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The original Erdos-Renyi theorem states that Un /(ak) --~ 1 almost surely
for a large class of distributions, where Un = supo < < n - k(Sl + k - Se ), Sl = Xl
+ • • + X~ is a partial sum of i .i.d . random variables, k = s( n ) _ [ c log n],
c > 0, and a > 0 is a number depending only upon c and the distribution of
X1 . We prove that the lim sup and the lim inf of (Un - ak)/log k are almost
surely equal to (2 t* )-1 and - (2 t* )-1 , respectively, where t* is another
positive number depending only upon c and the distribution of X1 . The same
limits are obtained for the random variable Tn = sup s< -S~)
studied by Shepp.

1 . Introduction. We are concerned with the asymptotic behavior of
Un = sup {Si+k Si } '-

0-<i-<n-k

for k = [c log n], where c > 0, So = 0, Si = X1 + • • • + X, and X 1 , X2 , . . . are
independent, identically distributed random variables having moment generating
function 4(t) and satisfying the conditions

(A) E(X1 ) = 0 ;
(B) Xl is nondegenerate, i .e ., P(X1 = x) < 1 for all x,
(C) t o = sup(t; 4(t) = E(etXl) < oo} > 0 .

If c is related to a via the equation
1

exp - - = inf4(t) e - t«

C

	

t

Erdos and Renyi (1970) proved that, for any a E {4'(t)/4(t), 0 < t < t o },
Un

hm

	

=1 almost surely .
n-b oo ak

Earlier, Shepp (1964) had obtained a related theorem under the same condi-
tions by showing that

Tn
hm

	

=1 almost surely,
n-boo ak

for
Tn = sup

1<i<n

where ic( i) _ [c log i ] .
k
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These fundamental results were followed by a flurry of refinements and
extensions . Among the refinements, we cite the work of S. Csorgo (1979) and of
M. Csorgo and Steinebach (1981), the latter two of whom proved that

Un =
1 + o ( k - 1/2) almost surely .

ak .

In this paper we show that the o(k-1/2 ) term can be replaced by 0(k- 'log k )
and that this replacement is the best we can achieve . We also prove that the
almost sure behavior of Tn is identical to that of U, .

Before stating our results in detail, we need to specify the range of values of c
and a that will be covered by our theorems. This will be done in Section 2 .
Section 3 presents a large deviation estimate applicable to our problem . Section 4
contains the proof of our main theorems .

2. Properties of the moment generating function. Let X = X1 be a
random variable satisfying conditions (ABC) and define

4'(t)

	

E(Xetx )
m(t) =		.~(t)

	

E(etx)
Then m(0) = 0 and m( •) is strictly increasing on [0, t o ) and continuously dif-
ferentiable on (0, t0 ) . Define further

A = lim m(t) and

	

JtoF(t)dttm .
t T to

	

0

Throughout, we will consider only the interval [0, t o ) for t, where 0 < t o <_ oo .
Let c = c(a) and p = p(a) be defined by

1
p =exp - - = inf4(t) e - to

C

	

t

THEOREM 1. (1) For any t E (0, t 0 ), m(t) E (0, A) . Conversely, for any
a E (0, A), there exists a unique t * = t *(a) E (0, to ) such that m(t*) = a ;

(2) For any a E (0, A),

_ 1p _ exp

	

= ( t*)e_ t* a and c E (c0 , oo ),
C!

(3) For any c E (c0, oo), there exists a unique a E (0, A) such that c = c(a) .

PROOF. First, on (0, to ), 4 is continuously infinitely differentiable . Next,
4(0) = 1 and 4 is nondecreasing on [0, t0 ) . This follows,from Gurland's inequality
[see Gurland (1967)] and the inequalities, for s >_ t,

E(e) = E( e tx( e tx)cs-t)/t) ~ E(etx)E(e~s-t)x) > E (etx) .

Furthermore, 4 is convex because 4/'(t) = E(X 2etx ) >_ 0.
The function m is continuous and strictly increasing on [0, t0 ) . This follows

from the Cauchy-Schwarz inequality E2(Xe tx ) _< E(X 2e tx)E(etx ), which im-
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plies that m'(t) _ (4"(t)4(t) - ~r 2( t))/~2 ( t) >- 0. This last inequality has to be
strict by (B) .

We have m(0) = lim t 0 m(t) _ 4'(0)/4(0) = E(X) = 0. On the other hand,
A = lim t

T t
m( t) <- ess sup X. Here, equality occurs when ess sup X < oo, or when

t o = oo, ess sup X = oo, and we have an inequality in the other cases [see Petrov
(1965), p. 288] .

Consider now the equation m(t) = a, and its solution t* = t*(a). For all
0 <- a <A, there is a unique solution in the range 0 -< t < to . Conversely, as t
takes all values in [0, to ), m(t) takes all values in [0, A) .

Next, log 4(t) - to has first derivative m(t) - a and strictly positive second
derivative m'(t) on [0, t0). Thus it has a unique minimum on [0, to) as the
solution of the equation m(t) = a. This proves (1), and allows us to write

logp(a) = log~(t*) - at* _
1
C

Since m(t*(a)) = a, it follows that t*'(a)m'(t*(a)) =1, and that
(logp(a))'= -t*(a),

	

0<- a < A .

Noting that p(0) = inf t 4(t) _ 4(0) =1, it follows that
1

	

-fa(logp(o))Fdo

	

«= f t*(O) d8
=
ft*(a)F(t)

	

tmdt.c

	

o

	

0

	

0

Clearly, c is a continuous function of a E (0, A), strictly increasing in a, with
lim « oc = oo , and lim « T Ac = co = 1 / fo° tm'( t) dt . Thus, for every value a E
(0, A), there exists a unique value c E (co , oo) and vice versa . This completes the
proof of Theorem 1 .

REMARK 1 . In the sequel we shall make use of the fact that a 2(t) = m'(t) > 0
on (0, t0 ) . The function a is continuous on [0, t 0 ), such that

a 2(0) = lima 2(t) = E(X2 ) < oo .
too

REMARK 2 . We shall need also the fact that (1/t)log 4(t) is strictly increas-
ing in t. This last result is a consequence of Jensen's inequality, for s > t,

E l/ t(e tx ) < El~s(esx )

with equality if and only X is constant, which is not allowed by (B) .

THEOREM 2 . C 0 = 0 in all cases except the following two :
(i) A < oo, to < oo . (This covers a class of distributions with ess sup X1 = oo .)

In that case, co =1/(Ato - log 4(t0)) ;
(ii) A < cc, to = oo . (This occurs if and only if ess sup X 1 < oo .) In that case,

we Dave A = ess sup X1 , P(X1 =A)> 0, and c0 = - 1/log P(X1 = A).

PROOF . It is easy to show that if ess sup X < cc, then t o = oo and A < oo .
Conversely, by Petrov (1965), if to = oo and ess sup X = oo, then A = oo .
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It follows that ess sup X < oo if and only if A < oo and to = oo . In that case,
we have A = ess sup X.

Let us now characterize the distributions for which c o =1/fot *(a) d a = 0 .
Since t* is an increasing function of a, we see that co = 0 if A = oo . Let us
assume that A < oo . There are then two cases :

(i) t o < oo . In that case, fgt*(a) d a _< At o < oo and hence co 0. We have
here

1
- _ - lim log p ( a) = lim (at* - log (t*)) = A t 0 - log (t0 ) .
C0

	

aTA

	

aTA

J

(ii) t0 = oo . By the remarks above, we must have then A = ess sup X < oo . In
that case, we have c o < oo . Furthermore,

At*(a) da = ~tm'(t)dt
0

	

0

= f~(A - m(t)) dt = f~ E((~(e~~etX) dt = - f ~ (~et ~)~ dt,

where Y = X -A.
Put ~'(t) = E(e tY ) . We have

fAt( «) d« _ - f	t
) dt = - 'm log ~'( t)

_ - log P(Y = 0) _ - log P(X = A) .
Here, we have used the fact that by the dominated convergence theorem,

E(e t ') -~ P(Y = 0) as t T oo. This proves Theorem 2 .

REMARK 3 . A number of authors have apparently ignored the fact that there
exist distributions for which A ess sup X 1 and yet fulfill condition (i) of
Theorem 2. By taking a density decreasing as a -xx-3 , we get A < ess sup X 1 = 00,
and to < oo, as sought .

3. Application of Petrov's large-deviation theorem . In this section, we
use the hypotheses and notation of Sections 1 and 2 .

THEOREM 3 (Petrov, 1965) .
p(t*)

	

n

	

(t*)
P(Sn >_ na)

	

exp - - =

	

exp(n(log p(t*) - t*a)),
CI

uniformly for a E [is, min(A - ~,1/i)], where > 0 is arbitrary, and (t *) > 0
is a finite number depending upon t* and the distribution o f X 1 only .

For nonlattice distributions, -one can take (t *) _ (t *a(t *) 2 ~r) -1 , while for
lattice distributions with span H, one can take

H

	

1
p(t*)

	

- e-Ht*

	

*

	

.1

	

Q(t ) 2~r



REMARK 4 . Cramer (1938) proved a similar result for more restricted classes
of random variables and Bahadur and Ranga Rao (1960) obtained another result
that comes close to Theorem 3 [see Nagaev (1979) for a general discussion of large
deviation results] .

We will repeatedly use the following corollaries of Theorem 3.

COROLLARY 1 . Let a E (0, A) and let yn be a sequence of numbers satisfying
ny,2 -~ 0 as n -~ oo . Then, uniformly over all sequences zn with Jzn J -< Jyn J, we
have

t*)

	

n
P(Sn >_ n(a + zn )) - p~ exp I c Iexp(-nznt*) .

l

	

I

PROOF. The proof is based upon Theorem 3 jointly with the following
observations taken from Section 2 : t * = t *(a) is a continuous function of a, and
thus (t*) is a continuous function of a too. The derivative of -(1/c) = log p(a)
with respect to a is - t* .

COROLLARY 2. For all E B, a E (0, A), we have

p(t*) + o(1)

	

1

	

log k

	

el/~i(t*) + o(1)

k' 2 ' 2/+( ± /+~) < nP Sk >- ak + ± 2 + E

t*

	

kl/2+(± 1/2+E)

PROOF. It follows directly from Corollary 1 and the observation that
e(k+1)/c > n >

4. The main theorems . In the remainder of this section, we will need the
following increasing sequence of integers :

nj = inf ( n; [clogn] =j} .

It is clear that k = ic(n) = j for nj -< n < nj+1 •

LEMMA 1.

lira sup (Un
n -~ o0

lira sup (Tn
n-~ o0
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1
ak)/log k <-	 almost surely ;

2t*
1

ak)/log k <-	* almost surely .
2t

(i) For nj <- n < nj1,1 , we know that k = j, and U, <_ Un~+ 1 _ 1 . Thus,

1

	

log k ,

	

1

	

log j ,
P Un >- ak + - +

	

* i .o . <- P Un~ + 1 _ 1 >- a, f + - + £

	

* l.o. (ln J) .2

	

t

	

t
By Corollary 2, since j = [c log(nj+ 1 -1)],

1

	

log j

	

1

	

log j
P Un1+1 _1>-aj + -+~ * --<nj+1P Sj >-a,f+ -+£

2

	

t

	

2

	

t

_
which is summable in j. The result follows by Borel-Cantelli .
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(ii) Likewise, for nj < n < nj+ 1 , we have Tn < TnJ + -1 = sup0 < i < jA i, where
~ i = sup, < l < n t+ 1(Sl+rc(l) - Sl} . It follows that, for any > 0,

1

	

log j ,

	

1

	

log k ,
P A j >+ -+ £

t*
1 .0 . =0=P Tn >--ak+ -+ ~

t*
1 .0 . =0 .

By Corollary 2,
1

	

log j

	

1

	

log j
P Aj >-aj + -+~ * <- (n +j1-nj)P Sj >-aj+ -+E2

	

t

	

2

	

t*
=

which is summable in j . The result follows by Borel-Cantelli .

LEMMA 2 .

(i)

This suffices for the proof .

For any E > 0, P (Un - ak)/log k <- -

(ii)

	

For any > 0, P (',2 - ak)/log k < -

PROOF. (i) By Corollary 2, we have, for any > 0,
-1

P (Un - ak)/log k >_
2t*

+ £

1

	

* log k
<-nP Sk>-ak+ -2 +~t

t*

(ii) For n j -< n <n 1 ,1 , we have, using E/t * in place of ~,
-1

	

E
P (Tn - ak)/logk >_ * + * _< P (Tn+1_12t

	

t

Proceeding as in the proof of Lemma 1, let 0j = 1= supp < i < j A i . By
Lemma 1(ii), for any > 0, P(Oj >- aj + (1/2 + E)((log j)/t*)) -~ 0 . It follows
by change of index from j to j - [f" 2 ] that

1

	

log j
P Oj _ [jF/2 ] > a,J + --+ 2

	

t
Finally by Corollary 2, we have

P

	

sup 11 i >-aj+
1- {J f/2 ]<

<

	

P Ai >--at+

( 1

	

log j 1

1 2 + ~ t* J

l

	

+ ~I l tgt2

	

l

1
2t*
1

+ E -) 1 .2t*

0, hence result .

-1

	

E
aj) /log j >- * + * .

2t

	

t

= o(j -E/2)

.

0 .



COROLLARY 3 .

1
(i)

	

lim inf (Un - ak )/log k < -

	

almost surely ;
n-~ o0

	

2t*
1

(ii)

	

lira inf (Tn - ak )/log k < -

	

almost surely .
n-~ o0

	

2t*
PROOF. This statement uses the observations that for any sequence of events

An with P(A) -~ 1, we must have P(An i.o .) = 1. It follows directly from
Lemma 2 .

Having established the easy halves of our main results, we now turn to the
more complicated parts. We shall make use of the following lemmas .

LEMMA 3 (Chung and Erdos, 1952) . For arbitrary sequences o f events
A1 , . . ., An , we have

PI ~J A;)
l i=1
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n

	

2
2P(A)i

i=1
n
>2P(A)+i >2P(AnA)i

	

j
i=1

	

i*j

LEMMA 4 . Let l < i < k and let Si = X1 + . . . + X, iSk - i = Xi+ 1 + . . . +Xk,
and Se" = Xk + 1 + +Xk + i • Then for any x and q and for any t E (0, t*), we
have

P(Si + Sk- i
k-i

	

* q
>-x, Sk_i+St'>_x) < (4(t*))

e -t

+P(Sk >_ x)~~~t))te-tax-q~ •

PROOF OF LEMMA 4 . Note first that P(Sn >- an + u) <- E(et~sn n« u )) _

(4( t) e - t« )ne - t u From there we get, for any 0 < t < t *, by Jensen's inequality,

P(Sn >_ s) < ((t)) hZe_ts

	

~ and P(Sn >- s) S (4(t*))hie_t*s .

Next, we have

< P(Sk-i ? q) + P(S" ? x - q)P(S1 + Sk-i ? x)

< ((*))_i_t*q ~t k e+ ((t))et_P(Sk

	

~` -axq> > x)
as sought .

LEMMA 5 . For any > 0, we have with E' _

-1
(1)

	

P (Un - ak)/log k >- * - E'
x

	

2t
-1

(ii)

	

P (Tn - ak )/log k >- * - ~'2t

1

1
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PROOF. (i) We will use Lemma 3 for events
1

	

log k
Ai = Si+ k - Si >-ak+ ---E

	

0<i<n-k .2

	

t*
Noting that A i and Aj are independent when i - j > k and that
P(Ao ), we have

n-k
P(Aj + P(A i nAj)

i=0

	

i*j

n-h
(P(A)2)i +

	

(P(A i n Aj) - P(A)P(A))
i=0

	

1 ~ f i-jI Sk
n-k

+

	

(P(A)i- P2(Ai)) .
i=0

It follows that we need only show that, for E > 0,
(*)
and

k
(* *)

	

n ~ P(A o n A i ) - o((nP(Ao))2) •
i=1

By Corollary 2, ((t*) + o(1))ke < nP(A0 ) < (e 1/S (t*) + o(1))ke. Hence
is satisfied and (* *) amounts to

k
(* *)

	

n

	

P(Ao n Ai ) = o(k 2e) .
i=1

nP( Ao ) -~ o0

Put in the inequality of Lemma 4, x = ak + (-1/2 - E)((log k)/t* ), and
q = ak - (i/t* )log 4(t*) + (2/t* )log i. Let t E (0, t*) be fixed. We have by
Lemma 4 that

P(Ao ~Ai)=P(Si + Sk_ i >_x,Sk_ i + Si'?x)

< ((*))k_i_t*q ~te+ P(Ao)(~(t))te-t(x-q~

= i-2e -k/ c + P(A0
)k(t/t*)(£+1/2)i2t/t* e -ei

< i-2e -k/~ + P(A0 )k 5/2e ° ,i

where B = t((1/t*)log 4(t*) - (1/t)log 4(t)) > 0 by Remark 2 .
Let l = [k e/2 ] . We have

k

	

k-i
n P(Ao fl A i ) < 2nlP(A o ) + n

	

P(Ao n A i )
i=1

< 2nlP(Ao) + e1/c

	

i-2 + nP(A 0 )kE +5/2
i=l+ 1

= k E/2nP(Ao)O(1) = O(k 3E /2 ),
which suffices for (* * ), since nP(A0 ) = 0(ke).

e-Bl

P(Aj =

1 - e-B

(*)
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(ii) Let again A = supn~ < i <n~ {Si+ ; - Sj, and note for further use that
Tn >- A for n >- n1+1 . Let N = n~+1 - n~ < e ('+2)/c, N > e'/c(el/c _ 1) _ 1
e(el/~~ - 1). We obtain by the same arguments as above, with j replacing k in
the definition of Ai ,

1

	

log j

	

N
P Aid aj+ _--E * =P Uk~1,

t

	

i=1

	

'

whenever
(*)

	

NP(A0) ~~
and

(* *)

	

N P(A 0 n Ai) = o (NP(Aa ))2 .
i=1

We have just proved that ('*) and (* *) hold if > 0. This implies that, as
j -* oO

PITn >aj+l 2

	

I 1g J l>PIA~>~xj--I-2-EI 1~ ~
J1

uniformly in nj+ 1 _< n <n2 .;+ This, in turn, implies that
1

	

log k
PTn >-ak+ ---2E

2

	

t*

which completes the proof of Lemma 5, E > 0 being arbitrary .

The first of the two main theorems of this paper follows :

PROOF. Combine Lemmas 2 and 5 .

We proceed with the sequence of lemmas directed toward the second of our
main theorems .

LEMMA 6 .

1
lira sup (Un - ,ak )/log k >-

	

almost surely ;
n-~ o0

lira sup (Tn
n -~ o0

2t*

1
ak )/log k >_

2t*
almost surely .

1,

THEOREM 4.
we have

For any a E (0, A) or, equivalently, for any c = c(a) E (c0 , co),

1
(i) (Un - ak)/log k -~ -

2t*
in probability ;

1
k in(ii) (Tn - ak)/log -- -

2t*
probability .



218

	

P. DEHEUVELS ET AL.

PROOF. Let Rj supn~ n n~+, _{S,+j - Sr ) . Since k = K(n) = J when nj -<
n < nj+ 1 , it is straightforward that Rj < min{Tm, Urn ), for nj < m < n j+ 1 . It
follows that

1

	

log k ,

	

1

	

log k
P Tm ak + - - ~ * i .o. = P Um >- ak + - - ~

	

i.o. = 1
2

	

t

	

2

	

t .
for any E > 0, if

1

	

log j
P R j >--aj+ --E

	

i .o. =1
2

	

t*

for any > 0. Since the Ri ' s form a sequence of independent random variables,
the latter probability is one if and only if

1

	

logj
>JPR>aj+

	

j -- E * =~Pj =~,

Next, we note that Pj = P(UN 1A i ), where A t = t St +j - Si >- x), x = aj +
(1/2 - E)((log j)/t* ), and N = nj+1 - nj - j < e~j+2)/~, N > ej/~(el/c - 1) - j
- 2 ej/c(e l/c - 1)

By Lemma 3, it follows that

N

	

(NP(A 0 ))2

Pj=P UAi ?

	

j
` =1

	

NP(A J)+(NP(A o )) 2 +2N P(A o nA 1 )
l=1

By Corollary 2 and our bounds on N, we note that, for some appropriate
constants c 1 > 0 and c2 > 0, we have

(c1 +
0(1))j1 < NP(A) < (c2 + o(1)) j 1 .

Summarizing and simplifying, we obtain
C1 j-2(1- ~ )

Pj >_ (1+o(1)) J
c 2j- ~1- e )

+ 2N P(A o n A 1 )
l=1

We will show further on that there exists a constant c3 > 0 such that
j

N

	

P(A 0 n A l ) < (c 3 + 0(1)) j-1 .
l=[jf/2 ]

But this is all we need, because
J

N ~ P(A 0 n A l ) _< (c3 + 0(1))j -1 + NP(A 0 )f/2
l=1

< ( C3 + O (1)1 'J- 1 + ( C2 + i ll
1
\1J-1+(3e/2)

l

	

t 1
c2 j-1+3e/2



which is not summable in j and we are done .
To bound P(A0 U A 1 ), we use Lemma 4 with x = a j + (1/2 - E)((log j)/t*),

k = j, i = l, q = a j - ( l/t* )log 4(t*) + (1 + 2/E)((log l)/t* ), the constants t,
t *, and B are as in the proof of Lemma 5. This gives

P( A 0 n A 1 ) < e - /~l-(1+(2/E)) + P( A 0 )e-Bj(t/t*)(~-1/2)l(t/t*)(1+2/£)

If we sum over all 1 > [f/2 ] and multiply by N < e (j+ 2)/~, we see that
J

	

-1
N

	

P(A 0 n A l ) < e 2/~ ([f£/2]2/£)
l= [j f/2 ]

-1+~exp _0f/2 )
.(t t*)(1 2+E+2 e)+(c 2 +0(1))j1

1-e B

< (C3 + o(1))J -1,
for some positive constant c 3 .

This concludes the proof of Lemma 6 .

In view of Lemma 1, Corollary 3, and Lemma 6, only one piece of the puzzle is
missing, i .e .,

LEMMA 7.

-1
lira inf (Un - ak )/log k >

	

almost surely ;
n-o0

	

2t*
-1

(ii)

	

lira inf (Tn - ak )/log k >

	

almost surely .
n-~ o0

	

2t*

PROOF. For nj -< n < nj+ 1 , we know that Un > Un and Tn > Tn . Thus, by
the Borel-Cantelli lemma, we are done if we can show that, for all > 0,

00

	

1

	

log j
~P Un <a~- - + E * < o0

j°1

	

J2

	

t

00

	

1

	

log j
and

	

P Tnl < a j - 2- + E *. < oo .
j°1

	

t

(i)
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From there, we conclude that
N

	

Ci
P = P UA)i > (1 + 0(1))

	

-1+(£/2) ,
i=1

	

2c2

Consider the set J of all integers of the form r [f/2],
integer l, let us also define the quantity, for each fixed j,

Q1 =

	

sup

	

(SHJ - Si } .
21j<_i<(21+1)j ; iEJ~

r= 0,1,2	For
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It is noteworthy that Qo, Q1, Q2, . . . are independent random variables for
each j and that

Un > sup Ql,
0<l<L

where L is the largest integer such that (2 L + 1) j - 1 < n~ - j, i.e .,

L= -
1 n~-j+l

	

n~-2j

	

n~-4j n~
-1

- 2j

	

2j

	

2j~2

	

j

By all this, we have
1

	

log j

	

L

	

1

	

log j
P~ =P Un <aj- -+E* < ~ p Q l < «j- --}-~

2

	

t

	

l=0

	

2 t*

n~

	

1

	

log j
_< exp - (1 + 0(1)) ;P Qo >_ «j - - + E

2J

	

2

	

t*

where we used the independence of the Q l 's and the inequality 1 - u < e- u. Let
Nl be the number of indices i in the intersection J~ ~ t2l; . . . , ( 2l + 1) j - 1 } .
This number Nl satisfies, uniformly in l, Nl ~ j1- £/2 as j -~ oo (and this is why
we need only consider Q o ) . Put, in the sequel, N = No .

By a simple Bonf erroni inequality
1

	

log j

	

1

	

log j
P Qo >_aJ- 2+E t*

>_NP S~>_aj- 2+E t*

N- i

	

1

	

log j
-2N~PS~>_«j- -+~

r=1

	

2 t* '

S~+r[~F/2 ~

1

	

log j
Sr~~F/2~ >_ «J -

2
+
E t *

By Corollary 2, the first term in this lower bound is larger than
(1 + o(1))J1-~~2e '~~~(t * )JE

~ ~(t*)J1+E~2e-'~~.

We will show that the second term in the lower bound is o (first term), so that
P~ is not greater than

expl -(1 + 0(1)~2j£/2~,(t*~e-i/~l ~ exp~-(1 + 0(1)) 2~(t*)j£~2J,
1

	

1
which is summable in j by the integral test. This proves (i) .

Let x = a j - (1/2 + E)((log j )/t * ) and m = r [ j E~2 ] Then we need only show
that

N-1
( * )

	

~ p('Sj ~ x, 'Sj+m - 'Sm ~ x ~ - o(~JEe ~/c ~
r=1

To do so, we will once again use Lemma 4, with t, t*, and B defined as in the
pr"oof of Lemma 5, and with the formal replacements

. -

	

-

	

•E /2

	

_

	

. _

	

•e/2 1

	

*

	

2

	

'e/2a

	

m r~J ],

	

q aJ r~J ] * log~(t ) + * log(r~J ]) .
t

	

t
k=j,
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The r th term of (*) is bounded from above by

er [/2je-2 + p( S. >_ x)J(t/t*)(1/2+ e)(r[Je/2])(2t/t*)e
(

	

])

	

J

which, taking into account that r[j 2 ]e/-< j, c < 2 (without loss of generality)
and t/t* < 1, is by Corollary 2 not greater that

e
_
J/cr

-2
j
-

e(1 + o(1)) + (e 1/(t*) + o(1))e-~~~ '3 e+e -Br[ 2 ]
J

	

,

where the "o(1)" terms are uniform in r > 1 .
Summing over r gives the bound

.2

	

e1/e(t*)j3+ee -BN[ 2 l

(* *) (1 + o(1))e -''

	

++
6J 1 exp(-9[jE~2])

as requested . This completes the proof of (i) .
The proof of (ii) is based on the same arguments as the proof of (i), but with

slight modifications . We first replace Q1 by Ql, defined by
Ql =

	

Sup

	

- Si}
2 j<i<(21+1)j; iEJ

We have evidently, for any 0 < M < L,

Tn > sup Ql .
M<_1<L

Next, we choose M = o (L) such that, for any i E {2Mj, . . . , (2L + 1)j}, we
have

log j
J - * o(1) < K(l) ~J,t

where the "o(1)" term is uniform in i as j --~ c . We can take here M =
[L/log log j] . We get then, by the same arguments as above

1

	

log j
P~'=PTn .<«J- 2+E

t*
<exp

By Bonf erroni, we have
1

	

log j
PQl ---«J

	

+E

	

I>>JP(SK>x)(i)2

	

t

	

iEh

P ( Sr+K(r) - Sr >_ x, Ss+K(s) - Ss >_ x)

where I1 = J fl {21j, . . . , (21 + 1) j - 1) .
By Corollaries 1 and 2 we have evidently, for j large enough,

P(SK (i) ? x) ? (p(t*) + o(1))e-''j
",

uniformly in i E Il , so that
e l/~ ( t*) +o(i)

	

1 E log j
P(SK(t) > x) >	

ej/J
c'-e/2

	

>_ (1 + o(1))P Sj >_ «J - - + -
2

	

2

	

t

o (e -,' )

L
P~Qi > a j -

l=M

o(jee-' '`),

1

	

log j
2 -+c t*
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Likewise, by Lemma 4 and the argument we have just used to prove (i), we
deduce from (* *) that

P(Sr+K(r) - Sr ? x, SS+K(S) - SS ? x) = o

	

P(SK(i) >_ x)) .
r*sEh

It follows that
iE1l

1

	

e

	

j
"_< exp -(L - M)(1 + o(1))P Qo >_ aj -(- +

log
-~ )

12 t*2

.

Since L - M = L(1 + o(1)) _ (n/(2 j))(1 + o(1)), the expression above yields
the same upper bound as was obtained for P' with c/2 replacing c . But we have
proved that

	

< 00 for all e > 0 . This concludes the proof of Lemma 7 .

The theorem that gives the exact convergence rate for the Erdos-Renyi and
Sheep limit theorems has now been proved :

THEOREM 5 . For any a E (0, A), or equivalently, for any c = c(a) E (c 0, x,
we have

(i)
1

lim sup (Un - ak )/log k = * almost surely ;
2t* 1

(ii)

	

lim inf (Un - ak)/log k = - 2t* almost surely .n-o0
In statements (i)-(ii), U, can be replaced by Tn .

PROOF. Combine Corollary 3 with Lemmas 1, 6, and 7 .

REMARK 5 . It can be seen that the methods we have used can be extended to
the case where k = rc(n) is a nondecreasing sequence such that rc( n) - c log n =
o (log log n) .

REMARK 6. What happens when c E (0, c0 ), corresponding to cases (i)-(ii) of
Theorem 2, will be discussed in forthcoming papers (Deheuvels, 1985 and
Deheuvels-Devroye, 1983 and 1985). Related results concerning Erdos-Renyi
laws for moving quantiles are to be found in Deheuvels and Steinebach (1984) .

Acknowledgment, we are grateful to the referee for his careful reading and
helpful suggestions.
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