectations on both sides of (2.1) gives

$$
P\{\rho>(1-\alpha) \varepsilon\} \leqslant s\left(C t, n^{2}\right) e^{-2 \epsilon^{2}+4 \alpha n \epsilon^{2}+4 \epsilon^{2}}
$$

Collecting bounds yields

$$
\begin{aligned}
P\{\sigma>\varepsilon\} & \leqslant 2 s\left(\pi, n^{2}\right) \frac{1}{1-\left(1 / 4 \alpha^{2} \varepsilon^{2} n^{\prime}\right)} e^{\left(4 \alpha n \epsilon^{2}+4 \epsilon^{2}\right)} e^{-2 n \epsilon^{2}} \\
& \leqslant 2 e^{\left(4 \epsilon / \gamma+4 \epsilon^{2}\right)} \frac{1}{1-\gamma^{2} / 2} s\left(\pi, n^{2}\right) e^{-2 n \epsilon^{2}},
\end{aligned}
$$

when $\alpha=1 / \gamma n \varepsilon, n \geqslant 2,0<\gamma<\sqrt{2}$. For $\gamma=1$, we obtain

$$
P\{\sigma>\varepsilon\} \leqslant 4 e^{\left(4 \epsilon+4 \epsilon^{2}\right)} s\left(C l, n^{2}\right) e^{-2 n \epsilon^{2}} .
$$

Note. We have in fact shown that

$$
\begin{equation*}
P\left\{U_{n}>\varepsilon\right\} \leqslant 4 e^{\left(4 \epsilon+4 \epsilon^{2}\right)} e^{-2 n \epsilon^{2}} E\left\{N_{\sigma}\left(X_{1}, \ldots, X_{n^{2}}\right)\right\} . \tag{2.2}
\end{equation*}
$$

In many cases, this bound is considerably smaller than (1.6).

References

[1] Devroye, L. P. and Wagner, T. J. (1976). Nonparametric discrimination and density estimation, Technical Report 183, Information Systems Research Laboratory, University of Texas.
[2] Devroye, L. P. (1977). A uniform bound for the deviation of empirical distribution functions. J. Multivar. Anal. 7 594-597.
[3] Devroye, L. P. and Wise, G. L. (1979). On the recovery of discrete probability densities from imperfect measurements. J. Franklin Inst. 307 1-20.
[4] Dudley, R. M. (1978). Central limit theorems for empirical measures. Ann. Probab. 6 899-929.
[5] Dvoretzky, A., Kiefer, J., and Wolfowitz, J. (1956). Asymptotic minimax character of the sample distribution function and of the classical multinomial estimator. Ann. Math. Statist. 33 642-669.
|6| Feinholz, L. (1979). Estimation of the performance of partitioning algorithms in pattern classification. Thesis, Department of Mathematics, McGill University, Montreal.
[7] Gaenssler, P., and Stute, W. (1979). Empirical processes: a survey of results for independent and identically distributed random variables. Ann. Probab. 7 193-243.
|8| Kiefer, J. and Wolfowitz, J. (1958). On the deviations of the empiric distribution function of vector chance variables. Trans. Amer. Math. Soc. 87 173-186.
[9] Kiefer, J. (1961). On large deviations of the empiric d.f. of vector chance variables and a law of the iterated logarithm. Pacific J. Math. 11 649-660.
|10| Rao, R. R. (1962). Relations between weak and uniform convergence of measures with applications. Ann. Math. Statist. 33 659-680.
[11] Serfling, R. J. (1974). Probability inequalities for the sum in sampling without replacement. Ann. Statist. 2 39-48.
[12] Steele, J. M. (1978). Empirical discrepancies and subadditive processes. Ann. Probab. 6 118-127.
[13] Vapnik, V. N. and Chervonenkis, A. Ya. (1971). On the uniform convergence of the relative frequencies of events to their probabilities. Theory Probab. Appl. 16 264-280.
[14] Wolfowitz, J. (1960). Convergence of the empiric distribution function on half-spaces. Contributions in Probability and Statistics, I (Olkin et al., Eds.), pp. 504-507, Stanford University Press, Stanford, Calif.
[15] Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58 13-30.

